UN'OPERAZIONE SU IDEALI IN ANELLI GRADUATI (*)

di Emilia Mezzetti e Paolo Viola (a Trieste) (**)

Sommario. - Sia A un anello graduato, a graduazione intera, commutativo con unità. Si studia l'operazione che associa ad un ideale α di A l'ideale α^* generato dagli elementi omogenei di α, con particolare riguardo alle relazioni con la profondità e la lunghezza.

Summary. - Let A be a commutative integral-graded ring with unit. We study the function which takes an ideal α of A in the ideal α^*, generated by the homogeneous elements contained in α, with particular regard to the relationships with depth and length.

Introduzione.

Sia α un ideale di un anello graduato A, commutativo con unità, a graduazione intera (1), e si indichi con α^* l'ideale di A generato dagli elementi omogenei di α.

Dell'operazione * che muta α in α^*, e che è stata già in precedenza studiata da diversi Autori (ved. ad es. [1], [5], [6], [7]), qui ci si propone di indicare ulteriori proprietà.

Precisamente, si studiano dapprima, nel § 2, le relazioni dell'operazione * con la somma, il prodotto, l'intersezione ed il quoziente di

(*) Pervenuto in Redazione il 26 marzo 1980.
(**) Indirizzo degli Autori: Istituto di Matematica dell'Università - Piazzale Europa, 1 - 34100 Trieste.
(1) Ricordiamo che un anello A, commutativo con unità, si dice graduato a graduazione intera se risulta somma diretta di suoi sottogruppi additivi A_i ($i \in \mathbb{Z}$) soddisfacenti alla condizione $A_i A_j \subseteq A_{i+j}$. Un elemento $a \in A$ si dice omogeneo se esiste un $i \in \mathbb{Z}$ tale che $a \in A_i$.
ideali. Successivamente, nel § 3, si prova una relazione fra la profondità di un ideale primo P e quella del relativo P^*, già nota nel caso di anelli di Cohen-Macaulay (cfr. [5]). Si studia poi il comportamento dell'operazione * rispetto alla lunghezza di ideali primari introducendo, nel § 4, una metodologia per calcolarla sotto particolari ipotesi. Del seguente risultato di Hochster (cfr. [2]): «Se P è un ideale primo generato da una A-successione, P^* è un ideale P-primario», si dà quindi una generalizzazione ad ideali generati da monomi negli elementi di una A-successione che generi P. Nelle stesse ipotesi del § 4 si prova infine, nel § 5, che se l'ideale P è non omogeneo, la lunghezza degli ideali P-primari è non minore di quella dei rispettivi ideali P^*-primari.

§ 1. L'operazione *.

Sia α un ideale di A ed α^* l'ideale di A generato dagli elementi omogenei di α. Ovviamente α^* è il massimo ideale omogeneo contenuto in α ed in relazione ad esso valgono le note proprietà:

- Se α è primo, anche α^* è primo;

- Se α è P-primario, α^* è P^*-primario.

OSSERVAZIONE. Se, in particolare, A è l'anello di polinomi $K \left[x_1, \ldots, x_n\right]$ nelle indeterminate x_1, \ldots, x_n, costruito su un campo algebricamente chiuso K, possiamo dare all'operazione * la seguente interpretazione geometrica. Se P è un ideale primo proprio di A ($P \neq (x_1, \ldots, x_n)$) ed X la varietà affine $V(P)$ in uno spazio affine di dimensione n su K, allora $Y = V(P^*)$ è il minimo cono affine di vertice l'origine $0 (0, \ldots, 0)$ contenente X. Geometricamente si può quindi ottenere Y come chiusura del cono di vertice l'origine su $X \setminus \{0\}$. Se, inoltre, P non è contenuto in (x_1, \ldots, x_n), Y si può ottenere come cono affine associato ad una opportuna varietà proiettiva di uno spazio proiettivo di dimensione $n - 1$ su K. Infatti, se \overline{X} è la chiusura proiettiva di X, è sufficiente considerarla dapprima il cono X_1 proiettante \overline{X} da $(1, 0, \ldots, 0)$, e poi la sua intersezione X_2 con l'iperpiano di equazione $x_o = 0$.

Esempio: Se $P = (x_3 - 1, x_2 + x_i^2)$ è un ideale di $C \left[x_1, x_2, x_3\right]$ e $X = V(P)$, risulta chiaramente $P^* = (x_i^2 + x_2 x_3)$. D'altra parte si ha: $\overline{X} = V(x_3 - x_o, x_o x_2 + x_i^2)$, $X_1 = V(x_i^2 + x_2 x_3)$, $X_2 = V(x_i^2 + x_2 x_3, x_o)$.

§ 2. Relazioni con le operazioni fra ideali.

Studiamo innanzitutto il comportamento dell'operazione * rispetto alle consuetue operazioni fra ideali.
PROPOSIZIONE 1. Siano α e α_1 ideali di A. Si ha:

1) $\alpha \subseteq \alpha_1 \Rightarrow \alpha^* \subseteq \alpha_1^*$;

2) $\sqrt{\alpha^*} = (\sqrt{\alpha})^*$;

3) $(\alpha_1 \cap \alpha)^* = \alpha_1^* \cap \alpha^*$;

4) $\alpha^* + \alpha_1^* \subseteq (\alpha + \alpha_1)^*$;

5) $\alpha^* \cdot \alpha_1^* \subseteq (\alpha \cdot \alpha_1)^*$;

6) $(\alpha : \alpha_1)^* \subseteq (\alpha : \alpha_1^*)^* = \alpha^* : \alpha_1^*$;

7) $\alpha^* \subseteq \alpha_1 \Rightarrow \left(\frac{\alpha_1^*}{\alpha^*} \right)^* = \frac{\alpha_1^*}{\alpha^*}$.

Dimostrazione. Le 1), 3), 4), 6) sono ovvie. Per quanto riguarda la 2), è chiaro che $\sqrt{\alpha^*} \subseteq (\sqrt{\alpha})^*$; viceversa, se $f \in (\sqrt{\alpha})^*$, f omogeneo, esiste un intero positivo n tale che $f^n \in \alpha$, per cui $f^n \in \alpha^*$ e quindi $f \in \sqrt{\alpha^*}$. Infine, in relazione alla 7), notiamo che l'ideale $\frac{\alpha_1^*}{\alpha^*}$ è un ideale di $\frac{A}{\alpha^*}$ che ha struttura di anello graduato, in quanto α^* è omogeneo. Poiché risulta ovviamente $\frac{\alpha_1^*}{\alpha^*} \subseteq \left(\frac{\alpha_1^*}{\alpha^*} \right)^*$, basta provare l'inclusione inversa. A tale scopo sia $[a]_{a^*} \in \left(\frac{\alpha_1^*}{\alpha^*} \right)^*$. Se $a = \Sigma_i a_i$, la decomposizione di $[a]_{a^*}$ in componenti omogenee è data da $[a]_{a^*} = \Sigma_{i \in \mathbb{Z}} [a_i]_{a_i^*}$. Ne viene che $[a_i]_{a_i^*} = \frac{\alpha_1}{\alpha^*}$ per ogni $i \in \mathbb{Z}$ e perciò, per l'omogeneità di a_i, $a_i \in a_i^*$; donde la tesi.

OSSERVAZIONE. Consideriamo i seguenti esempi, in cui le inclusioni, di cui ai punti 4), 5), 6) sono strette.

Esempio 1: Siano $\alpha_1 = (x + 1)$ e $\alpha = (y + 1)$ due ideali di $\mathbb{Z}[x, y]$. Si ha: $\alpha^* = \alpha_1^* = (0)$ e $(\alpha + \alpha_1)^* = (x + 1, y + 1)^* = (x - y)$.

Esempio 2: Siano $\alpha = (xy, y + x^2)$ e $\alpha_1 = (y^2 - x, xy - 1)$ due ideali di $\mathbb{Z}[x, y]$. Si ha: $\alpha^* = (y^2, xy, x^3)$ e $\alpha_1^* = (y^3 - x^3)$. Il polinomio omogeneo $F(x, y) = y^3 - x^3 = (y^2 - x)(x^2 + y) - (xy - 1)xy$ appartiene ovviamente ad $\alpha \cdot \alpha_1$, ma non ad $\alpha^* \cdot \alpha_1^*$.

Esempio 3: Siano $\alpha = (x)$ e $\alpha_1 = (x + 1)$ due ideali di $\mathbb{Z}[x]$. Si ha: $\alpha^* = \alpha = (x)$ e $\alpha_1^* = (0)$; quindi $\alpha : \alpha_1 = (\alpha : \alpha_1)^* = (x)$ e $\alpha^* : \alpha_1^* = \mathbb{Z}[x]$.

§ 3. Relazioni con l'altezza e la profondità di ideali primi.

Da quanto indicato nell'osservazione finale del § 1, deriva subito che se P è un ideale primo di $A = K[x_1, \ldots, x_n]$, diverso da (x_1, \ldots, x_n),
si ha: \(\dim X \geq \dim Y - 1 \), dove \(X = V(P) \) e \(Y = V(P^s) \). Più in generale, indicata con \(\text{ht}(P) \) l’altezza di un ideale primo \(P \), vale la seguente:

Proposizione 2. Se \(A \) è un anello noetheriano graduato e \(P \) un suo ideale primo non omogeneo, si ha: \(\text{ht}(P^s) = \text{ht}(P) - 1 \).

Dimostrazione. Ved. [5] e [6].

Indicata invece con \(d(P) \) la profondità di un ideale primo \(P \), si ha che, se l’anello \(A \) viene supposto di Cohen-Macaulay (cfr. [4]) risulta ovviamente: \(d(P^s) = d(P) - 1 \). Proveremo nella proposizione 3 che questa uguaglianza vale anche in ipotesi leggermente più ampie. A tale scopo premettiamo i seguenti due lemmi.

Lemma 1. Siano \(A \) un dominio d’integrità graduato, \(f \) e \(g \) due suoi elementi non omogenei le cui decomposizioni in elementi omogenei siano date da:

\[
f = f_1 + \ldots + f_{i+m}, \quad f_i \neq 0, \quad f_{i+m} \neq 0, \quad m \neq 0.
\]

\[
g = g_1 + \ldots + g_{i+n}, \quad g_i \neq 0, \quad g_{i+n} \neq 0, \quad n \neq 0;
\]

Considerata la matrice quadrata di ordine \(m + n \)

\[
B = \begin{vmatrix}
 f_1 & \ldots & f_{i+m} & 0 & \ldots & 0 \\
 0 & f_1 & \ldots & f_{i+m} & 0 & \ldots & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 0 & \ldots & 0 & f_1 & \ldots & f_{i+m} \\
 g_{i} & \ldots & g_{i+n} & 0 & \ldots & 0 \\
 0 & g_{i} & \ldots & g_{i+n} & 0 & \ldots & 0 \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & \ldots & 0 & g_{i} & \ldots & g_{i+n}
\end{vmatrix}
\]

e detto \(R \) il suo determinante, si ha che:

1) \(R \) è un elemento omogeneo di \(A \) di grado \(in + jm + mn \);

2) \(R = af + bg, \ a, \ b \in A \).

Dimostrazione. Consideriamo un minore di ordine \(n \) estratto dalle prime \(n \) righe della matrice \(B \):

\[
C = \begin{vmatrix}
 c_{0,i_1} & \ldots & c_{0,i_n} \\
 \ldots & \ldots & \ldots \ldots \\
 \ldots & \ldots & \ldots \ldots \\
 c_{n-1,i_1} & \ldots & c_{n-1,i_n}
\end{vmatrix}
\]

\(0 \leq i_1 < i_2 < \ldots < i_n \leq m + n - 1 \)

(2) Per le definizioni e proprietà di altezza e profondità di un ideale, si rimanda a [4].
dove: \(c_{\lambda,k} = 0 \) se \(k - \lambda > m \) oppure \(k - \lambda < 0 \),
\[c_{\lambda,k} = f_{k+i-\lambda} \] se \(0 \leq k - \lambda \leq m \), e
\[\partial c_{\lambda,k} = k + i - \lambda. \]

Il generico elemento dello sviluppo del determinante di \(C \) è, a meno del segno, del tipo \(c_{h_0}c_{l_1}c_{h_2} \ldots c_{h_{n-1}} \), con \((h_0, \ldots, h_{n-1}) \) permutazione di \((0, \ldots, n - 1) \); esso ha quindi grado costante dato da:

\[
(i_1 + i - h_0) + \cdots + (i_n + i - h_{n-1}) = (i_1 + \cdots + i_n) + in - \frac{n(n-1)}{2}.
\]

Sia ora \(D \) il minore complementare di \(C \) nella matrice \(B \):

\[
D = \begin{vmatrix}
 d_{0,i_1} & \ldots & d_{0,i_m} \\
 \vdots & \ddots & \vdots \\
 d_{m-1,i_1} & \ldots & d_{m-1,i_m}
\end{vmatrix}
\]

con \(j_1 < j_2 < \ldots < j_m \) indici complementari di \(i_1, \ldots, i_n \) nell'insieme \(\{0, 1, \ldots, m + n - 1\} \), ed inoltre:

\[d_{s,t} = 0 \] se \(t - s > n \) oppure \(t - s < 0 \);
\[d_{s,t} = g_{t+j-s} \] se \(0 \leq t - s \leq n \) e
\[\partial d_{s,t} = t + j - s. \]

Analogamente a quanto sopra, il generico elemento dello sviluppo del determinante di \(D \) ha grado costante \((j_1 + \cdots + j_m) + jm - m(m-1)/2\).

Sviluppando \(R \) secondo la regola di Laplace, troviamo che il suo termine generico è prodotto di un elemento dello sviluppo di \(\text{det} C \) e di uno dello sviluppo di \(\text{det} D \), ed ha quindi grado costante:

\[
(i_1 + \cdots + i_n) + in - \frac{n(n-1)}{2} + (j_1 + \cdots + j_m) + jm - \frac{m(m-1)}{2} = in + jm + mn.
\]

Siano ora \(a = \alpha_1 + \cdots + \alpha_n \) e \(b = \beta_1 + \cdots + \beta_m \), con \(\alpha_p \) complemento algebrico dell'elemento di posto \((p,1)\) nella matrice \(B \) e \(\beta_k \) complemento algebrico dell'elemento di posto \((k+n,1)\) nella matrice \(B \). Si ha allora: \(af + bg = (f_1 \alpha_1 + g_1 \beta_1) + (f_2 \alpha_2 + f_{i+1} \alpha_1 + g_i \beta_2 + g_{i+1} \beta_1) + \cdots + (f_{i+m} \alpha_n + g_{i+n} \beta_m) \), dove la 2), in quanto la prima
parentesi a secondo membro vale R, mentre tutte le altre sono nulle a norma del teorema di Laplace (cfr. [3]).

Con procedimento analogo a quello usato nella prima parte della dimostrazione del lemma, si può provare poi che: a_p è omogeneo di grado $in + jm + mn - i + (p - 1)$, b_k è omogeneo di grado $in + jm + mn - j + (k - 1)$.

LEMMa 2. Se A è un dominio d'integrità graduato ed α un suo ideale di profondità $r \geq 2$, si ha $\alpha^r \neq (0)$.

Dimostrazione. Siano f, g elementi di α in A-successione. Se uno dei due elementi è omogeneo, il lemma è ovvio. Supposti allora entrambi non omogenei, si costruisca l'elemento $R = af + bg$ come nel lemma 1.

Se x è un elemento non nullo di A e $x = x_p + \ldots + x_q$, $x_p \neq 0$, $x_q \neq 0$ è la sua decomposizione in elementi omogenei, si indichi con $\psi(x)$ l'intero $q - p + 1$. Se ha allora $\psi(b) \leq m$, mentre per ogni elemento non nullo y di (f) risulta $\psi(y) \geq m + 1$, e percio $b \notin (f)$.

Se poi $R = 0$, si ha la relazione $bg = -af$, $b \not\in (f)$.

PROPOSIZIONE 3. Siano A un dominio d'integrità noetheriano graduato e P un suo ideale primo non omogeneo. Se P^* è generabile da una A-successione si ha: $d(P^*) = d(P) - 1$.

Dimostrazione. Sia R_1, R_2, \ldots, R_s una A-successione, tale che $P^* = (R_1, R_2, \ldots, R_s)$. Una siffatta A-successione non è massimale in P in quanto, se lo fosse, si avrebbe $d \left(\frac{P}{P^*} \right) = 0$ e perciò $P = P^*$, contro le ipotesi.

Si può allora prolungare R_1, \ldots, R_s ad una A-successione massimale $R_1, \ldots, R_t, f_1, \ldots, f_t$ di P. Ovviamente gli elementi $\overline{f}_1 = f$, $\overline{f}_2 = g$, \ldots, \overline{f}_t, con $\overline{f}_i = [f_i]_{P^*}$, costituiscono una A_{P^*} successione di $\frac{P}{P^*}$. Per il lemma 2, $R = af + bg$ è un elemento omogeneo non nullo di $\frac{P}{P^*}$, con $\left(\frac{P}{P^*} \right)^* = (0)$ per la proposizione 1. Ne viene $t = 1$, da cui la tesi.

§ 4. Un metodo per calcolare la lunghezza di ideali primari.

D'ora in poi si supporrà che gli anelli siano domini d'integrità noetheriani a graduazione positiva e si studieranno le relazioni che intercorrono fra la lunghezza di un ideale P-primario Q e quella dell'ideale P^*-primario Q^*.
Per la definizione e prime proprietà si rimanda a [7].

Introduciamo innanzitutto un metodo che permetta di calcolare rapidamente la lunghezza di ideali primari verificanti opportune condizioni. A tale scopo, si consideri un ideale primo \(P = (f_1, ..., f_s) \) e un ideale \(Q \) generato da monomi negli elementi \(f_1, ..., f_s \). Sia poi \(T_0 \) il sottinsieme di \(\mathbb{N}^s \) costituito dalle s-pie \((i_1, ..., i_s)\) tali che \(f_1^{i_1} ... f_s^{i_s} \notin Q \).

Nel caso \(s = 2 \) (ad es. se \(P = (x, y) \) è un ideale di \(K[x, y] \) e \(Q = (x^a, x^2 y^b, xy^c, y^d) \)), si può visualizzare una siffatta situazione crocettando, in un reticolo bidimensionale, i punti di coordinate \((i_1, i_2)\), con \((i_1, i_2) \in T_0\).

LEMA 3. Sia \(f_1, ..., f_s \) una A-successione, con \(i_1, ..., i_s \) interi positivi. Allora anche \(f_1^{i_1}, ..., f_s^{i_s} \) è una A-successione.

Dimostrazione. Basta provare che, se \(f_1, ..., f_s \) è una A-successione, anche \(f_1, ..., f_{s-1}, f_s^n \) lo è, per ogni \(n > 0 \).

Se infatti \(af_s^n \in (f_1, ..., f_{s-1}) \), segue che \(af_s^{n-1} \in (f_1, ..., f_{s-1}) \), da cui la tesi.

PROPOSIZIONE 4. Siano \(P = (f_1, ..., f_s) \) un ideale primo di \(A \), \(Q \) un ideale generato da monomi in \(f_1, ..., f_s \), con \(\sqrt{Q} = P \). Se \(f_1, ..., f_s \) è una A-successione, \(Q \) è un ideale \(P \)-primario.

Dimostrazione. Si opererà nel caso \(s = 3 \) (il caso generale ottenendosi con lo stesso metodo, con ovvie modifiche sugli indici), procedendo per induzione su \(\text{card } T_0 \) (sempre finita in quanto \(\sqrt{Q} = P \)).

Se \(\text{card } T_0 = 1 \), si ha \(Q = P \). Si supponga perciò \(\text{card } T_0 \geq 2 \) e si consideri \(f_1 f_2 f_3^n \) non appartenente a \(Q \) e tale che: \(f_1^n \in Q, f_2^{m+1} f_3^n \notin Q, f_1^{l+1} f_2 f_3^n \in Q \). Allora un monomio del tipo \(f_1 f_2 f_3^k \) di \(Q \) dovrà avere come fattore \(f_1^{l+1}, f_2^{m+1}, f_3^n \).

Si ha \(Q = Q + (f_1 f_2 f_3^n) \) un ideale \(P \)-primario per ipotesi induttiva. Se \(fg \in Q \), \(g \notin P \), necessariamente si ha \(f \notin Q \). Valgono inoltre relazioni del seguente tipo: \(f = \sum a_{ijk} f_i f_j f_k + \lambda f_i f_m f_3 \), \(\lambda \in A \), \(f_3 = \sum b_{ijk} f_i f_j f_k + 2 f_i f_2 f_3 \). Valgono, con opportuni passaggi, si deduce: \(f_3^n ((f_{1,2}^{r, k -} g - b_{r, k -} f_2)) f_3 + \lambda f_i f_2 f_3 \) = \((... f_1^{l+1} + + f_2^{m+1} \) essendo, per il lemma 3, \(f_1^{l+1}, f_2^{m+1}, f_3^n \) una A-successione, si ha:

\[
(1) \quad (\sum (a_{1,2}^{r, k} f_1 f_2 f_3^n - b_{r, k} f_2)) f_3 + \lambda f_i f_2 f_3^n = \lambda \frac{f_1 f_2 f_3^n}{f_2} \]

Gli elementi \(f_1 f_2 f_3^n \) costituiscono una A-successione, e perciò: \(\sum (a_{1,2}^{r, k} f_1 f_2 f_3^n - b_{r, k} f_2) = y_1 f_1 + y_2 f_3^n \). Sostituendo nella (1) si ottiene:

\[
(2) \quad f_2 (y_2 f_3^n - x_2 f_2 + \lambda f_i f_1 f_2 f_3) = f_1 (x_1 f_1 - y_1 f_3) .
\]
Gli elementi \(f_1, f_2^n \) costituiscono una \(A \)-successione, per cui:

\[
y_2 f_2 f_3 - x_2 f_2 + \lambda f_1 l g = z f_1 l.
\]

Ora la (2) diviene:

\[
f_2^n f_1 l z = f_1 l (x_1 f_1 - y_1 f_3),
\]

ed essendo \(f_1 \) regolare, semplificando si ottiene:

\[
y_1 f_3 = x_1 f_1 - z f_2^n.
\]

Poiché \(f_1, f_2^n, f_3 \) costituiscono una \(A \)-successione, si ha:

\[
y_1 = \n_1 f_1 + \n_2 f_2^n, \quad e \quad \text{per}\ \text{tanto}\ \text{la} \ (4) \ \text{può scriversi:} \ f_2^n (z - v f_3) = f_1 (x_1 - v_1).
\]

Ma anche \(f_1, f_2^n \) costituiscono una \(A \)-successione, e perciò \(z - v f_3 = w f_1 \), cioè \(z \in (f_1, f_3) \).

Ritornando alla (3): \(f_2 (y_2 f_3 - x_2) = f_1 l (z - \lambda g) \), da cui, poiché \(f_1, f_2 \) è una \(A \)-successione, si ha:

\[
y_2 f_3 - x_2 = u f_1 l, \quad e \quad \text{quindi:} \ f_2 f_1 l u = f_1 l (z - \lambda g).
\]

Semplificando si ottiene infine:

\[
\lambda g = z - u f_2 \in P \ \text{ed} \ f \in Q.
\]

PROPOSIZIONE 5. Siano \(P = (f_1, ..., f_s) \) un ideale primo e \(Q \) un ideale generato da monomi in \(f_1, ..., f_s \), con \(\sqrt{Q} = P \). Se \(f_1, ..., f_s \) è una \(A \)-successione, si ha che \(\lambda (Q) = \text{card} T_Q \).

Dimostrazione. Si procederà per induzione sulla cardinalità di \(T_Q \). Se \(\text{card} T_Q = 1 \), si ha \(Q = P \) e \(\lambda (P) = 1 \). Si supponga allora \(\text{card} T_Q = n \geq 2 \), e si consideri l'elemento \(f_1 ^{i_1} ... f_s ^{i_s} \), con \(i_1 + i_2 + + ... + i_s \) massimo fra gli interi del tipo \(j_1 + ... + j_s \), dove \((j_1, ..., j_s) \in T_Q \).

Se \(\overline{Q} = Q + (f_1 ^{i_1} ... f_s ^{i_s}) \), dimostreremo che:

1) \(\lambda (Q) = \lambda (Q) + 1 \),

2) \(T_{\overline{Q}} = T_Q - \{(i_1, ..., i_s)\} \);

da cui, per ipotesi induttiva, seguirà che \(\lambda (Q) = n \).

1) Sia \(\gamma \) un ideale \(P \)-primario, con \(Q \subset \gamma \subset \overline{Q} \). Se \(f \in \gamma - Q \),

\[
f = q + \lambda f_1 ^{i_1} ... f_s ^{i_s},
\]

dove \(q \in Q, \lambda \notin P \). Allora \(\lambda f_1 ^{i_1} ... f_s ^{i_s} \in \gamma \) e quindi, per la \(P \)-primarietà di \(\gamma \), \(f_1 ^{i_1} ... f_s ^{i_s} \in \gamma \).

2) Si supponga, per assurdo, che esista un monomio \(f_1 ^{i_1} ... f_s ^{i_s} \) in \(\overline{Q} - Q \), con \((j_1, ..., j_s) \neq (i_1, ..., i_s) \), e quindi del tipo:

\[
f_1 ^{i_1} ... f_s ^{i_s} = \sum_{(l_1, ..., l_s) \in T_Q} a_{l_1} ^{l_1} ... a_{l_s} ^{l_s} f_1 ^{l_1} ... f_s ^{l_s} + b f_1 ^{i_1} ... f_s ^{i_s};
\]

dove \(b \notin P \{0\} \) e non è restrittivo supporre \(a_{l_1} ^{l_1} ... a_{l_s} ^{l_s} \notin P \). Semplificando per eventuali fattori comuni del tipo \(f_1 ^{k_1} ... f_s ^{k_s} \), la (5) si può scrivere nel seguente modo:

\[
\sum_{k=0}^{p} d_k f_1 ^{k} + f_2 ^{s-1} g_2 ^{s-1} + + f_m g_m + + ... + f_1 g_1 = 0, \text{con} \ g_m \in (f_m, f_{m+1}, ..., f_s), \text{per ogni} \ m = 1, ..., s - 1,
e dove i coefficienti dei monomi nelle \(f_i \) sono, a meno del segno, gli stessi della (5).

Se \(k' \) è tale che \(d_k = 0 \) per \(k < k' \), \(d_{k'} \neq 0 \), si ha:

\[
f_{k'} \ (d_{k'} + d_{k'+1} f_s + \cdots + d_p f_{s-p'+k'}) \in \ (f_1, \ldots, f_{s-1}),
\]
e quindi \(d_{k'} \in P \), contro l'ipotesi: i coefficienti \(d_k \) risultano perciò tutti nulli. Procedendo in maniera analoga, si prova che \(g_{s-1} = \ldots = g_2 = 0 \), il che è assurdo.

§ 5. Relazioni con la lunghezza di ideali primari.

Trattiamo innanzitutto il caso \(P = P^* \). Ovviamente, se \(Q \) è un ideale \(P \)-primario, si ha: \(\lambda (Q^*) - \lambda (Q) = n \geq 0 \), il numero naturale \(n \) potendo assumere un qualunque valore, come apparirà dal seguente esempio.

Esempio. Siano, in \(K [x, y] \), \(P = (x, y) \) e \(Q = (x^{2n}, y + x^n) \), con \(n > 1 \). Dimosteremo che \(Q^* = (x^{2n}, x^n y, y^2) \).

Ovviamente gli elementi \(x^{2n} \), \(x^n y \), \(y^2 \) appartengono a \(Q^* \). Viceversa, sia \(f_t \) un elemento omogeneo non nullo di grado \(t \) di \(Q \) e quindi del tipo: \((a_0 + a_1 + \ldots + a_r) x^{2n} + (b_0 + b_1 + \ldots + b_{n+r}) (y + x^n) \). Le componenti omogenee di tale elemento sono:

\[
\begin{array}{ccc}
\text{grado 1} & b_0 y \\
\text{grado 2} & b_1 y \\
\vdots & \\
\text{grado } n-1 & b_{n-2} y \\
\text{grado } n & b_{n-1} y + b_0 x^n \\
\text{grado } n+1 & b_n y + b_1 x \\
\vdots & \\
\text{grado } 2n-1 & b_{2n-2} y + b_{n-1} x^n \\
\text{grado } 2n & b_{2n-1} y + b_n x^n + a_0 x^{2n} \\
\text{grado } 2n+1 & b_{2n} y + b_{n+1} x^n + a_1 x^{2n} \\
\vdots & \\
\text{grado } 2n+r & b_{n+r} x^n + a_r x^{2n}.
\end{array}
\]

E' sufficiente dimostrare che \(b_0 = 0 \) e che \(b_1 + \ldots + b_{n-1} \in (y) \). L'unica componente omogenea non nulla è quella di grado \(t \), uguale a \(f_t \). Se \(b_{n-1} \neq 0 \), allora \(t = 1 \), quindi: \(b_{n-1} y + b_0 x^n = 0 \) (perché \(n > 1 \)), il che è assurdo, in quanto \(x^n \) dovrebbe dividere \(b_{n-1} \).

Sia \(2 \leq t \leq n - 1 \). Considerando i termini dal grado \(n \) al grado \(2n - 1 \), si trova che \(b_i \in (y) \) per ogni \(i = 0, \ldots, n - 1 \).

Sia poi \(t = n \) e quindi \(b_0 = \ldots = b_{n-2} = 0 \). Considerando il termine di grado \(2n - 1 \), sicuramente nullo perché \(n > 1 \), si ha che \(b_{n-1} \in (y) \).
Sia infine $t > n$, e quindi $b_i = 0$ per ogni $i = 0, ..., n - 1$.

Per calcolare le lunghezze di Q e Q^*, basta poggiare sui risultati della proposizione 5. Si noti che $P = (x, y + x^n)$ e che $x, y + x^n$ costituiscono una A-successione. Le lunghezze sono allora: $\lambda(Q) = 2n$, $\lambda(Q^*) = 3n$.

Una catena non raffinabile di n ideali primi è, ad esempio, la seguente:

$$Q^* = Q_{3n} \subset Q_{3n-1} \subset ... \subset Q_{n-h} \subset ... \subset Q_{2n} = Q$$

dove $Q_{3n-h} = (x^{2n}, y^2, x^{n-h} (y + x^n))$, con $0 \leq h \leq n$.

Si prenda ora in considerazione il caso $P^* \neq P$. Senza fare ulteriori ipotesi, non si è ancora in grado di determinare le relazioni fra $\lambda(Q)$ e $\lambda(Q^*)$. Si restringeranno perciò le considerazioni ad ideali primi P verificanti la condizione:

$$(**) \quad P^* = (R_1, ..., R_s) \quad e \quad P = (R_1, ..., R_s, f) \quad con \quad R_1, ..., R_s, f$$

A-successione.

Apparirà utile il risultato della seguente:

PROPOSIZIONE 6. Siano Q un ideale di A, \overline{Q} un ideale omogeneo P^*-primario, $g = g_i + ... + g_p$ un elemento di Q non appartenente a P^*, $g_i, g_p \notin P^*$. Se allora $Q = \overline{Q} + (g)$, si ha $Q^* = \overline{Q}$.

Dimostrazione. Sia h un elemento omogeneo non nullo di grado t di Q e quindi del tipo: $\overline{q} + (b_o + ... + b_m) (g_i + ... + g_p)$ con $\overline{q} \in \overline{Q}$. Le componenti omogenee di tale elemento sono:

<table>
<thead>
<tr>
<th>grado 0</th>
<th>$\overline{q_o}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>grado $i - 1$</td>
<td>$\overline{q_{i-1}}$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>grado i</td>
<td>$\overline{q_i + b_0 g_i}$</td>
</tr>
<tr>
<td>grado $i + 1$</td>
<td>$\overline{q_{i+1} + b_0 g_{i+1} + b_1 g_i}$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>grado $m + p$</td>
<td>$\overline{q_{m+p} + b_m g_p}$</td>
</tr>
<tr>
<td>grado $r > m + p$</td>
<td>$\overline{q_r}$</td>
</tr>
</tbody>
</table>

Se $t \leq i - 1$ o $t \geq m + p + 1$, la proposizione è ovvia. Sia dunque $i \leq t \leq m + p$. Considerando le componenti omogenee di grado i, $i + 1$, ..., $t - 1$, si trova che $b_0, ..., b_{t-(t+1)} \in \overline{Q}$, poiché \overline{Q} è P^*-primario. Considerando invece le componenti omogenee di grado $t + 1$, ..., $m + p$, si trova analogamente che $b_{t-p+1}, ..., b_m \in \overline{Q}$. Poiché $i + 1 \leq p$, si ha $t - p + 1 \leq t - (i + 1) + 1$, da cui la tesi.

COROLLARIO 1. Siano Q, \overline{Q}, g come nella proposizione 6. Se β è
un ideale di \(A \) e \(Q_1 = \overline{Q} + (g) \beta \), si ha \(Q_1^* = \overline{Q} \).

COROLLARIO 2. Siano \(P \) e \(P^* \) ideali primi verificanti \((**))\). Se \(Q \) è un ideale \(P \)-primario generato da monomi in \(R_1, \ldots, R_s, f \), si ha \(\lambda \left(Q \right) \geq \lambda \left(Q^* \right) \).

Dimostrazione. Sia \(\overline{Q} \) l'ideale \(P^* \)-primario generato dai monomi in \(R_1, \ldots, R_s \) appartenenti a \(Q \). Per il corollario 1, \(Q^* = \overline{Q} \). Applicando la proposizione 5, si ha la tesi.

COROLLARIO 3. Se \(P \) e \(P^* \) sono ideali primi verificanti \((**))\), si ha, per ogni \(n \geq 1 \): \(\lambda \left(P^n \right) - \lambda \left(\left(P^n \right)^* \right) = \binom{n+s-1}{s+1} \).

Dimostrazione. Per la proposizione 4, \(\left(P^* \right)^n \) è \(P^* \)-primario. Poiché \(P^n = \left(P^* \right)^n + (f) P^{n-1} \), risulta, per il corollario 1, \(\left(P^n \right)^* = \left(P^* \right)^n \). Inoltre, dalle proposizioni 4 e 5, deriva: \(\lambda \left(P^n \right) = \binom{n+s}{s+1} \), \(\lambda \left(\left(P^* \right)^n \right) = \binom{n+s-1}{s} \), donde la tesi.

BIBLIOGRAFIA