FREE PRODUCTS OF COMMUTATIVE RINGS WITH AMALGAMATION (*)

by Fawzi M. Yaqub (in Beirut) (**)

SOMMARIO. - Si dimostra un teorema che dà condizioni sufficienti sopra una classe \mathcal{K} di anelli commutativi affinchè esistano in \mathcal{K} prodotti liberi con amalgamazione. Questo teorema viene poi usato per mostrare l'esistenza di prodotti liberi con amalgamazione nella classe di tutti gli anelli che soddisfano all'equazione $x^n = x$. Nel caso speciale $n = 2$ si ritrova un risultato noto per gli anelli di Boole.

SUMMARY. - We prove a theorem giving sufficient conditions on a class \mathcal{K} of commutative rings in order that free products with amalgamation exist in \mathcal{K}. This theorem is then used to show that free products with amalgamation exist in the class of all rings satisfying the equation $x^n = x$. The special case where $n = 2$ gives a known result for Boolean rings.

Let \mathcal{K} be a class of commutative rings and let $\{A_t\}_{t \in T} \subseteq \mathcal{K}$. Let $B \in \mathcal{K}$ such that for every $t \in T$, there exists a monomorphism $f_t: B \to A_t$. The free product of $\{A_t\}_{t \in T}$ in \mathcal{K} with amalgamated subring B is a pair $(A, \{g_t\}_{t \in T})$, where $A \in \mathcal{K}$ and for every $t \in T$, $g_t: A_t \to A$ is a monomorphism and the following conditions are satisfied:

(i) For every $t_1, t_2 \in T$, $g_{t_1}f_{t_1} = g_{t_2}f_{t_2}$.

(ii) A is generated by $\bigcup_{t \in T} g_t(A_t)$.

(iii) If $R \in \mathcal{K}$ and $\{h_t\}_{t \in T}$ is a set of homomorphisms such that $h_t: A_t \to R$ and for every $t_1, t_2 \in T$, $h_{t_1}f_{t_1} = h_{t_2}f_{t_2}$, then there exists a homomorphism $h: A \to R$ such that $hg_t = h_t$ for every $t \in T$.

(*) Pervenuto in Redazione il 7 ottobre 1971.

(**) Indirizzo dell'Autore: Department of Mathematics — American University of Beirut — Beirut (Lebanon).
We say that free products with amalgamation exist in \(\mathcal{K} \) if the free product of \(\{ A_i \}_{i \in T} \) in \(\mathcal{K} \) with amalgamated subring \(B \) exists for every \(\{ A_i \}_{i \in T} \subseteq \mathcal{K} \) and \(B \in \mathcal{K} \).

The existence of free products with amalgamation in the class of all Boolean rings (with unity) was proved in [1], and free products with amalgamation in classes of universal algebras are discussed in [5]. In this note we prove a theorem (Theorem 1) giving sufficient conditions on a class \(\mathcal{K} \) of commutative rings in order that free products with amalgamation exist in \(\mathcal{K} \). We then use this theorem to show (Theorem 2) that free products with amalgamation exist in the class of all rings satisfying the equation \(x^n = x \) (for all \(x \) and a fixed integer \(n > 1 \)). The case where \(n = 2 \) gives the result for Boolean rings which we referred to earlier in [1]. Finally, we consider the existence of free products with amalgamation in the class of all rings \(A \) with the property that for every \(x \in A \) there exists an integer \(n(x) > 1 \) such that \(x^{n(x)} = x \) (See Theorem 3).

Free products with amalgamation are closely related to the following amalgamation property. A class \(\mathcal{K} \) of commutative rings has the amalgamation property if for every \(A_1, A_2, B \in \mathcal{K} \) and for every monomorphisms \(f_1 : B \rightarrow A_1 \) and \(f_2 : B \rightarrow A_2 \), there exist \(A \in \mathcal{K} \) and monomorphisms \(g_1 : A_1 \rightarrow A \) and \(g_2 : A_2 \rightarrow A \) such that \(g_1 f_1 = g_2 f_2 \).

The amalgamation property has been investigated for a number of algebraic systems and a detailed discussion of this property with references to the literature is given in [4]. Clearly, if free products with amalgamation exist in a class \(\mathcal{K} \) of commutative rings, then \(\mathcal{K} \) has the amalgamation property. The converse, however, does not hold: The class \(\mathcal{F} \) of all fields has the amalgamation property [4] but free products with amalgamation do not exist in \(\mathcal{F} \) (not even free products exist in \(\mathcal{F} \) [5]). It is not difficult to show, however, that if \(\mathcal{K} \) is a variety (i.e. an equationally defined class), then \(\mathcal{K} \) has the amalgamation property if and only if free products with amalgamation exist in \(\mathcal{K} \) (see Lemma 2).

Throughout the following, \(\mathcal{K} \) will denote a variety of commutative rings. Moreover, for every \(\{ A_i \}_{i \in T} \subseteq \mathcal{K} \) and \(B \in \mathcal{K} \) such that for every \(i \in T \), there exists a monomorphism \(f_i : B \rightarrow A_i \), we define the ideal \(I(\{ A_i \}_{i \in T}, B) \) as follows. Let \((E, \{ i_t \}_{t \in T}) \) be the free product of \(\{ A_i \}_{i \in T} \in \mathcal{K} \) ([5], p. 103), and for simplicity of notation identify each \(A_i \) with \(i_t(A_i) \). Then \(I(\{ A_i \}_{i \in T}, B) \) is the ideal of \(E \) generated by \(\{ f_t(x) - f_u(x) \mid t_1, t_2 \in T, x \in B \} \).
The following two lemmas follow easily from the preceding definitions.

Lemma 1. The free product of \(\{ A_t \}_{t \in T} \) in \(\mathcal{K} \) with amalgamated subring \(B \) exists if and only if \(I(\{ A_t \}_{t \in T}, B) \cap A_t = \{0\} \) for every \(t \in T \).

Proof. Let \((I \{ A_t \}_{t \in T}, B) = I \). To show the necessity of the condition, let \((A, \{ g_t \}_{t \in T}) \) be the free product of \(\{ A_t \}_{t \in T} \) in \(\mathcal{K} \) with amalgamated subring \(B \). Since \(E \) is the free product of \(\{ A_t \}_{t \in T} \), there exists a homomorphism \(g : E \to A \) such that for every \(t \in T \), \(g|_{A_t} = g_t \), where \(g|_{A_t} \) denotes the restriction of \(g \) to \(A_t \). Let \(J \) be the kernel of \(g \). Then for every \(x \in B \), \(g(f_t(x) - f_t(x)) = 0 \), and it follows from the definition of \(I \) that \(I \subseteq J \). But for every \(t \in T \), \(J \cap A_t = \{0\} \), hence \(I \cap A_t = \{0\} \).

Conversely, suppose that \(I \cap A_t = \{0\} \) for every \(t \in T \), and let \(g_t \) be the restriction to \(A_t \) of the natural homomorphism of \(E \) onto \(E/I \). Then it can be shown, in exactly the same way as in ([1], p. 228), that \((E/I, \{ g_t \}_{t \in T}) \) is the free product of \(\{ A_t \}_{t \in T} \) in \(\mathcal{K} \) with amalgamated subring \(B \).

Lemma 2. Let \(\mathcal{K} \) be a variety of commutative rings. Then free products with amalgamation exist in \(\mathcal{K} \) if and only if \(\mathcal{K} \) has the amalgamation property.

Proof. Suppose first that the amalgamation property holds in \(\mathcal{K} \). Let \(\{ A_t \}_{t \in T} \subseteq \mathcal{K} \) and \(B \in \mathcal{K} \) such that for every \(t \in T \), there exists a monomorphism \(f_t : B \to A_t \). Let \(I = I(\{ A_t \}_{t \in T}, B) \). We shall show that \(I \cap A_t = \{0\} \) for every \(t \in T \). Suppose \(I \cap A_{a_0} \neq \{0\} \) for some \(t_0 \in T \), and let \(a \in I \cap A_{a_0} \), \(a \neq 0 \). Clearly \(I \) is also generated by \(\{ f_{t_0}(x) - f_t(x) \} \) \(t \in T \), \(x \in B \). Hence

\[
a = \sum_{i=1}^{n} r_i(f_{t_0}(x_i) - f_t(x_i)) + n_i(f_{t_0}(x_i) - f_t(x_i)) \quad (*)
\]

where \(r_i \in E \), \(x_i \in B \), and \(n_i \) is an integer. Since the amalgamation property holds in \(\mathcal{K} \), there exist \(C \in \mathcal{K} \) and monomorphisms \(g_i : A_{t_i} \to C \), such that \(g_if_{t_i} = g_jf_{t_j} \) for all \(i, j \), \(0 \leq i, j \leq n \). For every \(t \in T \) such that \(t \neq t_i \), \(0 \leq i \leq n \), let \(g_t : A_t \to C \) be the zero homomorphism. Since \(E \) is the free product of \(\{ A_t \}_{t \in T} \), there exists a homomorphism \(g : E \to C \) such that \(g|_{A_t} = g_t \) for every \(t \in T \). Then
from equation (*),

\[g(a) = \sum_{i=1}^{n} g(r_i) (g f_{t_0} (x_i) - g f_{t_i} (x_i)) + n_i (g f_{t_0} (x_i) - g f_{t_i} (x_i)) \]

\[= \sum_{i=1}^{n} g(r_i) (g f_{t_0} (x_i) - g f_{t_i} (x_i)) + n_i (g f_{t_0} (x_i) - g f_{t_i} (x_i)) \]

\[= 0, \text{ since } g f_{t_i} = g f_{t_j}. \]

On the other hand, since \(a \in A_{t_0} \) and \(g_{t_0} \) is a monomorphism, \(g(a) = g_{t_0}(a) \neq 0 \). This contradiction shows that \(I \cap A_t = (0) \) for all \(t \in T \). Hence, by Lemma 1, free products with amalgamation exist in \(\mathcal{K} \). The converse is obvious.

We now prove the main theorem.

Theorem 1. Let \(\mathcal{K} \) be a variety of commutative rings satisfying the following two conditions:

1. For every \(A \in \mathcal{K} \), \(A \) is semisimple (i.e. the Jacobson radical of \(A \) is \((0) \)).
2. For every \(A \in \mathcal{K} \) and every subring \(B \) of \(A \), a proper ideal \(M \) of \(B \) is maximal if and only if \(M = B \cap M' \) for some maximal ideal \(M' \) of \(A \).

Then free products with amalgamation exist in \(\mathcal{K} \).

Proof. By Lemma 2, it suffices to show that the amalgamation property holds in \(\mathcal{K} \). Thus let \(A_1, A_2, B \in \mathcal{K} \) and suppose that there are monomorphisms \(f_1 : B \to A_1 \) and \(f_2 : B \to A_2 \). Let \((E; \{ t_1, t_2 \}) \) be the free product of \(A_1 \) and \(A_2 \) in \(\mathcal{K} \) and for simplicity of notation identify \(A_i \) with \(t_i(A_i) \), \(i = 1, 2 \). Let \(I \) be the ideal of \(E \) generated by \(\{ f_1(x) - f_2(x) \mid x \in B \} \). We shall show that \(I \cap A_i = (0) \), \(i = 1, 2 \). Suppose that \(I \cap A_i = (0) \), and let \(a \in I \cap A_i \), \(a \neq 0 \). Since \(A_i \) is semisimple, there exists a maximal ideal \(M_i \) of \(A_i \) such that \(a \notin M_i \). Let \(N_i = M_i \cap f_i(B) \). Then by condition (2), \(N_i = f_i(B) \) or \(N_i \) is a maximal ideal of \(f_i(B) \). Suppose that \(N_i = f_i(B) \). Let \(h_1 : A_1 \to A_1/M_1 \) be the natural homomorphism, and let \(h_2 : A_2 \to A_1/M_1 \) be the zero homomorphism. Since \(E \) is the free product of \(A_1 \) and \(A_2 \), there is a homomorphism \(h : E \to A_1/M_1 \) such that \(h | A_i = h_i \), \(i = 1, 2 \). Now since \(a \in I \),

\[a = \sum_{j=1}^{n} r_j (f_1(x_j) - f_2(x_j)) + n_j (f_1(x_j) - f_2(x_j)), \ldots, (*) \]
where \(r_j \in E, \ x_j \in B, \) and \(n_j \) is an integer. Thus
\[
h(a) = \sum_{j=1}^{n} h(r_j)(h_1 f_1(x_j) - h_2 f_2(x_j)) + n_j (h_1 f_1(x_j) - h_2 f_2(x_j)) = 0,
\]
since \(h_i f_i(x) = 0 \) for all \(x \in B, \ i = 1, 2. \) On the other hand, since \(a \notin M_1, \ h(a) = h_1(a) \neq 0. \) This contradiction shows that \(N_1 \neq f_1(B). \) Thus \(N_i \) is a maximal ideal of \(f_1(B). \) Hence the ideal \(N_2 = f_2 f_1^{-1}(N_1) \) is maximal in \(f_2(B). \) Hence by condition (2), there is a maximal ideal \(M_2 \) of \(A_2 \) such that \(M_2 \cap A_2 = N_2. \) Let \(h_i : A_i \to A_i/M_i, \ i = 1, 2, \) be the natural homomorphism. Then it follows from condition (1) that for every \(i = 1, 2, A_i/M_i \) is a field and \(f_i(B)/N_i \) is a subfield of \(A_i/M_i. \) Since the amalgamation property holds in the class of all fields [4], there exists a field \(F \) and monomorphisms \(h_i' : A_i/M_i \to \to F, \ i = 1, 2. \) such that \(h''_i h'_i f_i = h''_2 h'_2 f_2. \) Moreover \(F \) can be chosen such that \(F \in \mathcal{K}. \) Since \(E \) is the free product of \(A_1 \) and \(A_2, \) there is a homomorphism \(h : E \to F \) such that \(h(A_i) = h_i', h_i', \ i = 1, 2. \) Now from (*)
\[
h(a) = \sum_{j=1}^{n} h(r_j)(h_1' h_1' f_1(x_j) - h_2' h_2' f_2(x_j)) + n_j (h_1' h_1' f_1(x_j) - h_2' h_2' f_2(x_j)) = 0.
\]
On the other hand, since \(a \notin M, \ h(a) = h_1(a) \neq 0. \) This contradiction shows that \(I \cap A_1 = (0). \) Similarly \(I \cap A_2 = (0). \)

Now let \(G = E/I, \ g : E \to E/I \) be the natural homomorphism, and \(g_i = g | A_i, \ i = 1, 2. \) Since \(I \cap A_i = (0), \) each \(g_i \) is a monomorphism. Moreover, since \(f_1(x) - f_2(x) \in I \) for every \(x \in B, \ g(f_1(x)) - f_2(x) = 0. \) Hence \(g_1 f_1 = g_2 f_2. \) This shows that the amalgamation property holds in \(\mathcal{K} \) and completes the proof of the theorem.

We now apply Theorem 1 to the equationally defined class \(\mathcal{L} \) which is defined as follows. Let \(n > 1 \) be a fixed integer, and let \(\mathcal{L} \) be the class of all rings \(A \) satisfying the equation \(x^n = x \) for all \(x \in A. \) It is known [3] that for every \(A \in \mathcal{L}, \) \(A \) is commutative and semisimple. Moreover, it is shown in [2] that for every \(A \in \mathcal{L}, \) \(A \) has the congruence extension property; that is, for every subring \(B \) of \(A, \) if \(I \) is an ideal of \(B, \) then \(I = B \cap I^* \) for some ideal \(I^* \) of \(A. \)

Theorem 2. Free products with amalgamation exist in the class \(\mathcal{L}. \)

Proof. We show that conditions (1) and (2) of Theorem 1 hold in \(\mathcal{L}. \) As we already noted, condition (1) holds. To show that condition (2) holds, we first observe that if \(J \) is an ideal of \(R \in \mathcal{L}, \)
then the intersection of all the maximal ideals of R/J is (0). Hence every proper ideal of R is the intersection of all the maximal ideals of R containing it. Now, let B be a subring of $A \in \mathcal{L}$, and suppose first that M is a maximal ideal of B. Since B has the congruence extension property, there exists an ideal M^* of A such that $M^* \cap B = M$. Moreover, M^* is proper. Hence M^* is the intersection of all the maximal ideals of A containing M^*. Thus we can find a maximal ideal M' of A such that $M' \supseteq M^*$ and $M' \cap B$ is proper in B. By the maximality of M, $M' \cap B = M$.

Conversely, let M' be a maximal ideal of A. Since $A/M' \in \mathcal{L}$, A/M' is a field. Let $x \in B/M' \cap B$, $x \neq 0$. Then $x^n = x$. Hence $x^{n-1} = 1$, and the multiplicative inverse of x is in $B/M' \cap B$. Hence $B/M' \cap B$ is a field and $M' \cap B$ is a maximal ideal of B. Thus condition (ii) holds and the proof is complete.

The following two corollaries follow immediately from Theorem 2. A ring A is called a p-ring, where p is a fixed prime, if for all $x \in A$, $x^p = x$ and $px = 0$.

Corollary 1. The class \mathcal{L} has the amalgamation property.

Corollary 2. Free products with amalgamation exist in the class of all p-rings.

We now consider the class \mathcal{L}^* consisting of all rings A with the property that for every $x \in A$, there exists an integer $n(x) > 1$ such that $x^{n(x)} = x$. Members of \mathcal{L}^* have the congruence extension property [2], and for every $A \in \mathcal{L}^*$, A is commutative and semisimple [3]. However, we cannot apply Theorem 1 to \mathcal{L}^* since it is not a variety. On the other hand, the proof of Theorem 1 can be used to show that \mathcal{L}^* has the amalgamation property (although the free product of an arbitrary subset of \mathcal{L}^* need not exist in \mathcal{L}^*, the free product of a finite number of members of \mathcal{L}^* does exist in \mathcal{L}^*). Moreover, the argument used in the proof of Lemma 2 can be also used to show that if \mathcal{K}' has the amalgamation property and \mathcal{K}' is a subclass of the variety \mathcal{K}, then the free product of $\{A_\ell | x \in \mathcal{L} \}$ in \mathcal{K} with amalgamated subring B exists for every $\{A_\ell | x \in \mathcal{L} \} \subseteq \mathcal{K}'$ and $B \in \mathcal{K}'$. Thus we have the following

Theorem 3. Free products with amalgamation need not exist in \mathcal{L}^*. However, if \mathcal{K} is the class of all commutative rings, $\{A_\ell | x \in$
\(\subseteq \mathcal{L}^* \), \(B \in \mathcal{L}^* \), and for every \(t \in T \), there exists a monomorphism \(f_t : B \to A_t \), then the free product of \(\{ A_t \}_{t \in T} \) in \(\mathcal{R} \) with amalgamated subring \(B \) exists.

REFERENCES

