THE TWO-DIMENSIONAL LAPLACE TRANSFORM FOR G-FUNCTIONS (*)

by R. S. Dahiya (in Ames, Iowa) (**)

SUMMARY. - The object of this paper is to obtain new operational relations between the original and the image for two dimensional Laplace transform that involve Meijer's G-function and Whittaker's confluent hypergeometric functions.

1. Introductory.

The integral equation

$$\Phi (p, q) = pq \int_0^\infty \int_0^\infty e^{-px-qq} f(x, y) \, dy \, dx, \quad R(p, q) > 0$$

(1.1)

represents the classical Laplace transform of two variables and the functions $\Phi (p, q)$ and $f(x, y)$ related by (1.1), are said to be operationally related to each other. $\Phi (p, q)$, is called the image and $f(x, y)$ the original.

Symbolically we can write

$$\Phi (p, q) \rightrightarrows f(x, y) \quad \text{or} \quad f(x, y) \rightrightarrows \Phi (p, q),$$

(1.2)

and the symbol \rightrightarrows is called « operational ».

(*) Pervenuto in Redazione il 12 dicembre (1972).

(**) Indirizzo dell'Autore: Department of Mathematics, Iowa State University of Science and Technology — Ames, Iowa 50010 (U.S.A.).
Meijer's \(G \)-function [1] is defined by a Mellin-Barnes type integral:

\[
G_{p,q}^{m,n}(x \Big| \begin{array}{c} a_p \\ b_q \end{array}) = \frac{1}{2\pi i} \int_L \frac{\prod_{j=1}^m \Gamma(b_j - s) \prod_{j=1}^n \Gamma(1 - a_j + s)}{\prod_{j=m+1}^q \Gamma(1 - b_j + s) \prod_{j=n+1}^p \Gamma(a_j - s)} s^x ds,
\]

where \(m, n, p, q \) are integers with \(q \geq 1; 0 \leq n \leq p; 0 \leq m \leq q \), the parameters \(a_j \) and \(b_j \) are such that no poles of \(\Gamma(b_j - s); j = 1, 2, \ldots, m \) coincides with any pole of \(\Gamma(1 - a_j + s); j = 1, 2, \ldots, n \). The poles of integrand must be simple and those of \(\Gamma(b_j - s); j = 1, 2, \ldots, m \) lie on one side of the contour \(L \) and those of \(\Gamma(1 - a_j + s); j = 1, 2, \ldots, n \) must lie on the other side. The integral converges if \(p + q < 2(m + n) \) and \(|\arg s| < \left(m + n - \frac{1}{2} p - \frac{1}{2} q \right)\pi \).

For sake of brevity \((a_p, e_p) \) denotes \((a_1, e_1), \ldots, (a_p, e_p) \).

The object of this paper is to obtain new operational relations between the original and the image in two variables that involve Meijer's \(G \) function.

2. The main result.

If

(i) \(\bar{\delta} = \alpha + \beta - \frac{1}{2} (\gamma + \delta) > 0, \quad |\arg \theta| < \bar{\delta} \pi \)

(ii) \(0 \leq \beta \leq \gamma, \quad 0 \leq \alpha \leq \delta, \quad \delta \geq 1 \)

(iii) \(Re\left(b_j - \sigma - \frac{v}{n}\right) > -\frac{5}{2n}, \quad j = 1, 2, \ldots, \alpha \)

(iv) \(Re\left(a_j - \sigma - \frac{v}{n}\right) < 1 - \frac{7}{2n}, \quad j = 1, 2, \ldots, \beta \)

(v) \(a_j - b_h \) is not a positive integer, \(j = 1, 2, \ldots, \beta; \)
\(h = 1, 2, \ldots, \alpha \)

(vi) \(\Delta(a; n) \) represents the sequence \(\frac{a}{n}, \frac{a+1}{n}, \ldots, \frac{a+n-1}{n} \)

then
\[
\begin{align*}
(\text{2.1}) & \quad p^{-1/2} (pq)^{2-\nu-n\sigma/2} G_{\gamma+n, \delta}^{a, \beta+n} \left(\frac{\theta n^n (pq)^{n/2}}{b_\delta} \right) \\
& \quad \cdot \frac{n-1}{2} n^{5/2-n\sigma-2\nu} (\pi y)^{-1/2} (4xy)^{\nu+n\sigma/2-3/2} \\
& \quad \cdot \frac{1}{2} n^{2n} \left(\frac{\theta n^n}{(4xy)^{n/2}} \right)^{A}[n\sigma-1; n], a_\gamma, A[n\sigma+2\nu-2; n].
\end{align*}
\]

Proof: The Laplace transform of a G-function is given by :

\[
(\text{2.2}) \quad \int_0^\infty e^{-pt} t^{1-n\sigma} G_{\gamma, \delta}^{a, \beta} \left(\frac{\theta t^n}{b_\delta} \right) dt
\]

\[
\equiv (2\pi)^{1/2-1/2n} n^{5/2-n\sigma} \pi^{\nu-2} G_{\gamma+n, \delta}^{a, \beta+n} \left(\frac{\theta n^n}{p^n} \right)^{A}[2-n-n\sigma; -n], a_\gamma
\]

where $\bar{\delta} = \alpha + \beta - \frac{1}{2} \gamma - \frac{1}{2} \delta > 0$, $|\arg\theta| < \bar{\delta} \pi$, $R(b_j - n\sigma) > -2$, $j = 1, 2, \ldots, \beta$.

The result (2.2) is either known or can be proved easily. To prove (2.2), we substitute the contour integral (1.3) for the G-function and change the order of integration which is permissible due to the absolute convergence of the integrals involved in the process; then evaluating the inner integral and using the definition (1.3) of G-function, we get the required result (2.2). The Laplace transform for $n = 1$ is given by Luke ([5], result 1, p. 166).

On writing $(pq)^{-1/2}$ for p and multiplying both the sides of (2.2) by $p^{-1/2} (pq)^{-\nu}$ and then interpreting with the help of the known result ([3], p. 144) or ([2], p. 243), we get

\[
(\text{2.3}) \quad (\pi y)^{-1/2} (4xy)^{\nu/2} - \frac{1}{4} \int_0^{\infty} t^{3/2-n\sigma-\nu} J_{2\nu-1} [2 (4xy)^{1/4} t^{1/2}] \frac{\theta t^n}{b_\delta} dt
\]

\[
\equiv (2\pi)^{1/2-n/2} p^{-1/2} (pq)^{2-\nu-n\sigma/2} G_{\gamma+n, \delta}^{a, \beta+n} \left(\frac{\theta n^n (pq)^{n/2}}{b_\delta} \right)^{A}[2-n-n\sigma; -n], a_\gamma.
\]

Now evaluating the left-hand side integral by the process mentioned in (2.2) to obtain the desired result. Hence (2.1) is proved.
3. Particular cases.

On specializing the parameters the \(G \)-function can be reduced to MacRobert's \(E \)-function, generalized hypergeometric function and other higher transcendental functions. Therefore the result (2.1) leads to the generalization of many results (see for instance [2], [3], and [4]). Only two interesting particular cases are given below. Both the results are believed to be new.

In (2.1), putting \(\alpha = \delta = 2 \), \(\beta = \gamma = 0 \), \(n = 1 \), \(b_1 = b \), \(b_2 = c \) and using the formula ([5], p. 231)

\[
G_{1,2}^{2,1}\left(z \left| \begin{array}{c}
\frac{a}{b, c}
\end{array}\right.\right) =
\]

\[
= \Gamma(b - a + 1) \Gamma(\sigma - a + 1) \frac{1}{\sigma - a + 1} Z^{\frac{1}{2}} (b + c - 1) \frac{z}{\sigma} W_1^{\frac{1}{2}} (\sigma - b - c - 1), \frac{1}{2} (b - c) (z),
\]

we obtain

\[
(3.1) \quad p^{-1/2} (pq)^{1/4(b+c-2a+\gamma - \nu)} \exp\left(\frac{1}{2} \sqrt{pq} \right) W_1^{\frac{1}{2}} (\sigma - b - c - 3), \frac{1}{2} (b - c) (\sqrt{pq})
\]

\[
\frac{(\sigma - 1, \sigma + 2v - 2)}{\Gamma(b - \sigma + 2) \Gamma(\sigma + 2)} G_{2,2}^{2,1}\left(\frac{1}{2} \sqrt{xy} \left| \begin{array}{c}
\sigma - 1, \sigma + 2v - 2
\end{array}\right.\left| b, c\right.\right). \]

Similarly by taking \(\alpha = 3 \), \(\beta = \gamma = 0 \), \(\delta = 4 \), \(n = 1 \), \(\sigma = 5/4 + \kappa \), \(\nu = 1/2 - k \), \(b_1 = m - \frac{1}{4} \), \(b_2 = \frac{1}{4} \), \(b_3 = - \frac{1}{4} \), \(b_4 = - m - \frac{1}{4} \) and using the known results ([5], result 43, p. 234), we obtain

\[
(3.2) \quad p^{-1/2} (pq)^{\kappa} + \frac{7}{8} G_{1,4}^{3,1}\left(\sqrt{pq} \left| \begin{array}{c}
k + 1/4
m - \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, - m - \frac{1}{4}
\end{array}\right.\right)
\]

\[
= \Gamma(m - k + 1/2) [\Gamma(2m - 1)]^{-1} y^{-\frac{1}{2}} (4 \times y)^{-\frac{k}{2}} M_{-k, m} [2 \times y^{-\frac{1}{4}}] W_{k, m} [2 \times y^{-\frac{1}{4}}].
\]
REFERENCES

