SUI FONDAMENTI ANALITICI
PER L'APPLICAZIONE DEL METODO
DEGLI INVARIANTI ORTOGONALI
AD UN PROBLEMA DI AUTOVALORI
PER UNA EQUAZIONE ELLITTICA
(*)

di G. Congedo e A. Lepore (a Lecce) (**)

SOMMARIO. - In questo lavoro si studia il problema di valori al contorno
(I) $EE^*u = f \text{ in } A,$
(II) $Du = 0 \text{ su } \partial A \text{ per } 0 \leq |s| \leq m - 1$
dove E è un particolare operatore ellittico di ordine $m \geq 1$ e E^* è l'operatore formalmente aggiunto di E.

Di tali operatori è possibile costruire gli operatori soluzioni fondamentali. Ciò permette di dimostrare l'esistenza e l'unicità della soluzione del problema (I), (II) in una opportuna classe $\mathcal{D}^1(A)$ per ogni $f \in L^2(A)$. Il fatto più saliente è che dell'operatore di Green del problema (I), (II) si dà la forma esplicita.

Ciò permette di studiare il problema di autovalori relativo ad (I), (II) usando (oltre che il metodo di Rayleigh-Ritz) quello degli invarianti ortogonali.

SUMMARY. - In this paper the following boundary value problem is studied
(I) $EE^*u = f \text{ in } A,$
(II) $Du = 0 \text{ on } \partial A \text{ for } 0 \leq |s| \leq m - 1$

(*) Pervenuto in Redazione l'8 gennaio 1980.
(**) Indirizzo degli Autori: Istituto di Matematica dell'Università - Via Arnesano - 73100 Lecce.
where E is a particular elliptic operator of order $m \geq 1$ and E^* is its formal adjoint.

It is possible to construct the fundamental solution operators of the above operators. This permits to prove the existence and the uniqueness of the solution of (I), (II), in a suitable function class $\mathcal{G} (\Lambda)$, for any $f \in L^2 (\Lambda)$.

The most salient feature in the possibility of obtaining the Green operator of (I), (II) in an explicit form. This enables to study the relevant eigenvalue problem by using (in addition to the Rayleigh-Ritz method) the orthogonal invariants method.

Notazioni

Sia $s = (s_1, s_2)$ con s_1 e s_2 interi non negativi.

Poniamo:

$$|s| = s_1 + s_2; \quad D^s = \frac{\partial^{s_1}}{\partial x_1^{s_1}} \frac{\partial^{s_2}}{\partial y_2^{s_2}}$$

Se B è un dominio limitato di \mathbb{R}^2, con $H_m (B)$ indicheremo lo spazio di Hilbert ottenuto per completamento funzionale di $C^m (\overline{B})$ rispetto alla norma

$$\|v\|_{m,B} = \left(\int_B \left[\sum_{|s| \leq m} |D^s v|^2 \right] dx dy \right)^{1/2}.$$

Per ogni funzione $v \in H_m (B)$ e per ogni s tale che $0 \leq |s| \leq m$, esiste la derivata $D^s v$ come funzione di $\mathcal{G}^2 (B)$. Inoltre, per ogni funzione v appartenente allo spazio $H_m (B)$, è possibile definire la traccia di v sulla frontiera di B e la traccia di una qualsiasi sua derivata $D^s v$ di ordine $|s|$ con $0 \leq |s| \leq m - 1$. Tali tracce sono continue lungo la frontiera di B nel senso delle funzioni di $H_{|s|+1} (B)$.

Con $(u, v)_B$ indicheremo il prodotto scalare in $H_o (B) = \mathcal{G}^2 (B)$, ossia

$$(u, v)_B = \int_B u \bar{v} dx dy, \quad \left(\|v\|_B = (v, v)^{1/2}_B \right)$$

Con $C^\omega (B)$ indicheremo lo spazio delle funzioni analitiche su B.

Infine, per ogni $B \subseteq \mathbb{R}^2$, indicheremo con $\mathcal{C} B$ l'insieme $\mathbb{R}^2 - B$.

Consideriamo l'operatore differenziale lineare di ordine $2m$ a coefficienti reali e costanti
SUI FONDAMENTI ANALITICI PER L'APPLICAZIONE ecc.

\(D_{2m} = \sum_{s=0}^{2m} a_s \frac{\partial^{2m}}{\partial x^{2m-s} \partial y^s}, \ a_s \in \mathbb{R}, \ s = 0, 1, ..., 2m, \)

con la seguente ipotesi di ellitticità:

\(\sum_{s=0}^{2m} a_s \xi_1^{2m-s} \cdot \xi_2^s \neq 0 \)

per ogni vettore \((\xi_1, \xi_2)\) di \(\mathbb{R}^2\) tale che \(\xi_1^2 + \xi_2^2 \neq 0\).

Dalla (2) consegue che \(a_o \neq 0\) e \(a_{2m} \neq 0\).

Per \(\xi_2 \neq 0\), dividendo per \(\xi_2^{2m}\) e ponendo \(\frac{\xi_1}{\xi_2} = w\), la condizione (2) diventa:

\(\sum_{s=0}^{2m} a_s w^{2m-s} \neq 0, \) per ogni \(w\) reale.

Questo implica che gli zeri del polinomio a \(1^o\) membro della (3) sono tutti complessi e a due a due coniugati, essendo gli \(a_s\) reali. Se indichiamo tali zeri con \(\alpha_h \pm i\beta_h (\beta_h \neq 0), \ h = 1, 2, ..., m,\) il \(1^o\) membro della (2) si può scrivere

\(a_o \prod_{h=1}^{m} [\xi_1 - (\alpha_h + i\beta_h) \xi_2] [\xi_1 - (\alpha_h - i\beta_h) \xi_2]. \)

Per analogia con la (4), l'operatore (1) si può rappresentare nel seguente modo

\(D_{2m} \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right) = a_o \prod_{h=1}^{m} \left[\frac{\partial}{\partial x} - (\alpha_h + i\beta_h) \frac{\partial}{\partial y} \right] \left[\frac{\partial}{\partial x} - (\alpha_h - i\beta_h) \frac{\partial}{\partial y} \right]. \)

Se poniamo

\(L_h = \frac{\partial}{\partial x} - (\alpha_h + i\beta_h) \frac{\partial}{\partial y}, \)

indicato con \(L_h^*\) l'operatore formalmente aggiunto di \(L_h\), si ha

\(L_h^* = -\frac{\partial}{\partial x} + (\alpha_h - i\beta_h) \frac{\partial}{\partial y} = -\left[\frac{\partial}{\partial x} - (\alpha_h - i\beta_h) \frac{\partial}{\partial y} \right]. \)

Pertanto si può scrivere

\(D_{2m} \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right) = (-1)^m a_o \prod_{h=1}^{m} L_h L_h^*, \)

oppure, per la permutabilità degli \(L_h\) e \(L_h^*\),

\(D_{2m} \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right) = (-1)^m a_o \prod_{h=1}^{m} L_h \cdot \prod_{h=1}^{m} L_h^*. \)

Infine, posto \(E = \prod_{h=1}^{m} L_h\), e osservato che, detto \(E^*\) l'aggiunto for-
male di \(E \), si ha \(E^* = \left(\prod_{h=1}^{m} L_h \right)^* = \prod_{h=1}^{m} L_h^* \),

si può scrivere

\[
\mathcal{D}_{2m} \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right) = (-1)^m a_o E E^*.
\]

Sia \(A \) un dominio di \(\mathbb{R}^2 \) (insieme aperto) limitato e propriamente regolare. Sia \(f \) una funzione di \(\mathcal{F}^2 (A) \). Sia \(\mathcal{U} (A) \) la classe delle funzioni \(u \) appartenenti a \(H_m (A) \cap H_{2m} (A_o) \) per ogni dominio di \(A_o \) tale che \(A_o \subset A \).\(^{(1)}\)

Consideriamo il seguente problema di valori al contorno:

\[
\mathcal{D}_{2m} u = f \text{ in } A,
\]

\[
D^s u = 0 \text{ su } \partial A, \text{ per } 0 \leq |s| \leq m - 1.
\]

Tenendo presente il significato dell'operatore \(\mathcal{D}_{2m} \) e pensando conglobata la costante \((-1)^m a_o^{-1} \) nel dato \(f \), il problema (9), (10) si può scrivere

\[
E E^* u = f \text{ in } A,
\]

\[
D^s u = 0 \text{ su } \partial A, \text{ per } 0 \leq |s| \leq m - 1.
\]

Così formulato il problema è di tipo biarmonico generalizzato.\(^{(2)}\)

Dimostreremo che esistono gli operatori \(T \) e \(T^* \) soluzione fondamentale rispettivamente di \(E \) e \(E^* \). Ciò assicura\(^{(3)}\) l'esistenza e l'unicità della soluzione \(u \) del problema (11), (12) nella classe \(\mathcal{U} (A) \), per ogni \(f \) di \(\mathcal{F}^2 (A) \).

Daremos, inoltre, una costruzione esplicita dell'operatore \(G \) di Green del nostro problema, per mezzo di \(T, T^* \) e di un operatore proiezione.

Procederemo nel seguente modo:

1) - mediante un opportuno cambiamento di variabili, trasformeremo gli operatori \(L_h \) e \(L_h^* \) dati da (6), (7); rispettivamente, negli operatori

\[
L = \frac{\partial}{\partial x} - i \frac{\partial}{\partial y}
\]

\[
L^* = - \frac{\partial}{\partial x} - i \frac{\partial}{\partial y},
\]

dei quali, come è noto, sono operatori soluzioni fondamentali rispet-

\((1) \) Per le notazioni usate si fa riferimento a [1].
\((2) \) Vedi [2].
tivamente

\[
Tf = \frac{1}{2\pi} \int \int_A \frac{f(\zeta)}{\zeta - z} \, d\xi \, d\eta \quad \text{e} \quad T^*f = \frac{1}{2\pi} \int \int_A \frac{\bar{f}(\zeta)}{\bar{\zeta} - z} \, d\xi \, d\eta ,
\]

dove \(\zeta = \xi + i\eta \) e \(z = x + iy \).

Ciò permette non solo di affermare che gli operatori \(L_h \) e \(L_h^* \) hanno soluzioni fondamentali, ma anche di darne una forma esplicita;

II) - successivamente proveremo che, detti \(T_h \) e \(T_h^* \) gli operatori soluzione fondamentale di \(L_h \) e \(L_h^* \), e posto \(T = T_m \, T_{m-1} \ldots T_2 \, T_1 \) e \(T^* = T_1^* \, T_2^* \ldots T_m^* \), gli operatori \(T \) e \(T^* \) sono rispettivamente soluzione fondamentale di \(L \) e \(L^* \).

Ciò premesso, considerato l’operatore \(L_h = \frac{\partial}{\partial x} - (\alpha_h + i\beta_h) \frac{\partial}{\partial y} \) \((\beta_h \neq 0)\), determiniamo le costanti reali \(\gamma_{ij}^{(h)} \) \((i, j = 1, 2; \, h = 1, 2, \ldots, m)\) in modo tale che, mediante la trasformazione

\[
\begin{align*}
X &= \gamma_{11}^{(h)} x + \gamma_{12}^{(h)} y \\
Y &= \gamma_{21}^{(h)} x + \gamma_{22}^{(h)} y
\end{align*}
\]

(15)

l’operatore \(L_h \) diventi \(\frac{\partial}{\partial X} - i \frac{\partial}{\partial Y} \).

Si ha:

\[
\begin{align*}
\frac{\partial u}{\partial x} &= \frac{\partial u}{\partial X} \gamma_{11}^{(h)} + \frac{\partial u}{\partial Y} \gamma_{12}^{(h)} \\
\frac{\partial u}{\partial y} &= \frac{\partial u}{\partial X} \gamma_{21}^{(h)} + \frac{\partial u}{\partial Y} \gamma_{22}^{(h)} .
\end{align*}
\]

Pertanto l’operatore \(L_h \), nelle variabili \(X \) e \(Y \), diventa

\[
\frac{\partial}{\partial X} \gamma_{11}^{(h)} + \frac{\partial}{\partial Y} \gamma_{12}^{(h)} - (\alpha_h + i\beta_h) \left(\frac{\partial}{\partial X} \gamma_{12}^{(h)} + \frac{\partial}{\partial Y} \gamma_{22}^{(h)} \right) .
\]

Perché esso sia uguale a \(\frac{\partial}{\partial X} - i \frac{\partial}{\partial Y} \) dev’essere

\[
\begin{align*}
\gamma_{11}^{(h)} - \alpha_h \gamma_{12}^{(h)} - i\beta_h \gamma_{12}^{(h)} &= 1 \\
\gamma_{21}^{(h)} - \alpha_h \gamma_{22}^{(h)} - i\beta_h \gamma_{22}^{(h)} &= -i ,
\end{align*}
\]

da cui risulta: \(\gamma_{11}^{(h)} = 1 \); \(\gamma_{12}^{(h)} = 0 \); \(\gamma_{21}^{(h)} = \frac{\alpha_h}{\beta_h} \); \(\gamma_{22}^{(h)} = \frac{1}{\beta_h} \).

Pertanto la trasformazione richiesta è:
\(X = x \)

(16)

\[
\begin{align*}
Y &= \frac{\alpha_h}{\beta_h} x + \frac{1}{\beta_h} y
\end{align*}
\]

da cui (17)

\[
\begin{align*}
x &= X \\
y &= -\alpha_h X + \beta_h Y.
\end{align*}
\]

Per quanto notato precedentemente, per l'operatore \(\frac{\partial}{\partial X} - i \frac{\partial}{\partial Y} \)
esiste una soluzione fondamentale data da

(18)

\[
\frac{1}{2\pi} \int \frac{F(W)}{Z-W} \, dU \, dV,
\]

dove:

\(Z = X + iY; \ W = U + iV; \)

\(\Omega \) è il trasformato del dominio \(A \) mediante le (17);

\(F(z) = F(X, Y) \) è la funzione composta mediante la \(f \) e le (17).

Tornando, tramite le (16), alle variabili \(z = x + iy \) e \(\xi = \xi + i\eta \)
si otiene, per la soluzione fondamentale \(T_{hf} \) di \(L_h u = f \), la seguente rappresentazione:

(19)

\[
T_{hf} = \frac{1}{2\pi} \int \frac{f(\xi)}{\alpha_h x - i \frac{\alpha_h}{\beta_h} x - i \frac{\beta_h}{y} - \xi + i \frac{\alpha_h}{\beta_h} \xi + i \frac{\eta}{\beta_h}} \, d\xi \, d\eta =
\]

\[
= \frac{1}{2\pi \beta_h} \int \frac{f(\xi)}{\alpha_h \left(1 - i \frac{\alpha_h}{\beta_h} \right) x - i \frac{\alpha_h}{\beta_h} y - \left(1 - i \frac{\alpha_h}{\beta_h} \right) \xi + i \frac{\eta}{\beta_h}} \, d\xi \, d\eta.
\]

Procedendo in modo analogo si ha:

(20)

\[
T_{h^* f} =
\]

\[
= \frac{1}{2\pi \beta_h} \int \frac{f(\xi)}{\alpha_h \left(1 + i \frac{\alpha_h}{\beta_h} \right) \xi + i \frac{\alpha_h}{\beta_h} \eta - \left(1 + i \frac{\alpha_h}{\beta_h} \right) x - i \frac{\eta}{\beta_h}} \, d\xi \, d\eta.
\]

La (19) e la (20) forniscono la forma esplicita degli operatori soluzione fondamentale di \(L_h \) e \(L^*_h \).

Per dimostrare la II parte osserviamo che, essendo \(T_h \) operatore soluzione fondamentale di \(L_h \), si ha

\(L_h T_h = I \) per \(h = 1, 2, ..., m \)

dove \(I \) è l'operatore identico.
Pertanto, applicando m volte la proprietà associativa, risulta
\[
(L_1 L_2 \ldots L_{m-1} L_m) (T_m T_{m-1} \ldots T_2 T_1) f = \\
= (L_1 \ldots L_{m-1}) (L_m T_m) (T_{m-1} \ldots T_1) f = \\
= \ldots = L_1 (L_2 T_2) T_1 f = L_1 T_1 f = f.
\]
Resta così provato che $T = T_m T_{m-1} \ldots T_2 T_1$ è operatore soluzione fondamentale di $E = L_1 L_2 \ldots L_{m-1} L_m$.

Analogamente $T^* = T_m^* T_{m-1}^* \ldots T_2^* T_1^*$ è operatore soluzione fondamentale di $E^* = L_1^* L_2^* \ldots L_{m-1}^* L_m^*$.

Per determinare la forma esplicita di T e T^*, poniamo
\[
(21) \quad K_h (z, \xi) = \frac{1}{2 \pi \left(\beta_h - i \alpha_h \right) x - i y - \left(\beta_h - i \alpha_h \right) \xi + i \eta},
\]
\[
(22) \quad K_h^* (z, \xi) = \frac{1}{2 \pi \left(\beta_h + i \alpha_h \right) \xi + i \eta - \left(\beta_h + i \alpha_h \right) x - i y},
\]
per $h = 1, 2, \ldots, m$.

Allora le (19) e (20) prendono la seguente forma:
\[
(23) \quad T_h f = \int_A K_h (z, \xi) f (\xi) \, d\xi \, d\eta,
\]
\[
(24) \quad T_h^* f = \int_A K_h^* (z, \xi) f (\xi) \, d\xi \, d\eta.
\]

Si ha pertanto
\[
T_2 T_1 f = T_2 \int_A K_1 (z, \xi) f (\xi) \, d\xi \, d\eta = \\
= \int_A \int K_2 (z, \xi_1) d\xi_1 \, d\eta \int_A K_1 (\xi_1, \xi) f (\xi) \, d\xi \, d\eta = \\
= \int_A f (\xi) \, d\xi \, d\eta \int_A \int K_2 (z, \xi_1) K_1 (\xi_1, \xi) \, d\xi_1 \, d\eta_1 = \\
= \int_A K^{(2)} (z, \xi) f (\xi) \, d\xi \, d\eta,
\]
da dove si è posto
$K^{(2)} (z, \zeta) = \int \int_{A} K_{2} (z, \zeta) K_{1} (\zeta_{1}, \zeta) \ d\xi_{1} \ d\eta_{1}; \ \zeta_{1} = \xi_{1} + i\eta_{1}.$

Analogamente si ha:

$T_{3} T_{2} T_{1} f = T_{3} \int \int_{A} K^{(2)} (z, \zeta) \ f (\zeta) \ d\xi \ d\eta =$

$= \int \int_{A} K_{3} (z, \zeta_{1}) \ d\xi_{1} \ d\eta_{1} \int \int_{A} K^{(2)} (\zeta_{1}, \zeta) \ f (\zeta) \ d\xi \ d\eta =$

$= \int \int_{A} f (\zeta) \ d\xi \ d\eta \int \int_{A} K_{3} (z, \zeta_{1}) K^{(2)} (\zeta_{1}, \zeta) \ d\xi_{1} \ d\eta_{1} =$

$= \int \int_{A} f (\zeta) \ d\xi \ d\eta \int \int_{A} K_{3} (z, \zeta_{1}) K_{2} (\zeta_{1}, \zeta_{2}) K_{1} (\zeta_{2}, \zeta) \ d\xi_{2} \ d\eta_{2} =$

$= \int \int_{A} K^{(3)} (z, \zeta) \ f (\zeta) \ d\xi \ d\eta,$

dove si è posto

$K^{(3)} (z, \zeta) = \int \int_{A} d\xi_{1} \ d\eta_{1} \int \int_{A} K_{3} (z, \zeta_{1}) K_{2} (\zeta_{1}, \zeta_{2}) K_{1} (\zeta_{2}, \zeta) \ d\xi_{2} \ d\eta_{2}$

con $\zeta_{2} = \xi_{2} + i\eta_{2}.$

In generale, per $T = T_{m} T_{m-1} ... T_{2} T_{1},$ si avrà

(25) $T f = \int \int_{A} K^{(m)} (z, \zeta) \ f (\zeta) \ d\xi \ d\eta,$

dove si è posto

(26) $K^{(m)} (z, \zeta) = \int \int_{A} d\xi_{1} \ d\eta_{1} \int \int_{A} d\xi_{2} \ d\eta_{2} ...$

$... \int \int_{A} d\xi_{m-2} \ d\eta_{m-2} \int \int_{A} K_{m} (z, \zeta_{1}) ... K_{1} (\zeta_{m-1}, \zeta) \ d\xi_{m-1} \ d\eta_{m-1},$

con $\zeta_{h} = \xi_{h} + i\eta_{h}, \ h = 1, 2, ..., m - 1.$

Analogamente si ha

(27) $T^{*} f = \int \int_{A} K^{(m)*} (z, \zeta) \ f (\zeta) \ d\xi \ d\eta,$ dove si è posto
\(K^{(m)k} (z, \zeta) = \int_A d\xi_1 d\eta_1 \int_A d\xi_2 d\eta_2 \ldots \)
\[\ldots \int_A d\xi_{m-2} d\eta_{m-2} \int_A K_{m}^{*} (z, \zeta_1) \ldots K_{1}^{*} (\zeta_{m-1}, \zeta) d\xi_{m-1} d\eta_{m-1}. \]

Tornando al nostro problema (11), (12), in virtù dei risultati di [2] esiste una ed una soluzione \(u \) appartenente allo spazio \(\mathcal{M} (A) \). Essa è data da
\[
(29) \quad u = Gf,
\]
dove
\[
(30) \quad G = TT^* - TPT^*
\]
essendo \(P \) il proiettore ortogonale di \(\mathcal{Q}^2 (A) \) sul sottospazio \(\Omega (A) \) di \(\mathcal{Q}^2 (A) \) costituito dalle funzioni di \(C^0 (A) \) soluzioni della equazione omogenea
\[
(31) \quad E^*u = 0 \text{ in } A.
\]

Teoremi di completezza per lo spazio \(\Omega (A) \).

Facciamo vedere che, fissato un opportuno dominio \(B \supseteq \overline{A} \), comunque si scelga \(w \in C^0 (A) \cap \mathcal{Q}^2 (A) \) soluzione di \(E^*w = 0 \) in \(A \) e comunque si scelga \(\varepsilon > 0 \), esiste \(u \in C^0 (B) \), soluzione di \(E^*u = 0 \) in \(B \), tale che \(\| w - u \|_A < \varepsilon \). \(^{(4)}\)

A tale scopo premettiamo alcuni lemmi.

Lemma I

Sia \(u \in H_2 (A) \) e \(L^* = -\left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \).

Sussiste la seguente implicazione:
\[
\left(u |_{\partial A} = 0 \text{ e } L^*u |_{\partial A} = 0 \right) \Rightarrow \left(Du |_{\partial A} = 0 \right).
\]

Dimostrazione.

Posto \(u = u_1 + iu_2 \) (\(u_1 \) e \(u_2 \) reali), si ha
\[
L^*u = -\frac{\partial u_1}{\partial x} - i \frac{\partial u_2}{\partial x} - i \frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial y} =
\]

\(^{(4)}\) Ora e nel seguito la norma ed il prodotto scalare indicati sono quelli usuali dello spazio \(\mathcal{Q}^2 (A) \).
\[
= -\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} - i \left(\frac{\partial u_2}{\partial x} + \frac{\partial u_1}{\partial y} \right) .
\]

Pertanto dev'essere:

\[
\begin{cases}
- \frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} = 0 \\
\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} = 0
\end{cases}
\text{su } \partial A.
\]

D'altra parte, da \(u_1 + iu_2 = 0 \) su \(\partial A \), consegue

\[
\begin{cases}
\frac{\partial u_1}{dx} \frac{dx}{ds} + \frac{\partial u_1}{dy} \frac{dy}{ds} = 0 \\
\frac{\partial u_2}{dx} \frac{dx}{ds} + \frac{\partial u_2}{dy} \frac{dy}{ds} = 0
\end{cases}
\text{su } \partial A.
\]

Le (32), (33) costituiscono un sistema omogeneo di quattro equazioni nelle incognite \(\frac{\partial u_1}{\partial x}, \frac{\partial u_1}{\partial y}, \frac{\partial u_2}{\partial x}, \frac{\partial u_2}{\partial y} \), il cui determinante è \(\left(\frac{dx}{ds} \right)^2 + \left(\frac{dy}{ds} \right)^2 \neq 0 \).

Pertanto l'unica soluzione di (32), (33) è

\[
\frac{\partial u_1}{\partial x} = \frac{\partial u_1}{\partial y} = \frac{\partial u_2}{\partial x} = \frac{\partial u_2}{\partial y} = 0 .
\]

Osserviamo che, in virtù delle (17) che trasformano un qualsiasi operatore \(L^*_h (h = 1, 2, \ldots, m) \) del nostro problema in \(L^* \), il lemma continua a sussistere se si sostituisce a \(L^* \) uno qualunque degli operatori \(L^*_h \).

Lemma II

Siano:

1) \(L, L^* \) gli operatori (13), (14) e sia \(K (z, \zeta) = -\frac{1}{2\pi} \cdot \frac{1}{\zeta - z} \), \(K^* (z, \zeta) = \frac{1}{2\pi} \cdot \frac{1}{\zeta - z} \);

2) un dominio \(B \) di \(\mathbb{R}^2 \) tale che: i) \(B \supseteq \overline{A} \); ii) \(\forall z_0 \in \mathcal{A}, \exists z \in \mathcal{B} \) tale che \(z \) e \(z_0 \) siano estremi di una poligonale tutta contenuta in \(\mathcal{A} \);

3) \(w \in \mathcal{L}^2 (A) \).

Sussiste la seguente implicazione:
\[
\left\{ (w, u)_A = 0, \forall u \in C^\infty (B) \mid L^* u = 0 \text{ in } B \right\} \Rightarrow \\
\Rightarrow \left\{ \exists \psi \in H_1 (A), \text{ tale che: } L \psi = w \text{ in } A \text{ e } \psi |_{\partial A} = 0 \right\}.
\]

Dimostrazione.

Per ogni \(z \in \mathbb{C} \bar{B} \) poniamo \(u (\zeta) = K^* (z, \zeta) \).

Risulta: \(L_\zeta^* u = 0 \) in \(B \). Infatti

\[
u (\zeta) = K^* (z, \zeta) = \frac{1}{2\pi} L_\zeta \log |z - \zeta|
\]
dacui

\[
L_\zeta^* u = - \frac{1}{2\pi} L_\zeta L_\zeta \log |z - \zeta| = - \frac{1}{2\pi} \Delta_2 \log |z - \zeta| = 0.
\]

Per ipotesi si ha

\[
\iint_A w (\zeta) K^* (z, \zeta) \, d\zeta \, d\eta = 0 \text{ ossia } \iint_A K (z, \zeta) w (\zeta) \, d\zeta \, d\eta = 0.
\]

Tale uguaglianza è vera per la 2) ii), per ogni \(z \in \mathbb{C} \bar{A} \).

Posto

\[
\psi (z) = \iint_A K (z, \zeta) w (\zeta) \, d\zeta \, d\eta \text{ e } \Phi (z) = \iint_A \log |z - \zeta| w (\zeta) \, d\zeta \, d\eta,
\]
e osservato che \(K (z, \zeta) = - \frac{1}{2\pi} L_\zeta^* \log |z - \zeta| \), risulta \(\psi (z) = - \frac{1}{2\pi} L_\zeta^* \Phi (z) \).

E poiché \(\Phi (z) \) appartiene ad \(H_2 (B) \), (cfr. [3]), la funzione \(\psi (z) \) appartiene ad \(H_1 (B) \). Inoltre \(L_\zeta \psi = - \frac{1}{2\pi} L_\zeta L_\zeta^* \Phi = \frac{1}{2\pi} \Delta_2 \Phi = w \) (formula di Poisson). Infine \(\psi \), come funzione di \(H_1 (B) \), attraversa con continuità \(\partial A \) (secondo le funzioni di \(H_1 \)). Quindi \(\psi |_{\partial A} = 0 \).

Il lemma è così dimostrato.

In virtù delle (16) e (17), tale lemma continua a sussistere se si sostituisce \(L^* \) con l'operatore \(L \) o con uno degli operatori \(L_h^* \) o \(L_h \).

Dimostriamo ora il seguente

Teorema I

Siano \(L_1^* \) e \(L_2^* \) due degli operatori del nostro problema.
Sia \(w \in C^\omega (A) \mathcal{L}^2 (A) \) tale che \(L_1^* L_2^* w = 0 \) in \(A \).
Sia \(B \) un dominio soddisfacente la 2) del lemma precedente.
Sussiste la seguente implicazione:

\[
\left((w, u)_A = 0 \quad \forall \ u \in C^\omega (B) \text{ tale che } L_1^* L_2^* u = 0 \text{ in } B \right) \Rightarrow \left(w = 0 \text{ in } A \right)
\]

Dimostrazione.

Sia \(h \in C^\omega (B) \) e tale che \(L_2^* h = 0 \) in \(B \). Per l'ipotesi ammessa sarà \((w, h)_A = 0 \). Per il lemma II esisterà \(\sigma \in H_1 (A) \) tale che \(L_2 \sigma = w \) in \(A \), \(\sigma \mid_{\partial A} = 0 \). Sarà, allora, sempre per l'ipotesi ammessa,

\[
(L_2 \sigma, u)_A = 0
\]

dove \(u \) soddisfa le condizioni dell'enunciato. Dalla (34) segue

\[
(\sigma, L_2^* u)_A = 0 \quad \text{e, ponendo}
\]

\[
\nu = L_2^* u,
\]

si trae

\[
(\sigma, \nu)_A = 0.
\]

La (36) sussiste per ogni \(\nu \in C^\omega (B) \), tale che \(L_1^* \nu = 0 \) in \(B \). Infatti, data una tale \(\nu \), esiste sempre una \(u \) verificante le condizioni dell'enunciato, tale che sussista la (35). Esisterà, allora, \(\rho \in H_1 (A) \) tale che \(L_1 \rho = \sigma \) in \(A \), \(\rho \mid_{\partial A} = 0 \).

Pertanto si avrà \(w = L_2 \sigma = L_2 L_1 \rho \). Inoltre, essendo \(\sigma \in H_1 (A) \), si avrà \(\rho \in H_2 (A) \). Riesce, quindi, \(\rho \mid_{\partial A} = 0 \), \(L_1 \rho \mid_{\partial A} = 0 \), \(L_2 L_1 \rho = 0 \) in \(A \), \(\rho \in H_2 (A) \cap H_s (A_0) \) per ogni \(A_0 \) tale che \(\overline{A_0} \subset A \). Ne viene (cfr. [2], p. 39) \(\rho = 0 \) in \(A \) e, quindi, \(w = 0 \).

Lemma III

Sia \(u \in H_{n+1} (A) \) con \(n \geq 1 \).
Sussiste la seguente implicazione:

\[
\left(u \mid_{\partial A} = 0 \quad \text{e} \quad D^s L^* u \mid_{\partial A} = 0, \ 0 \leq |s| \leq n - 1 \right) \Rightarrow
\]

\[
\left(D^s u \mid_{\partial A} = 0, \ 0 \leq |s| \leq n \right)
\]

Dimostrazione per induzione.

Il lemma è vero per \(n = 1 \) (lemma I).
Facciamo vedere che, se è vera l'implicazione (ipotesi induttiva)

\[
\left(u \mid_{\partial A} = 0 \quad \text{e} \quad D^s L^* u \mid_{\partial A} = 0, \ 0 \leq |s| \leq n - 2 \right) \Rightarrow
\]

...
allora è anche vero che:

\[
\left\{ \begin{array}{l}
u |_{sA} = 0 e \ D^s L^s u |_{sA} = 0, \\
0 \leq |s| \leq n - 1
\end{array} \right\} \Rightarrow \\
\left\{ \begin{array}{l}
D^s u |_{sA} = 0, \\
0 \leq |s| \leq n
\end{array} \right\}
\]

E' evidente che:

\[
\begin{align*}
\left\{ \begin{array}{l}
D^s L^s u |_{sA} = 0 \\
\text{per } 0 \leq |s| \leq n - 1
\end{array} \right\} & \Rightarrow \\
\left\{ \begin{array}{l}
u |_{sA} = 0 e D^s L^s u |_{sA} = 0, \\
\frac{\partial^{n-1} L^s u}{\partial x^h \partial y^{n-1-h}} |_{sA} = 0, 0 \leq h \leq n - 1
\end{array} \right\}
\end{align*}
\]

Dalla (37), per l'ipotesi induttiva, consegue che \(D^s u |_{sA} = 0, 0 \leq |s| \leq n - 1 \).

D'altra parte la (38), scambiando l'ordine di derivazione, diviene:

\[
\frac{\partial^{n-1} L^s u}{\partial x^h \partial y^{n-1-h}} = L^s \frac{\partial^{n-1} u}{\partial x^h \partial y^{n-1-h}} = 0
\]

su \(\partial A, 0 \leq h \leq n - 1 \).

In virtù dell'ipotesi induttiva, si ha

\[
\frac{\partial^{n-1} u}{\partial x^h \partial y^{n-1-h}} = 0 \text{ su } \partial A \text{ per } 0 \leq h \leq n - 1.
\]

Posto \(u^{(n-1, h)} = \frac{\partial^{n-1} u}{\partial x^h \partial y^{n-1-h}} \), risulta \(u^{(n-1, h)} \in H_2(A) \), e quindi, per il lemma I, si ha \(Du^{(n-1, h)} = 0 \text{ su } \partial A \), ossia:

\[
\begin{align*}
\frac{\partial}{\partial x} \frac{\partial^{n-1} u}{\partial x^h \partial y^{n-1-h}} & = \frac{\partial^{n} u}{\partial x^{h+1} \partial y^{n-1-h}} = 0 \\
\text{su } \partial A, \text{ per } 0 \leq h \leq n - 1.
\end{align*}
\]

(39)

\[
\frac{\partial}{\partial y} \frac{\partial^{n-1} u}{\partial x^h \partial y^{n-1-h}} = \frac{\partial^{n} u}{\partial x^h \partial y^{n-h}} = 0.
\]

Le (39), (40) si possono scrivere: \(\frac{\partial^{n} u}{\partial x^h \partial y^{n-h}} |_{sA} = 0 \), per \(0 \leq h \leq n \).

Il lemma è così dimostrato.

L'implicazione è ancora valida se si sostituisce \(L^s \) con \(L^s_h \), in virtù delle (16).
Lemma IV

Siano:

1) A un dominio limitato di \mathbb{R}^3 propriamente regolare;
2) B un dominio soddisfacente la 2) del lemma II;
3) $w \in L^2(A)$.

Sussiste la seguente implicazione:

$$\left((w,u)_A = 0, \forall u \in C^0(B) \mbox{ tale che } E^* u = 0 \mbox{ in } B \right) \Rightarrow
\begin{cases}
\exists \sigma \in H_m(A) \mbox{ tale che:} \\
E \sigma = w \mbox{ in } A \mbox{ e } D^s \sigma \mid_{zA} = 0 \\
\text{per } 0 \leq |s| \leq m - 1
\end{cases}$$

Dimostrazione.

Per ogni $z \in \mathcal{C} \overline{B}$, poniamo $u(\xi) = K^{(m)*}(z, \xi) =$

$$= \int_B \int d\xi_1 d\eta_1 \int_B \int d\xi_2 d\eta_2 ...$$

$$... \int_B \int d\xi_{m-2} d\eta_{m-2} \int_B \int K_1^{(m)}(z, \xi_1) ... K_1^{(m)}(z_{m-1}, \xi) \, d\xi_{m-1} d\eta_{m-1}.$$

Risulta $u(\xi) \in C^0(B)$. Pertanto, per ipotesi si ha:

$$\int_A w(\xi) \left(K^{(m)*}(z, \xi) \right) \, d\xi \, d\eta = 0, \mbox{ ossia } \int_A K^{(m)}(z, \xi) \, w(\xi) \, d\xi \, d\eta = 0.$$

Quest‘ultima uguaglianza sussiste anche per ogni $z \in \mathcal{C} \overline{A}$.

Pertanto, posto $\sigma(z) = \int_A K^{(m)}(z, \xi) \, w(\xi) \, d\xi \, d\eta$, risulta:

$$\sigma \in H_m(B); E \sigma = w \mbox{ in } A; D^s \sigma \mid_{zA} = 0 \mbox{ per } 0 \leq |s| \leq m - 1$$

(poiché σ e le sue derivate, fino a quelle di ordine $m - 1$, attraversano con continuità ∂A nel senso delle funzioni di H_m).

Teorema II

Sia $m \geq 2$. A e B soddisfino le ipotesi del lemma IV e sia $w \in C^0(A) \cap L^2(A)$ tale che:

1) $E^* w = 0$ in A.

Sussiste la seguente implicazione:

$$\left((w,u)_A = 0, \forall u \in C^0(B) \mbox{ tale che } E^* u = 0 \mbox{ in } B \right) \Rightarrow \left(w = 0 \mbox{ in } A \right)$$
Dimostrazione.

Sia \(h \in C^\infty (B) \) tale che \(L_2^* L_3^* \ldots L_m^* h = 0 \) in \(B \). Per l'ipotesi assunta riesce \((w, h)_A = 0\). In virtù del Lemma IV esiste \(\sigma \in H_{m-1} (A) \) tale che \(L_2 \ldots L_m \sigma = w \) in \(A \), \(D^s \sigma \big|_{sA} = 0 \) per \(0 \leq |s| \leq m - 2 \). Sempre per l'ipotesi ammessa riesce, pertanto,

\[
(L_2 \ldots L_m \sigma, u)_A = 0,
\]
dove \(u \) soddisfa le condizioni dell'enunciato.

Dalla (41) segue \((\sigma, L_2^* \ldots L_m^* u)_A = 0\) e, ponendo

\[
\nu = L_2^* \ldots L_m^* u,
\]
si deduce

\[
(\sigma, \nu)_A = 0.
\]

La (43) sussiste per ogni \(\nu \in C^\infty (B) \) tale che \(L_1^* \nu = 0 \) in \(B \). Infatti assegnata una tale \(\nu \), esiste sempre una \(u \) verificante le condizioni dell'enunciato, tale che sussista la (42). Per il lemma II esiste, pertanto, \(\rho \in H_1 (A) \), tale che \(L_1 \rho = \sigma \) in \(A \), \(\rho \big|_{sA} = 0 \). Si ha, pertanto, \(w = L_2 \ldots L_m \sigma = L_1 \ldots L_m \rho \).

Inoltre, essendo \(\sigma \in H_{m-1} (A) \), si ha \(\rho \in H_m (A) \) come facilmente si dimostra usando il teorema di Lichtenstein-Friedrichs ed il fatto che \(D^s \sigma \big|_{sA} = 0 \) per \(0 \leq |s| \leq m - 2 \). Riesce, quindi, \(\rho \big|_{sA} = 0 \), \(D^s L_1 \rho \big|_{sA} = 0 \) per \(0 \leq |s| \leq m - 2 \); in virtù del Lemma III, si ha, allora, \(D^s \rho \big|_{sA} = 0 \) per \(0 \leq |s| \leq m - 1 \). Inoltre \(L_m^* \ldots L_2^* L_m \ldots L_1 \rho = 0 \) in \(A \), \(\rho \in H_m (A) \cap H_{2m} (A_o) \) per ogni \(A_o \) tale che \(\overline{A_o} \subset A \). Se ne deduce, pertanto, (cfr. [2], pag. 39) \(\rho = 0 \) in \(A \) e, quindi, \(w = 0 \).

Dal teorema II consegue la determinazione di un sistema completo nel sottospazio \(\Omega (A) \); le funzioni di tale sistema si ottengono considerando in \(B \) le soluzioni della equazione omogenea associata all'operatore \(E^* \); \(B \) soddisfa la 2) del Lemma II.

Supponiamo ora che \(A \) e \(B \) siano semplicissime connessi.

In virtù di teoremi di rappresentazione dovuti a T. Boggio le soluzioni in \(B \) di \(E^* u = 0 \) si possono rappresentare mediante le soluzioni, in \(B \), di \(L_i^* u = 0 \) (\(i = 1, 2, \ldots m \)).

Riportiamo qui di seguito, con riferimento agli operatori differenziali del nostro problema, due teoremi di rappresentazione di T. Boggio: [4].

1°) - Se \(\mathfrak{D} = \mathfrak{D}_1 \mathfrak{D}_2 \), con \(\mathfrak{D}_1 \) e \(\mathfrak{D}_2 \) primi fra loro, allora ogni funzione \(U \) di \(C^\infty (B) \) che soddisfa l'equazione \(\mathfrak{D} U = 0 \) può rappresentarsi con la formula \(U = U' + U'' \), dove \(U' \) e \(U'' \) sono funzioni che soddisfano le equazioni \(\mathfrak{D}_1 U' = 0 \) e \(\mathfrak{D}_2 U'' = 0 \).
2°) - Ogni funzione di \(U \) di \(C^\omega (B) \) soddisfacente \(\mathcal{D} \cup U = 0 \) può sempre rappresentarsi mediante \(p + 1 \) funzioni \(U_1, U_2, \ldots, U_{p+1} \) che verificano l’equazione \(\mathcal{D} \cup U = 0 \), per mezzo della formula

\[
U = x^p U_1 + x^{p-1} U_2 + \ldots + x U_p + U_{p+1}.
\]

Applicando il Teorema 1°) al caso dei nostri operatori, se

\[
E^* = L_1^* \ldots L_m^* \quad \text{con} \quad L_h^* \neq L_j^* \quad \text{per} \quad h \neq j,
\]

risulta

\[
\omega = \sum_{h=1}^{m} u^{(h)}(h),
\]

dove \(\omega \) è una generica soluzione in \(B \) di \(E^* \omega = 0 \) e le \(u^{(h)} \) sono soluzioni in \(B \) delle equazioni omogenee associate agli operatori \(L_h^* \), per \(h = 1, 2, \ldots, m \). Più in generale, per i teoremi 1°) e 2°), se

\[
E^* = L_1^* \ldots L_p^* \quad \text{con} \quad s_i \in \mathbb{N} \quad \text{e} \quad s_1 + s_2 + \ldots + s_p = m,
\]

per \(\omega \) tale che \(E^* \omega = 0 \) in \(B \), si ha

\[
\omega = \sum_{h=1}^{p} (x^{s_1-1} u_{h,1} + x^{s_2-2} u_{h,2} + \ldots + x u_{h,s_h-1} + u_{h,s_h})
\]

con le \(u_{h,j} \) (\(1 \leq j \leq s_h \)) soluzioni della equazione omogenea associata all’operatore \(L_h^* \) in \(B \).

Sia \(\omega \) una soluzione in \(B \) dell’equazione \(E^* \omega = 0 \). Per essa sussiste la (44). D’altra parte, in ogni compatto contenuto in \(B \) (e, in particolare, in \(A \)), per classici risultati si ha:

\[
\textbf{45) } u_{h,j} = \lim_{n \to \infty} P_{h,j}^{(n)},
\]

essendo \(P_{h,j}^{(n)} \) un polinomio nella variabile complessa

\[
x + i \left(\frac{\alpha_h}{\beta_h} x + \frac{1}{\beta_h} y \right).
\]

Ne viene che la successione di funzioni

\[
\left\{ \left[x + i \left(\frac{\alpha_h}{\beta_h} x + \frac{1}{\beta_h} y \right) \right]^n \right\} (h = 1, \ldots, p; \quad n = 0, 1, 2, \ldots)
\]

costituisce, per la (45) e per il Teorema II, un sistema completo in \(\Omega (A) \). Ordinando in una successione ad un solo indice quella testè indicata, si ottiene la successione \(\{ \omega_k \} (k = 1, 2, \ldots) \), che supporremo ortonormalizzata in \(A \).

Ciò premesso, ritornando al problema di determinare la forma esplicita dell’operatore \(G \) dato dalla (30), si ha

\[
\begin{align*}
TT^* f &= \int_A \int_A K^{(m)} (z, \zeta) \, d\zeta d\eta_1 \int_A K^{(m)*} (\zeta, \zeta') \, f (\zeta) \, d\zeta \, d\eta_1 = \\
&= \int_A \int_A f (\zeta) \, d\zeta \, d\eta_1 \int_A K^{(m)} (\zeta, \zeta_1) \, K^{(m)*} (\zeta, \zeta') \, d\xi_1 \, d\eta_1.
\end{align*}
\]
con $K^{(m)}$ e $K^{(m)*}$ dati rispettivamente dalla (26) e (28).

Tenendo presente il significato del proiettore P che figura nella (30), risulta

$$PT^*f = \sum_{k=1}^{\infty} a_k \omega_k, \text{ con } a_k = (T^*f, \omega_k)_A.$$

Quindi:

$$PT^*f = \sum_{k=1}^{\infty} \left\{ \int_A \left(\int_A K^{(m)*} (\zeta_1, \zeta) f(\zeta) \, d\zeta \, d\eta \right) \omega_k(\zeta_1) \, d\xi_1 \, d\eta_1 \right\} \omega_k(z) =$$

$$= \sum_{k=1}^{\infty} \left\{ \int_A \left(\int_A K^{(m)*} (\zeta_1, \zeta) \omega_k(\zeta_1) \, d\xi_1 \, d\eta_1 \right) f(\zeta) \, d\zeta \, d\eta \right\} \omega_k(z).$$

Pertanto

$$Gf = \int_A f(\zeta) \, d\zeta \, d\eta \int_A K^{(m)} (z, \zeta_1) K^{(m)*} (\zeta_1, \zeta) \, d\xi_1 \, d\eta_1$$

$$- \sum_{k=1}^{\infty} \int_A f(\zeta) \, d\zeta \, d\eta \int_A K^{(m)} (z, \zeta_1) \omega_k(\zeta_1) \, d\xi_1 \, d\eta_1$$

$$\int_A K^{(m)*} (\zeta_1, \zeta) \omega_k(\zeta_1) \, d\xi_1 \, d\eta_1.$$

Tale rappresentazione dell'operatore G può essere impiegata per il calcolo degli autovalori del seguente problema:

(I') $EE^* \nu - \lambda \nu = 0$ \quad $\nu \in \Omega (A)$

(II') $D^s \nu = 0$ \quad su ∂A, per $0 \leq |s| \leq m - 1$

BIBLIOGRAFIA

