A CHARACTERIZATION OF COMPACT FILTERBASIS IN COMPLETE METRIC SPACES (*)

by Massimo Furi and Mario Martelli (in Firenze) (**)

SUMMARY. - In this paper, using the number α of Kuratowski, we give a characterization of compact filterbasis in complete metric spaces (Theorem 1). As a consequence of this characterization we extend some known results of Cantor-Kuratowski, Kuratowski and Painlevé-Kuratowski (Theorem 2, Theorem 3 and Theorem 4 respectively).

1. Let \mathcal{B} and \mathcal{B}' be two filterbasis. \mathcal{B}' is subordered to \mathcal{B}, written $\mathcal{B}' \sqsubset \mathcal{B}$, iff, for any $A \in \mathcal{B}$, there exists $A' \in \mathcal{B}'$ such that $A' \subseteq A$ [1]. A filterbasis \mathcal{B} in a topological space is said to be compact iff each \mathcal{B}' such that $\mathcal{B}' \sqsubset \mathcal{B}$ has cluster points.

In this paper, using the number α of Kuratowski [2], we give a characterization of compact filterbasis in complete metric spaces (Theorem 1). As a consequence of this characterization we extend some known results of Cantor-Kuratowski [3], Kuratowski [2], and Painlevé-Kuratowski [3] (Theorem 2, Theorem 3 and Theorem 4 respectively).

We recall first some terminology.

(*) Pervenuto in Redazione il 7 luglio 1970.
Lavoro eseguito nell’ambito delle attività dei Contratti di Ricerca matematica del C.N.R.

(**) Indirizzo degli Autori: Istituto Matematico «Ulisse Dini» - Università - Viale Morgagni 67/A — 50134 Firenze.
Let X be a metric space. Throughout the paper $\alpha(A)$ denotes the Kuratowski number of $A \subseteq X$; i.e., if A is bounded, $\alpha(A)$ is the infimum of all $\varepsilon > 0$ such that A admits a finite covering of sets with diameter less than ε; if A is unbounded, then $\alpha(A) = +\infty$. About the number α and its properties see [4] and [5].

Let \mathcal{B} be a filterbasis in a metric space. We define $\alpha(\mathcal{B}) = \inf \{ \alpha(A) : A \in \mathcal{B} \}$. Obviously, if $\mathcal{B}' \mathrel{\mathrel{\subseteq}} \mathcal{B}$ then $\alpha(\mathcal{B}') \leq \alpha(\mathcal{B})$. Moreover, denoting by \overline{A} the adherence of A, we put $\overline{\mathcal{B}} = \{ \overline{A} : A \in \mathcal{B} \}$. We shall say that \mathcal{B} is a closed filterbasis iff $\mathcal{B} \mathrel{\mathrel{\subseteq}} \overline{\mathcal{B}}$ (\mathcal{B} is equivalent to $\overline{\mathcal{B}}$), i.e. $\mathcal{B} \mathrel{\mathrel{\subseteq}} \overline{\mathcal{B}}$ and $\overline{\mathcal{B}} \mathrel{\mathrel{\subseteq}} \mathcal{B}$.

2. Our main result is Theorem 1. To prove this Theorem we need the following two Lemmas.

Lemma 1. Let \mathcal{S} be a family of sets with the finite intersection property (f.i.p.) and let $A \in \mathcal{S}$. If $\{ A_k : 1 \leq k \leq n \}$ is a finite covering of A, then there exists $k, 1 \leq k \leq n$, such that the family \mathcal{S}', obtained from \mathcal{S} replacing A by A_k, has the f.i.p.

Proof. Assume the contrary. Then there exist n finite subfamilies $\mathcal{S}_1, \ldots, \mathcal{S}_n$ of \mathcal{S}, such that

$$A_k \cap (\cap \{ B : B \in \mathcal{S}_k \}) = \emptyset, \quad k = 1, \ldots, n.$$

This implies $A \cap (\cap \{ B : B \in \cup_k \mathcal{S}_k \}) = \emptyset$. But this contradicts the f.i.p. of \mathcal{S}.

Lemma 2. Let \mathcal{S} be a family with the f.i.p.. Let, for each $A \in \mathcal{S}$, $\Phi(A)$ be a finite covering of A. Then for each $A \in \mathcal{S}$ we can select $U_A \in \Phi(A)$ such that the family $\{ U_A : A \in \mathcal{S} \}$ has the f.i.p..

Proof. Let Ω be the set of all mappings ψ with the following properties

\(a) \) $\mathcal{D}(\psi) \subseteq \mathcal{S}$, where $\mathcal{D}(\psi)$ denotes the domain of ψ;

\(b) \) $\psi(A) \in \Phi (A), \quad \forall \ A \in \mathcal{D}(\psi)$;

\(c) \) the family obtained from \mathcal{S}, replacing each $A \in \mathcal{D}(\psi)$ by $\psi(A)$ has the f.i.p.

We have only to prove that there exists $\varphi \in \Omega$ such that $\mathcal{D}(\varphi) = \mathcal{S}$. Obviously the set Ω is nonempty by Lemma 1. Moreover Ω can be partially ordered as follows: $\psi_1 < \psi_2$ if and only if $\mathcal{D}(\psi_1) \subseteq \mathcal{D}(\psi_2)$ and $\psi_1(A) = \psi_2(A)$ for all $A \in \mathcal{D}(\psi_1)$. By Zorn's
Lemma Ω has a maximal element φ. Therefore, by Lemma 1, $D(\varphi) = \emptyset$.

We now prove

Theorem 1. Let \mathcal{B} a filterbasis in a complete metric space X. Then \mathcal{B} is compact if and only if $\alpha(\mathcal{B}) = 0$.

Proof. Suppose $\alpha(\mathcal{B}) > 0$. Let us prove that there exists a filterbasis $\mathcal{B}' \subset \mathcal{B}$ with no cluster point. Put $\mathcal{B}' = \{ U' \subset X : \exists U \in \mathcal{B} \text{ such that } \alpha(U \setminus U') < \alpha(\mathcal{B}) \}$. Obviously each $U' \in \mathcal{B}'$ is nonempty. Let $U'_1, U'_2 \in \mathcal{B}'$. There exist $U_1, U_2 \in \mathcal{B}$ such that $\alpha(U_1 \setminus U'_1)$, $\alpha(U_2 \setminus U'_2) < \alpha(\mathcal{B})$ and $W \in \mathcal{B}$, $W \subset U_1 \cap U_2$. Since

$$\alpha(W \setminus (U'_1 \cap U'_2)) = \alpha((W \setminus U'_1) \cup (W \setminus U'_2)) =$$

$$\max \{ \alpha(W \setminus U'_1), \alpha(W \setminus U'_2) \} \leq \max \{ \alpha(U_1 \setminus U'_1), \alpha(U_2 \setminus U'_2) \} < \alpha(\mathcal{B})$$

then $U'_1 \cap U'_2$ belongs to \mathcal{B}'. Moreover if $V' \supset U'$, with $U' \in \mathcal{B}'$, then $V' \in \mathcal{B}'$. Hence \mathcal{B}' is a filter. Clearly $\mathcal{B}' \supset \mathcal{B}$, therefore $\mathcal{B}' \vdash \mathcal{B}$. It remains only to prove that \mathcal{B}' has no cluster point.

Indeed, let $x \in X$ and consider the neighborhood of x, $B(x, \varepsilon) = \{ y \in X : d(x, y) < \varepsilon \}$ with $0 < 2\varepsilon < \alpha(\mathcal{B})$. Since, for any $U' \in \mathcal{B}'$, we have $U \setminus (U' \setminus B(x, \varepsilon)) \subset (U \setminus U') \cup B(x, \varepsilon)$, it turns out that

$$\alpha(U \setminus (U' \setminus B(x, \varepsilon))) \leq \alpha((U \setminus U') \cup B(x, \varepsilon)) \leq$$

$$\leq \max \{ \alpha(U \setminus U'), \alpha(B(x, \varepsilon)) \} < \alpha(\mathcal{B}).$$

Hence $U' \setminus B(x, \varepsilon) \in \mathcal{B}'$. Then x is not a cluster point of \mathcal{B}' since $(U' \setminus B(x, \varepsilon)) \cap B(x, \varepsilon) = \emptyset$.

Suppose $\alpha(\mathcal{B}) = 0$. We must prove that any filterbasis $\mathcal{B}' \vdash \mathcal{B}$ has cluster points. Since $\alpha(\mathcal{B}') = 0$, it is sufficient to show that the condition $\alpha(\mathcal{B}) = 0$ implies the existence of cluster points of \mathcal{B}.

There are two possibilities:

a) there exists $A^* \in \mathcal{B}$ such that $\alpha(A^*) = 0$;

b) $\alpha(A) > 0$ for all $A \in \mathcal{B}$.

In the first case let \mathcal{B}' be the filterbasis consisting of all members of \mathcal{B} contained in A^*. Clearly for any $A \in \mathcal{B}'$ the adherence \overline{A} of A is compact. Since the family $\{ \overline{A} : A \in \mathcal{B}' \}$ has the f.i.p. it follows that $\cap \{ \overline{A} : A \in \mathcal{B}' \} = \emptyset$. Then \mathcal{B} has cluster points since $\mathcal{B}' \vdash \mathcal{B}$.
In the second one, for any \(A \in \mathcal{B} \), let \(\Phi(A) \) be a finite covering of \(A \) consisting of subsets of \(A \) with diameter less than \(2\alpha(A) \). By Lemma 2 we can select \(U_A \in \Phi(A) \) such that the family \(\{ U_A : A \in \mathcal{B} \} \) has the f.i.p. Clearly \(\{ U_A : A \in \mathcal{B} \} \) is a subbasis of a Cauchy filterbasis \(\mathcal{B}' \). Since \(X \) is complete, \(\mathcal{B}' \) converges to a point \(x \in X \), so \(x \) is a cluster point of \(\mathcal{B} \).

3. In this section we give some consequences of Theorem 1.

Theorem 2. Let \((X, d)\) be a complete metric space and let \(\mathcal{S} = \{ A_j : j \in J \} \) be a family of closed subsets of \(X \), with the f.i.p. If for any \(\varepsilon > 0 \) there exists a finite subset \(K_\varepsilon \) of \(J \) such that \(\alpha(\bigcap \{ A_j : j \in K_\varepsilon \}) < \varepsilon \), then \(\alpha(\bigcap \{ A_j : j \in J \}) \) is nonempty and compact.

Proof. By the assumption \(\mathcal{S} \) is a subbasis of a filterbasis \(\mathcal{B} \), such that \(\alpha(\mathcal{B}) = 0 \). Since \(A_j \) is closed for each \(j \in J \), the set \(M \) of all cluster points of \(\mathcal{B} \) is precisely \(\bigcap \{ A_j : j \in J \} \). Therefore \(M \) is closed and, by Theorem 1, nonempty. Moreover \(M \subseteq B \) for any \(B \in \mathcal{B} \), and this implies \(0 \leq \alpha(M) \leq \alpha(\mathcal{B}) = 0 \). Then \(M \) is compact by the completeness of \(X \).

Theorem 2 contains a well known result in the case when all sets \(A_j \) are compact, and a result of Cantor-Kuratowski [3] when the family \(\mathcal{S} \) is a nonincreasing sequence \(\{ A_n \} \) of nonempty closed sets such that \(\lim_n \alpha(A_n) = 0 \).

Let \((X, d)\) be a complete metric space and let \(\mathcal{C}(X) \) be the family of all nonempty and closed subsets of \(X \). For every pair \(A, B \) of elements of \(\mathcal{C}(X) \) the Hausdorff distance \(D(A, B) \) is \(\max \{ \varrho(A, B), \varrho(B, A) \} \) where \(\varrho(A, B) = \sup \{ d(a, b) : a \in A \} \).

Recall that if \(\{ A_\delta : \delta \in \Delta \} \) is a filterbasis, then we can regard \(\Delta \) as a directed set, defining \(\delta \prec \delta' \) if and only if \(A_\delta \supseteq A_{\delta'} \).

Theorem 3. Let \(\mathcal{B} = \{ A_\delta : \delta \in \Delta \} \) be a closed filterbasis in a complete metric space \(X \). Assume \(\alpha(\mathcal{B}) = 0 \). Then \(\lim_{\delta \to \Delta} D(A_\delta, M) = 0 \) where \(M = \bigcap \{ A_\delta : \delta \in \Delta \} \).

Proof. Assume the contrary. Then there exists \(\varepsilon > 0 \) such that \(A_\delta \not\subseteq B(M, \varepsilon) \) for all \(\delta \in \Delta \). Put \(A'_\delta = A_\delta \setminus B(M, \varepsilon) \) and \(\mathcal{B}' = \{ A'_\delta : \delta \in \Delta \} \). It is easily seen that \(\mathcal{B}' \noise \mathcal{B} \). Therefore \(M' = \bigcap \{ A'_\delta : \delta \in \Delta \} \) is nonempty by Theorem 1 and obviously \(M' \cap M = \emptyset \). But this contradicts the fact that \(\mathcal{B}' \noise \mathcal{B} \).

(1) \(B(M, \varepsilon) = \{ y \in X : d(y, M) < \varepsilon \} \).
Theorem 3, in the case when the filterbasis \(\mathcal{B} \) is a nonincreasing sequence of closed sets, gives a result due to C. Kuratowski [2].

THEOREM 4. Let \(\mathcal{B} = \{A_\delta : \delta \in \Delta\} \) be a closed filterbasis in a complete metric space \(X \). If \(A_\delta \) is connected for any \(\delta \in \Delta \) and \(\alpha(\mathcal{B}) = 0 \), then \(M = \cap \{A_\delta : \delta \in \Delta\} \) is a nonempty continuum.

Proof. Clearly \(M \) is nonempty and compact by Theorem 2. Suppose \(M \) disconnected. Then we can find a pair of nonempty, compact sets \(M_1, M_2 \) such that \(M_1 \cap M_2 = \Phi \) and \(M_1 \cup M_2 = M \). Therefore there exists \(\varepsilon > 0 \) such that \(B(M, \varepsilon) = B(M_1, \varepsilon) \cup B(M_2, \varepsilon) \) with \(B(M_1, \varepsilon) \cap B(M_2, \varepsilon) = \Phi \). By Theorem 3 there exists \(\delta \in \Delta \) such that \(A_\delta \subset B(M, \varepsilon) \). Put \(C_k = A_\delta \cap B(M_k, \varepsilon) \), \(k = 1, 2 \). Obviously \(A_\delta = C_1 \cup C_2 \) and \(C_1 \cap C_2 = \Phi \); but this is impossible since \(A_\delta \) is connected.

If, in Theorem 4, the filterbasis is a nonincreasing sequence of nonempty, closed and connected sets, we obtain a result of Painlevé-Kuratowski [3].

Remark. Recall that a set \(A \) of a metric space \((X, d) \) is said to be \(\varepsilon \)-chained if for all \(x, y \in A \) there exists a finite subset \(\{x_1, \ldots, x_n\} \) such that \(x = x_1 \), \(y = x_n \) and \(d(x_i, x_{i+1}) < \varepsilon \), \(i = 1, \ldots, n-1 \). We define \(\eta(A) = \inf \{\varepsilon > 0 : A \text{ is } \varepsilon\text{-chained}\} \). Then Theorem 4 can be extended replacing the assumption «\(A \) is connected for any \(\delta \in \Delta \)» by «\(\inf \{\eta(A_\delta) : \delta \in \Delta\} = 0 \).»

REFERENCES

