
History

The journal Rendiconti dell’Istituto di Matematica dell’Università di Trieste was
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Foreword

The first part of this volume is dedicated to our friend and colleague Fabio

Zanolin, on the occasion of his sixtieth birthday. This section contains seventeen

invited papers from mathematicians who have collaborated in various ways with

Fabio, mainly in the fields of ordinary differential equations and topology. We

thank all the authors for their contributions.

Fabio Zanolin was born on November 3, 1952 in Trieste, where he studied

and obtained his university degree in mathematics in 1976, with a thesis in

topology directed by Mario Dolcher. He was then appointed assistant profes-

sor at the Istituto di Matematica of the University of Trieste, then associate

professor from 1982 to 1987, when he became full professor and moved to the

University of Udine, where he still works and lives.

During his career, Fabio has had many students and collaborated with

mathematicians from several countries all over the world. All those who have

known Fabio have always appreciated his deep mathematical insight, as well

as his kindness, generosity and modesty. Among these Alessandro Fonda and

Pierpaolo Omari, who have taken care of this section, so to celebrate this special

birthday.
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On the existence of forced oscillations

of retarded functional motion

equations on a class of topologically

nontrivial manifolds

Pierluigi Benevieri, Alessandro Calamai,

Massimo Furi and Maria Patrizia Pera

Dedicated to Fabio Zanolin on the occasion of his 60th birthday

Abstract. Using a topological approach, based on the fixed point in-

dex theory for locally compact maps on metric ANRs, we prove the

existence of forced oscillations for retarded functional motion problems

constrained on compact manifolds with nontrivial Euler–Poincaré char-

acteristic, provided that the frictional coefficient is nonzero. We do not

know if an analogous result holds true in the frictionless case.

Keywords: Retarded functional differential equations, fixed point index, forced oscilla-

tions

MS Classification 2010: 34C40, 34K13, 37C25, 47H10

1. Introduction

Consider a compact boundaryless smooth manifold M ⊆ R
s and denote by

BU((−∞, 0],M) the space of bounded and uniformly continuous maps from

(−∞, 0] into M with the topology of the uniform convergence. In this paper

we study a retarded functional motion equation on M of the type

x′′π(t) = f(t, xt) − εx′(t), (1)

where

1. x′′π(t) stands for the tangential part of the acceleration x′′(t) ∈ R
s at the

point x(t) ∈M ,

2. the frictional coefficient ε is a positive constant,
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3. the applied force f : R×BU((−∞, 0],M) → R
s is continuous, T -periodic

in the first variable and such that f(t, ϕ) ∈ Tϕ(0)M for all (t, ϕ), where

TpM ⊆ R
s stands for the tangent space of M at a point p of M .

We will call functional field a continuous map f : R×BU((−∞, 0],M) → R
s

verifying the above tangency condition. In addition, let us recall that, given

any map x, defined on a real interval J with inf J = −∞, and given t ∈ J , xt

denotes the map θ 7→ x(θ + t), defined on (−∞, 0].

The main result of this work, Theorem 4.1 below, shows that the equa-

tion (1) admits at least one T -periodic solution (a forced oscillation), provided

that M has nonzero Euler-Poincaré characteristic and f is bounded and verifies

a sort of Lipschitz condition.

This result provides a positive answer to a conjecture recently formulated

in [4]. A key tool that allowed us to solve our conjecture is Lemma 3.1 below,

proved in [10].

An existence result for a similar problem has been obtained in [1] (see

also [2, 3]), with the difference that, in [1], the function f is defined and con-

tinuous on R×C((−∞, 0],M) endowed with the compact-open topology. The

continuity assumption of f on R × C((−∞, 0],M) is more restrictive than the

hypothesis of continuity on R×BU((−∞, 0],M), since the compact-open topol-

ogy on C((−∞, 0],M) induces on BU((−∞, 0],M) a topology which is weaker

than that of uniform convergence. This means that the existence of forced

oscillations for (1), proved in this paper, is not a byproduct of the analogous

result given in [1], whose proof, in addition, does not fit in the present context.

To get our main result we consider a first order retarded functional differen-

tial equation (RFDE for short) on the tangent bundle TM ⊆ R
2s, which turns

out to be equivalent to the above second order equation (1). More precisely, in

the first part of the paper we study a first order RFDE of the type

x′(t) = g(t, xt), (2)

where g : R × BU((−∞, 0], N) → R
k is a functional field over a boundaryless

smooth manifold N ⊆ R
k.

Assuming that g is T -periodic in the first variable, we tackle the problem of

the existence of T -periodic solutions of equation (2). More generally, given a

closed subset X of N , we study the existence of confined T -periodic solutions,

that is, T -periodic solutions having image in X.

The main result of the first part of the paper, Theorem 3.2 below, states

that the equation (2) admits a confined T -periodic solution provided that X is

a compact absolute neighborhood retract (ANR) with nonzero Euler-Poincaré

characteristic, and the functional field g satisfies some additional conditions.

The proof is given by applying the fixed point index theory for locally compact

maps on ANRs to a sort of Poincaré T -translation operator acting in a suitable

subset of the Banach space C([−T, 0],Rk).
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For general reference on RFDEs we suggest the monograph by Hale and

Verduyn Lunel [16]. For RFDEs with finite delay in Euclidean spaces we refer

also to the works of Gaines and Mawhin [11], Nussbaum [22, 23] and Mallet-

Paret, Nussbaum and Paraskevopoulos [19]. For RFDEs with infinite delay in

Euclidean spaces we recommend the article of Hale and Kato [15] and the book

by Hino, Murakami and Naito [17]. Finally, for RFDEs with finite delay on

manifolds we cite the papers of Oliva [24, 25].

2. Preliminaries

Given a subset A of R
k, we will denote by BU((−∞, 0], A) the set of bounded

and uniformly continuous maps from (−∞, 0] into A with the topology of the

uniform convergence. Clearly, BU((−∞, 0], A) is a metric subspace of the

Banach space BU((−∞, 0],Rk) and is complete if and only if A is closed. For

brevity, throughout the paper we will use the notation

Ã := BU((−∞, 0], A).

Moreover, the norm in R
k will be denoted by | · | and the norm in R̃k by ‖ · ‖.

A vector v ∈ R
k is said to be inward to A at a given point p in the closure

A of A if there exist two sequences {αn} in [0,+∞) and {pn} in A such that

pn → p and αn(pn − p) → v.

The set CpA of the inward vectors to A at p is called the tangent cone of A at

p (see [6]). One can easily check that the tangent cone is always closed in R
k.

The vector subspace of R
k spanned by CpA is the tangent space TpA of A at

p, whose elements are the tangent vectors to A at p.
To simplify some statements and definitions we put CpA = TpA = ∅ when-

ever p does not belong to A (this can be regarded as a consequence of the

definition of inward vector if one replaces the assumption p ∈ A with p ∈ R
k).

Observe that TpA is the trivial subspace {0} of R
k if and only if p is an

isolated point of A. In fact, if p is a limit point, then, given any {pn} in A\{p}
such that pn → p, the sequence

{
αn(pn − p)

}
, with αn = 1/|pn − p|, admits

a convergent subsequence whose limit is a unit vector. On the other hand, if

p is an isolated point of A, the unique inward vector is the null one since the

unique sequence {pn} in A convergent to p is the constant sequence coinciding

with p.
One can show that, in the special and important case when A is a smooth

differentiable manifold with (possibly empty) boundary ∂A (a ∂-manifold for

short), this definition of tangent space is equivalent to the classical one (see

for instance [14, 20]). Moreover, if p ∈ ∂A, CpA is a closed half-space in TpA
(delimited by Tp∂A), while CpA = TpA if p ∈ A\∂A.
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2.1. Initial value problem

Let N be a boundaryless smooth manifold in R
k. We say that a continuous

map g : R × Ñ → R
k is a retarded functional tangent vector field over N if

g(t, ϕ) ∈ Tϕ(0)N for all (t, ϕ) ∈ R × Ñ . To simplify the notation, in the sequel

we frequently call g a functional field (over N).

Let us consider a retarded functional differential equation (RFDE for short)

of the type

x′(t) = g(t, xt), (3)

where g : R×Ñ → R
k is a functional field over N . Here, as usual and whenever

it makes sense, given t ∈ R, by xt ∈ Ñ we mean the function θ 7→ x(t+ θ).

A solution of (3) is a function x : J → N , defined on an open real interval

J with inf J = −∞, bounded and uniformly continuous on any closed half-line

(−∞, b] ⊂ J , and which verifies eventually the equality x′(t) = g(t, xt). That

is, x is a solution of (3) if there exists τ , with −∞ ≤ τ < supJ , such that

x is C1 on the subinterval (τ, supJ) of J , and verifies x′(t) = g(t, xt) for all

t ∈ (τ, supJ). Observe that the derivative of a solution x may not exist at

t = τ . However, the right derivative D+x(τ) of x at τ always exists and is

equal to g(τ, xτ ). Also, notice that, since x is uniformly continuous on any

closed half-line (−∞, b] of J , then t 7→ xt is a continuous curve in Ñ .

A solution of (3) is said to be maximal if it is not a proper restriction of

another solution to the same equation. As in the case of ODEs, Zorn’s lemma

implies that any solution is the restriction of a maximal solution.

In what follows, given η ∈ Ñ , we will also consider the initial value problem

{
x′(t) = g(t, xt),
x0 = η .

(4)

A solution of (4) is a solution x : J → N of (3) such that supJ > 0, x′(t) =

g(t, xt) for t > 0, and x0 = η.

Moreover, given a relatively closed subset X of N , if one takes η ∈ X̃, then

problem (4) will be called the confined problem and any X-valued solution

of (4) a confined solution. For instance, X could be a ∂-manifold of the type

{p ∈ N : F (p) ≤ 0}, where the “cutting function” F : N → R is smooth,

having 0 ∈ R as a regular value (this is the situation considered in Section 4).

Furthermore, N could be an open subset of R
k and X one of its connected

components.

Following [4], we say that the functional field g : R × Ñ → R
k is away

from N at p ∈ X if either g(t, ϕ) 6∈ Cp(N\X) for all (t, ϕ) with ϕ(0) = p or

g(t, ϕ) = 0 for all (t, ϕ) with ϕ(0) = p. We point out that this condition is

obviously satisfied whenever p, which is a point of X, is not in the topological

boundary of X relative to N since, in that case, Cp(N\X) = ∅. Notice that
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this condition is also satisfied when X = N , since Cp(∅) = ∅. If g is away from

N at any p ∈ X, we say that g is away from N in X.

Theorem 2.1 below is a particular case of a global existence result for the

confined case (see [4, Theorem 3.9]; see also [1, Lemma 2.1]).

Theorem 2.1 (confined global existence). Let X be a compact subset of a

boundaryless smooth manifold N ⊆ R
k and g : R × Ñ → R

k a functional field

away from N in X. Assume that g(R × X̃) is bounded. Then, any maximal

solution of the confined problem (4) is defined on the whole real line.

The continuous dependence of the solutions on initial data is stated in

Theorem 2.2 below and is a staightforward consequence of Theorem 4.4 of [4].

Theorem 2.2 (continuous dependence). Let N be a boundaryless smooth man-

ifold and g : R × Ñ → R
k a functional field. Assume the uniqueness of the

maximal solution of problem (4). Then, given T > 0, the set

D = {η ∈ Ñ : the maximal solution of (4) is defined up to T}

is open and the map that associates to any η ∈ D the restriction to [0, T ] of the

unique maximal solution of problem (4) is continuous.

2.2. Fixed point index

We recall that a metrizable space X is an absolute neighborhood retract (ANR)

if, whenever it is homeomorphically embedded as a closed subset C of a metric

space Y , there exists an open neighborhood V of C in Y and a retraction

r : V → C (see e.g. [5, 13]). Polyhedra and differentiable manifolds are examples

of ANRs. Let us also recall that a continuous map between topological spaces

is called locally compact if it has the property that each point in its domain

has a neighborhood whose image is contained in a compact set.

Let X be a metric ANR and consider a locally compact (continuous) X-

valued map k defined on a subset D(k) of X. Given an open subset U of

X contained in D(k), if the set of fixed points of k in U is compact, the pair

(k, U) is called admissible. It is known that to any admissible pair (k, U) we can

associate an integer indX(k, U) – the fixed point index of k in U – which satisfies

properties analogous to those of the classical Leray–Schauder degree [18]. The

reader can see for instance [7, 12, 21, 23] for a comprehensive presentation

of the index theory for ANRs. As regards the connection with the homology

theory we refer to standard algebraic topology textbooks (e.g. [8, 26]).

We summarize below the main properties of the fixed point index.

i) (Existence) If indX(k, U) 6= 0, then k admits at least one fixed point in

U .
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ii) (Normalization) If X is compact, then indX(k,X) = Λ(k), where Λ(k)
denotes the Lefschetz number of k.

iii) (Additivity) Given two disjoint open subsets U1, U2 of U such that any

fixed point of k in U is contained in U1 ∪ U2, then

indX(k, U) = indX(k, U1) + indX(k, U2).

iv) (Excision) Given an open subset U1 of U such that k has no fixed points

in U\U1, then indX(k, U) = indX(k, U1).

v) (Commutativity) Let X and Y be metric ANRs. Suppose that U and

V are open subsets of X and Y respectively and that k : U → Y and

h : V → X are locally compact maps. Assume that one of the sets of

fixed points of hk in k−1(V ) or kh in h−1(U) is compact. Then the other

set is compact as well and indX(hk, k−1(V )) = indY (kh, h−1(U)).

vi) (Homotopy invariance) Let H : U × [0, 1] → X be a locally compact map

such that the set {(x, λ) ∈ U × [0, 1] : H(x, λ) = x} is compact. Then

indX(H(·, λ), U) is independent of λ.

3. Existence of periodic solutions

Let N ⊆ R
k be a boundaryless differentiable manifold and X ⊆ N a compact

ANR. Given T > 0, denote by X̂ := C([−T, 0], X) the metric subspace of

C([−T, 0],Rk) of the X-valued continuous function on [−T, 0] and by X̂0 the

set
{
ψ ∈ X̂ : ψ(−T ) = ψ(0)

}
. Observe that X̂ is complete since X is closed.

Moreover, it is not difficult to show that X̂ is itself an ANR.

Let g : R × Ñ → R
k be a functional field. Given T > 0, assume that g is

T -periodic in the first variable. We are interested in proving the existence of

X-valued T -periodic solutions of equation (3). To this end, let us consider the

family of RFDE

x′(t) = λ g(t, xt) (5)

depending on the parameter λ ∈ [0, 1]. Our aim is to define a parametrized

Poincaré-type T -translation operator whose fixed points are the restrictions to

the interval [−T, 0] of the T -periodic solutions of (5). For this purpose, we need

to introduce a suitable backward extension of the elements of X̂. The properties

of such an extension are contained in Lemma 3.1 below, obtained in [10]. In

what follows, by a T -periodic map defined on (−∞, 0] (or on (−∞,−T ]) we

mean the restriction of a T -periodic map on R .

Lemma 3.1. There exist an open neighborhood U of X̂0 in X̂ and a continuous

map from U to X̃, ψ 7→ ψ̃, with the following properties:
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1) ψ̃ is an extension of ψ;

2) ψ̃ is T -periodic on (−∞,−T ];

3) ψ̃ is T -periodic on (−∞, 0], whenever ψ ∈ X̂0.

Let us now state our existence result.

Theorem 3.2. Let N ⊆ R
k be a boundaryless smooth manifold and g : R×Ñ →

R
k a T -periodic functional field. Let X ⊆ N be a compact ANR with Euler-

Poincaré characteristic χ(X) 6= 0. Assume that g is away from N in X and

that g(R × X̃) is bounded. Also assume that, for any η ∈ X̃, the maximal

solution of problem (4) is unique. Then, the equation x′(t) = g(t, xt) has a

T -periodic solution in X.

Proof. Given η ∈ X̃ and λ ∈ [0, 1], let x(η, λ, ·) be the X-valued maximal

solution of the parametrized confined problem

{
x′(t) = λ g(t, xt),
x0 = η,

(6)

whose global existence is ensured by Theorem 2.1 (observe that λ g is still away

from N in X even for λ = 0). Let now U be an open neighborhood of X̂0 in

X̂ as in Lemma 3.1 and consider the homotopy P : U × [0, 1] → X̂ defined by

P (ψ, λ)(θ) = x(ψ̃, λ, T + θ), where ψ̃ ∈ X̃ is the continuous extension of ψ as

in Lemma 3.1.

By an argument similar to that used in [2, Proposition 3.2], we get that

ψ ∈ U is a fixed point of P (·, λ), λ ∈ [0, 1], if and only if it is the restriction to

[−T, 0] of a T -periodic solution of (5).

Let us show that P is admissible for the fixed point index.

P is continuous. Consider the problem





x′(t) = µ g(t, xt),
µ′(t) = 0,
x0 = η,
µ(0) = λ.

(7)

The continuity of P follows immediately by Lemma 3.1 and by applying The-

orem 2.2 to the auxiliary problem (7).

The image of P is contained in a compact subset of X̂. By assumption,

there exists c > 0 such that |g(t, ϕ)| ≤ c for any (t, ϕ) ∈ R × X̃. Hence,

P (U × [0, 1]) is contained in the set K = {y ∈ X̂ : |y′(t)| ≤ c} which is compact

by Ascoli’s theorem, since X is bounded and X̂ complete.
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The set {(ψ, λ) ∈ U × [0, 1] : P (ψ, λ) = ψ} is compact. Observe that, for

any λ ∈ [0, 1], the set {ψ ∈ U : P (ψ, λ) = ψ} is contained in K ∩ X̂0 that is

clearly a compact subset of U .

The three steps proved above imply that P is an admissible homotopy in

U . Consequently, by the homotopy invariance of the fixed point index, we get

ind
X̂

(P (·, 1), U) = ind
X̂

(P (·, 0), U).

Now, observe that P (·, 0) sends U onto the subset of X̂0 ⊆ U of the constant

X-valued functions, which will be identified with X itself. According to this

identification, the restriction P (·, 0)|X coincides with the identity IX of X.

Therefore, by the commutativity and normalization properties of the fixed point

index, we get

ind
X̂

(P (·, 0), U) = indX(P (·, 0)|X , X) = Λ(IX).

As well-known, the Lefschetz number Λ(IX) coincides with the Euler-Poincaré

characteristic χ(X) of X that, by assumption, is nonzero. Hence,

ind
X̂

(P (·, 1), U) = χ(X) 6= 0,

which implies that P (·, 1) has a fixed point in U . Thus, as previously observed,

this is equivalent to the existence of a T -periodic solution of equation (3), as

claimed.

Remark 3.3. We believe that the above existence result is still valid without

the uniqueness assumption on the solutions of the initial value problem.

Remark 3.4. A functional field g : R × Ñ → R
k is said to be compactly Lip-

schitz (for short, c-Lipschitz) if, given any compact subset Q of R × Ñ , there

exists L ≥ 0 such that

|g(t, ϕ) − g(t, ψ)| ≤ L‖ϕ− ψ‖

for all (t, ϕ) , (t, ψ) ∈ Q. Moreover, we will say that g is locally c-Lipschitz if

for any (τ, η) ∈ R× Ñ there exists an open neighborhood of (τ, η) in which g is

c-Lipschitz. In spite of the fact that a locally Lipschitz map is not necessarily

(globally) Lipschitz, one could actually show that if g is locally c-Lipschitz, then

it is also (globally) c-Lipschitz. As a consequence, if g is C1 or, more generally,

locally Lipschitz in the second variable, then it is additionally c-Lipschitz. In [4]

we proved that if g is a c-Lipschitz functional field, then problem (4) has a

unique maximal solution for any η ∈ Ñ . For a characterisation of compact

subsets of Ñ see e.g. [9, Part 1, IV.6.5].
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4. Retarded functional motion equations

Let M ⊆ R
s be a boundaryless smooth manifold and let

TM =
{
(q, v) ∈ R

s × R
s : q ∈M, v ∈ TqM

}

be the tangent bundle of M . Given q ∈ M , let (TqM)⊥ ⊆ R
s denote the

normal space of M at q. Since R
s = TqM ⊕ (TqM)⊥, any vector u ∈ R

s can be

uniquely decomposed into the sum of the parallel (or tangential) component

uπ ∈ TqM of u at q and the normal component uν ∈ (TqM)⊥ of u at q.

Consider the retarded functional motion equation on the constraint M

x′′π(t) = f(t, xt) − εx′(t), (8)

where x′′π(t) stands for the parallel component of the acceleration x′′(t) ∈ R
s

at the point x(t), the parameter ε > 0 is the frictional coefficient, and the map

f : R × M̃ → R
s is a functional field, T -periodic in the first variable. Any

T -periodic solution of (8) is called a forced oscillation.

Theorem 4.1 below gives a positive answer to the conjecture presented by

the authors in [4].

Theorem 4.1. Let M be a compact boundaryless smooth manifold with nonzero

Euler-Poincaré characteristic, and let f : R × M̃ → R
k be a T -periodic func-

tional field on M . Assume that f is locally Lipschitz in the second variable and

has bounded image. Then, the equation (8) has a forced oscillation.

Proof. Let us observe first that the equation (8) can be equivalently written as

x′′(t) = r(x(t), x′(t)) + f(t, xt) − εx′(t), (9)

where r : TM → R
s is a smooth map (the so-called reactive force or inertial

reaction) satisfying the following properties:

(a) r(q, v) ∈ (TqM)⊥ for any (q, v) ∈ TM ;

(b) r is quadratic in the second variable;

(c) given (q, v) ∈ TM , r(q, v) is the unique vector such that (v, r(q, v)) be-

longs to T(q,v)(TM);

(d) any C2 curve γ : (a, b) → M verifies the condition γ′′ν (t) = r(γ(t), γ′(t))
for any t ∈ (a, b), i.e. for each t ∈ (a, b), the normal component γ′′ν (t) of

γ′′(t) at γ(t) equals r(γ(t), γ′(t)).
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Now, let us transform the second order equation (9) into the first order

system {
x′(t) = y(t),
y′(t) = r(x(t), y(t)) + f(t, xt) − εy(t).

(10)

System (10) is actually a first order RFDE on the noncompact manifold TM ,

since it can be written as

(x′(t), y′(t)) = G(t, (xt, yt)),

where the map G : R × T̃M → R
s × R

s is the T -periodic functional field over

TM given by

G(t, (ϕ, ψ)) = (ψ(0), r(ϕ(0), ψ(0)) + f(t, ϕ) − εψ(0)).

It is easy to see that equation (9) and system (10) are equivalent in the sense

that a function x : J →M is a solution of (9) if and only if the pair (x, x′) : J →
TM is a solution of (10).

Given c > 0, consider the closed subset

Xc =
{
(q, v) ∈ TM : |v| ≤ c

}

of TM . It is not difficult to show that Xc is a ∂-manifold in R
s × R

s with

boundary

∂Xc =
{
(q, v) ∈ Xc : |v| = c

}
.

Moreover, since M is a deformation retract of Xc, then the two spaces are

homotopically equivalent. Thus, χ(Xc) = χ(M), so that χ(Xc) 6= 0.

Observe now that G(R × X̃c) is a bounded subset of R
s × R

s, since f is

bounded by assumption and Xc is compact.

Let us prove that if c is sufficiently large, then G is away from TM in

Xc. To this end, write Xc by means of the inner product 〈·, ·〉 in R
s, as{

(q, v) ∈ TM : 〈v, v〉 ≤ c2
}

and observe first that the tangent cone of Xc at

(q, v) ∈ ∂Xc is the half subspace of T(q,v)Xc given by

C(q,v)Xc =
{
(q̇, v̇) ∈ T(q,v)(TM) : 〈v, v̇〉 ≤ 0

}
.

Analogously,

C(q,v)(TM\Xc) =
{
(q̇, v̇) ∈ T(q,v)(TM) : 〈v, v̇〉 ≥ 0

}
.

Take any t ∈ R and any pair (ϕ, ψ) ∈ X̃c with |ψ(0)| = c and consider the

inner product

〈ψ(0), r(ϕ(0), ψ(0)) + f(t, ϕ) − εψ(0)〉

= 〈ψ(0), r(ϕ(0), ψ(0))〉 + 〈ψ(0), f(t, ϕ)〉 − ε〈ψ(0), ψ(0)〉.
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Now,

〈ψ(0), r(ϕ(0), ψ(0))〉 = 0,

since r(ϕ(0), ψ(0)) belongs to (Tϕ(0)M)⊥. Moreover,

〈ψ(0), f(t, ϕ)〉 ≤ |ψ(0)| |f(t, ϕ)| ≤ K|ψ(0)|,

where K is such that |f(t, ϕ)| ≤ K for all (t, ϕ) ∈ R × M̃ . Finally,

〈ψ(0), ψ(0)〉 = c2,

since (ϕ(0), ψ(0)) ∈ ∂Xc. Therefore, by choosing c > K/ε, we get

〈
ψ(0), r(ϕ(0), ψ(0)) + f(t, ϕ) − εψ(0)

〉
≤ Kc− εc2 < 0.

Thus, G(t, (ϕ, ψ)) /∈ C(q,v)(TM\Xc) for all (t, (ϕ, ψ)) with (ϕ(0), ψ(0)) =

(q, v) ∈ ∂Xc. This shows that G is away from TM in Xc, as claimed.

Consequently, we are reduced to the context of Theorem 3.2 with R
k =

R
s × R

s, N = TM , g = G and the confining set X given by the compact

∂-manifold Xc.

Moreover, since f is locally Lipschitz in the second variable and r is smooth,

then G is locally Lipschitz as well. Therefore, taking into account Remark 3.4,

we get that the initial value problem

{
(x′(t), y′(t)) = G(t, (xt, yt)),
(x0, y0) = (ϕ, ψ)

(11)

has a unique maximal solution for any (ϕ, ψ) ∈ T̃M .

Thus, we can apply Theorem 3.2 to the first order equation (x′(t), y′(t)) =

G(t, (xt, yt)), obtaining that system (10) has a T -periodic solution and, equiv-

alently, that the motion equation (8) has a forced oscillation.

Remark 4.2. We believe that the assertion of Theorem 4.1 still holds without

the Lipschitz assumption.

Remark 4.3. In the frictionless case (i.e. ε = 0) we do not know whether or

not the equation

x′′π(t) = f(t, xt) (12)

has a forced oscillation. As far as we know, the problem of the existence of

forced oscillations of (12) is still open, even in the undelayed situation. In the

particular case of the spherical pendulum, i.e. X = S2, or, more generally,

in the case of the even dimensional pendulum (i.e. X = S2n), the existence

of forced oscillations for equation (12) has been proved by the authors in [3],

assuming the stronger hypothesis of the continuity of the functional field f on

R × C((−∞, 0], X).
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Abstract. In this paper we consider a class of impulsive Kolmogorov-

type systems. The problems of uniform stability and uniform asymptotic

stability of the solutions are studied. We establish stability criteria

by employing piecewise continuous Lyapunov functions. Examples are

given to demonstrate the effectiveness of the obtained results. We show,

also, that the role of impulses in changing the behavior of impulsive

models is very important.

Keywords: stability, Kolmogorov-type models, Lyapunov functions, impulses

MS Classification 2010: 34D20, 34A37, 92D25

1. Introduction

The studies for Kolmogorov systems has long been and will continue to be

one of the dominant themes in both ecology and mathematical ecology due

to its theoretical and practical significance. Many authors established a series

of criteria on the boundedness, persistence, permanence, global asymptotic

stability and the existence of positive periodic solutions [8, 9, 12, 14, 16, 18].

Some interesting work on this topic of interest has been done by Zanolin and

his co-authors [6, 19, 20].

On the other hand, impulsive effect likewise exists in a wide variety of evo-

lutionary processes in which states are changed abruptly at certain moments

of time, involving such fields as medicine and biology, economics, mechanics,

electronics, telecommunications, etc. Since time perturbations occur so often

in nature, a number of models in ecology can be formulated as systems of im-

pulsive differential equations [2, 3, 4, 5, 13, 15, 21]. One of the most important

problems for these types of systems is to analyze the effect of impulsive time

perturbations on the dynamic activity patterns in the systems. Impulses can

make unstable systems stable; so they have been widely used as a control [17].
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Recently, some qualitative properties of populations, which undergo impul-

sive effects at fixed times between interval of continuous evolutions, have been

investigated for impulsive classes of Kolmogorov systems [5, 15, 21]. However,

in all of these papers so far, authors mostly focused on the existence of periodic

solutions and permanence.

In our previous papers [2] and [3] we studied stability properties of some

special cases of impulsive Kolmogorov systems with or without delays.

In the present paper, we consider the uniform stability and uniform asymp-

totic stability of the solutions for a class of impulsive Kolmogorov-type systems

of nonautonomous differential equations. For this purpose piecewise continu-

ous auxiliary functions are used which are an analogue of Lyapunov functions.

Examples are given to demonstrate the effectiveness of the obtained results.

We show, also, that the role of impulses in changing the behavior of impulsive

models is very important.

2. Preliminaries

Let Rn be the n-dimensional Euclidean space with norm ||x|| =

n∑

i=1

|xi|. Let

R+ = [0,∞) , t0 ∈ R+ and t0 < t1 < t2 < ..., lim
k→∞

tk = ∞.

Consider the following n- dimensional impulsive Kolmogorov-type system

ẋi(t) = xi(t)fi(t, x(t)), t 6= tk,
∆xi(tk) = Pik(xi(tk)), k = 1, 2, ...,

(1)

i = 1, 2, ..., n, where n corresponds to the number of units in the system, xi(t)
corresponds to the state of the ith unit at time t, fi : [t0,∞) × Rn

+ → R,

f = col(f1, f2, ..., fn), f ∈ C[[t0,∞) × Rn
+, Rn], ∆xi(t) = xi(t + 0) − xi(t − 0),

tk, k = 1, 2, ... are the moments of impulsive perturbations and Pik(xi(tk))

represents the abrupt change of the state xi(t) at the impulsive moment tk,

Pk = col(P1k, P2k, ..., Pnk), Pk ∈ C[Rn
+, Rn].

Let x0 = col(x10, x20, ..., xn0) and xi0 ≥ 0, i = 1, 2, ..., n. Denote by x(t) =

x(t; t0, x0) = col(x1(t), x2(t), ..., xn(t)) the solution of system (1), satisfying the

initial condition

x(t0 + 0; t0, x0) = x0. (2)

We suppose that the existence, uniqueness, and continuous dependence of

solutions of system (1) hold. For the efficient sufficient conditions which guar-

antee the existence, uniqueness, and continuous dependence of solutions of

system (1) (see [11]).

The solutions x(t) of system (1) are piecewise continuous functions with

points of discontinuity of the first kind tk at which they are left continuous; i.e.
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the following relations are satisfied:

xi(tk − 0) = xi(tk), xi(tk + 0) = xi(tk) + Pik(xi(tk)),

i = 1, 2, ..., n, k = 1, 2, ....

We also assume that solutions of (1) with initial conditions (2) are nonneg-

ative, and if xi0 > 0 for some i, then xi(t) > 0 for all t ≥ t0, If, moreover,

(tk, xi) ∈ (t0,∞) × (0,∞), then xi(tk) + Pik(xi(tk)) > 0 for all i = 1, 2, ..., n
and k = 1, 2, .... Note that these assumptions are natural from the applicability

point of view.

Let x(t)= x(t; t0, x0) = col(x1(t), x2(t), ..., xn(t)) and x∗(t) = x∗(t; t0, x
∗

0) =

col(x∗

1(t), x
∗

2(t), ..., x
∗

n(t)) be any two solutions of (1) with initial conditions

x(t0 + 0; t0, x0) = x0,

x∗(t0 + 0; t0, x
∗

0) = x∗

0,

where x∗

0 = col(x∗

10, x
∗

20, ..., x
∗

n0) and x∗

i0 ≥ 0, i = 1, 2, ..., n.

We will use the following definitions of some stability properties of the

solutions of (1).

Definition 2.1. The solution x∗(t) of system (1) is said to be:

(a) stable, if for all t0 ∈ R+ and for all ε > 0 there exists δ = δ(t0, ε) > 0

such that if x0, x
∗

0 ∈ Rn
+, with ||x0 − x∗

0|| < δ, then for all t ≥ t0:

||x(t; t0, x0) − x∗(t; t0, x
∗

0)|| < ε;

(b) uniformly stable, if the number δ in (a) is independent of t0 ∈ R+;

(c) uniformly attractive, if there exists λ > 0 such that for all ε > 0 there

exists γ = γ(ε) > 0 such that if t0 ∈ R+ and x0, x
∗

0 ∈ Rn
+, with ||x0 −

x∗

0|| < λ, then for all t ≥ t0 + γ:

||x(t; t0, x0) − x∗(t; t0, x
∗

0)|| < ε;

(d) uniformly asymptotically stable, if it is uniformly stable and uniformly

attractive.

Introduce the sets

Gk =
{

(t, x, x∗) ∈ [t0,∞) × Rn
+ × Rn

+ : tk−1 < t < tk

}
, k = 1, 2, ...,

G =

∞⋃

k=1

Gk .
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Definition 2.2. A function V : [t0,∞) × Rn
+ × Rn

+ → R+ belongs to class V0,

if:

1. V is continuous in G and locally Lipschitz continuous with respect to its

second and third arguments on each of the sets Gk, k = 1, 2, ... and

V (t, x∗, x∗) = 0, t ∈ [t0,∞).

2. For each k = 1, 2, ... there exist the finite limits

V (tk − 0, x, x∗) = lim
t→tk
t<tk

V (t, x, x∗), V (tk + 0, x, x∗) = lim
t→tk
t>tk

V (t, x, x∗)

and the equality V (tk − 0, x, x∗) = V (tk, x, x∗) holds.

3. For each k = 1, 2, ... and x, x∗ ∈ Rn
+ the following inequality holds:

V (tk + 0, x + Pk(x), x∗ + Pk(x∗)) ≤ V (t, x, x∗). (3)

Let V ∈ V0. For (t, x, x∗) ∈ G we set

V̇(1)(t, x, x∗)= lim
h→0+

sup
1

h
[V (t+h, x+hxf(t, x), x∗+hx∗f(t, x∗))−V (t, x, x∗)].

Note that if x = x(t) and x∗ = x∗(t) are solutions of system (1), then

D+
(1)V (t, x(t), x∗(t)) = V̇(1)(t, x, x∗), t ≥ t0, t 6= tk, where

D+
(1)V (t, x(t), x∗(t))= lim

h→0+
sup

1

h
[V (t+h, x(t+h), x∗(t+h))−V (t, x(t), x∗(t))]

is the upper right Dini derivative of the function V (t, x(t), x∗(t)) (with respect

to the system (1)).

We shall use the following class of functions:

K = {a ∈ C[R+, R+] : a(r) is strictly increasing and a(0) = 0} .

3. Main results

In the proofs of our main theorems in this section we shall use piecewise con-

tinuous Lyapunov functions V ∈ V0. Similar results for systems with delays

are discussed in [13].
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Theorem 3.1. Assume that there exist functions V ∈ V0 and a, b ∈ K such

that

a(||x − x∗||) ≤ V (t, x, x∗) ≤ b(||x − x∗||), t ∈ [t0,∞), x, x∗ ∈ Rn
+, (4)

V̇(1)(t, x, x∗) ≤ 0, (t, x, x∗) ∈ G. (5)

Then the solution x∗(t) of system (1) is uniformly stable.

Proof. Let ε > 0 be chosen. Choose δ = δ(ε) > 0 so that b(δ) < a(ε).
Let t0 ∈ R+, x0, x

∗

0 ∈ Rn
+, with ||x0 − x∗

0|| < δ, and x(t) = x(t; t0, x0) =

col(x1(t), x2(t), ..., xn(t)), x∗(t) = x∗(t; t0, x
∗

0) = col(x∗

1(t), x
∗

2(t), ..., x
∗

n(t)) be

the solutions of (1).

From the properties of the function V and conditions (4), (5), we get to the

inequalities

a(||x(t; t0, x0) − x∗(t; t0, x
∗

0)||)≤ V (t, x(t; t0, x0), x
∗(t; t0, x

∗

0))

≤ V (t0 + 0, x0, x
∗

0)

≤ b(||x0 − x∗

0||) < b(δ) < a(ε) ,

from which it follows that ||x(t; t0, x0) − x∗(t; t0, x
∗

0)|| < ε for t ≥ t0. This

proves the uniform stability of the solution x∗(t) of system (1).

Theorem 3.2. Let the condition (4) of Theorem 3.1 be fulfilled and let a func-

tion c ∈ K exist such that for x, x∗ ∈ Rn
+ the inequality

V̇(1)(t, x, x∗) ≤ −c(||x − x∗||), t ∈ [t0,∞), t 6= tk, k = 1, 2, ... (6)

holds.

Then the solution x∗(t) of system (1) is uniformly asymptotically stable.

Proof. From Theorem 3.1 it follows that the solution x∗(t) of system (1) is

uniformly stable. Hence, for any ε, ε > 0, there exists δ > 0, such that if

t0 ∈ R+, x0, x
∗

0 ∈ Rn
+, with ||x0 − x∗

0|| < δ, then

||x(t; t0, x0) − x∗(t; t0, x
∗

0)|| < ε

for t ≥ t0.
Now, we shall prove that the solution x∗(t) of system (1) is uniformly at-

tractive.

1. Let α = const > 0 be so small, that {x ∈ Rn : ||x − x∗(t)|| ≤ α} ⊂ Rn
+.

For any t ≥ t0 denote

V −1
t,α =

{
x ∈ Rn

+ : V (t + 0, x, x∗) ≤ a(α)
}

.
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From (4) we deduce

V −1
t,α ⊂ {x ∈ Rn : ||x − x∗|| ≤ α}.

From conditions of Theorem 3.2 it follows that for any t0 ∈ R+ and any x0 ∈
Rn

+ : x0 ∈ V −1
t0,α we have x(t; t0, x0) ∈ V −1

t,α , t ≥ t0. Choose η = η(ε) so that

b(η) < a(ε) and let γ = γ(ε) > b(α)
c(η) . If we assume that for each t ∈ [t0, t0 + γ]

the inequality ||x(t; t0, x0) − x∗(t; t0, x
∗

0)|| ≥ η is valid, then from (3) and (6)

we deduce the inequalities

V (t0 + γ, x(t0 + γ; t0, x0), x
∗(t0 + γ; t0, x

∗

0))

≤ V (t0 + 0, x0, x
∗

0) −

∫ t0+γ

t0

c(||x(s; t0, x0) − x∗(s; t0, x
∗

0)||) ds

≤ b(α) − c(η)γ < 0 ,

which contradicts (4). The contradiction obtained shows that there exists t∗ ∈
[t0, t0 + γ] such that ||x(t∗; t0, x0) − x∗(t∗; t0, x

∗

0)|| < η. Then for t ≥ t∗ (hence

for any t ≥ t0 + γ) the following inequalities hold:

a(||x(t) − x∗(t)||)≤ V (t; x(t), x∗(t))

≤ V (t∗, x(t∗), x∗(t∗))

≤ b(||x(t∗; t0, x0) − x∗(t∗; t0, x
∗

0)||)

< b(η) < a(ε) .

Therefore ||x(t; t0, x0) − x∗(t; t0, x
∗

0)|| < ε for t ≥ t0 + γ.

2. Let λ = const > 0 be such that b(λ) ≤ a(α). Then if x0 ∈ Rn
+ :

||x0 − x∗

0|| < λ, (4) implies

V (t0 + 0, x0, x
∗

0) ≤ b(||x0 − x∗

0||) < b(λ) ≤ a(α),

which shows that for x0 ∈ V −1
t0,α. From what we proved in item 1 it follows that

the solution x∗(t) of system (1) is uniformly attractive.

Therefore, the solution x∗(t) of system (1) is uniformly asymptotically sta-

ble.

Corollary 3.3. If in Theorem 3.2 condition (6) is replaced by the condition

V̇(1)(t, x, x∗) ≤ −cV (t, x, x∗), t 6= tk, k = 1, 2, ..., x, x∗ ∈ Rn
+, (7)

where c = const > 0, then the solution x∗(t) of system (1) is uniformly asymp-

totically stable.
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Proof. The proof of Corollary 3.3 is analogous to the proof of Theorem 3.2. It

uses the fact that

V (t, x(t; t0, x0), x
∗(t; t0, x

∗

0)) ≤ V (t0 + 0, x0, x
∗

0) exp[−c(t − t0)]

for t ≥ t0, which is obtained from (7) and (3).

In fact, let α = const > 0 : {x ∈ Rn : ||x − x∗(t)|| ≤ α} ⊂ Rn
+. Choose

λ > 0 so that b(λ) < a(α). Let ε > 0 and γ ≥ 1
c

ln
a(α)
a(ε) . Then for t0 ∈ R+,

x0, x
∗

0 ∈ Rn
+, with ||x0 − x∗

0|| < λ and t ≥ t0 + γ the following inequalities hold

V (t, x(t; t0, x0), x
∗(t; t0, x

∗

0)) ≤ V (t0 + 0, x0, x
∗

0) exp[−c(t − t0)] < a(ε),

whence, in view of (4), we deduce that the solution x∗(t) of system (1) is

uniformly attractive.

4. Applications

The results obtained can be applied in the investigation of the stability of

any solution which is of interest. One of the solutions which is an object of

investigations for the systems of type (1) is the equilibrium state, i.e. the

constant solution x∗ = col(x∗

1, x
∗

2, ..., x
∗

n) such that

ẋ∗

i (t) = 0, t 6= tk,

∆x∗

i (tk) = 0, k = 1, 2, ..., i = 1, 2, ..., n.

In the applications, uniform stability and uniform asymptotic stability of

the equilibria will be discussed for a special case of impulsive Kolmogorov-type

models.

Consider the following n-species Lotka-Volterra type impulsive system





ẋi(t) = xi(t)


bi(t) − aii(t)xi(t) −

n∑

j=1

j 6=i

aij(t)xj(t)


 , t 6= tk,

xi(tk + 0) = xi(tk) + Pik(xi(tk)), i = 1, ..., n, k = 1, 2, ...,

(8)

where n ≥ 2, t ≥ 0, aij ∈ C[R+, R+], bi ∈ C[R+, R], Pik : R+ → R, i, j =

1, ..., n, k = 1, 2, ..., 0 < t1 < t2 < ... < tk < ... are fixed impulsive points

and lim
k→∞

tk = ∞. In mathematical ecology, the system (8) denotes a model of

the dynamics of an n-species system in which each individual competes with

all others of the system for a common resource and at the fixed moments of

time tk, k = 1, 2, ..., the system is subject to short-term perturbations. The
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numbers xi(tk) and xi(tk + 0) are, respectively, the population densities of

species i before and after impulse perturbation at the moment tk and Pik are

functions which characterize the magnitude of the impulse effect on the species

i at the moments tk.

Let x0 = col(x10, x20, ..., xn0) and xi0 ≥ 0, i = 1, 2, ..., n. Denote by x(t) =

x(t; t0, x0) = col(x1(t), x2(t), ..., xn(t)) the solution of system (8), satisfying the

initial condition

x(t0 + 0; t0, x0) = x0. (9)

Given a continuous function g(t) which is defined on J , J ⊆ R, we set

gL = inf
t∈J

g(t), gM = sup
t∈J

g(t).

For 0 ≤ τ1 < τ2, we define the following notation:

A[g, τ1, τ2] =
1

τ2 − τ1

∫ τ2

τ1

g(s)ds.

The lower and upper averages of g(t), denoted by m[g] and M [g] are defined

by

m[g] = lim
s→∞

inf {A[g, τ1, τ2] | τ2 − τ1 ≥ s} ,

M [g] = lim
s→∞

sup {A[g, τ1, τ2] | τ2 − τ1 ≥ s} .

In our subsequent analysis, we shall assume that the functions bi and aij ,

i, j = 1, 2, ..., n, are continuous on R+, aij ≥ 0, aM
ij < ∞, bM

i < ∞, bL
i > 0,

and aL
ii > 0 for i = 1, 2, ..., n.

Furthermore, in order to restrict our attention only to those solutions which

evolve in the phase space {x ∈ Rn
+ : xi > 0, i = 1, 2, ..., n}, we also shall

assume that the functions Pik are continuous on R+, and xi + Pik(xi) > 0 for

xi > 0, i = 1, 2, ..., n, k = 1, 2, .... This restriction prevents the instantaneous

extinction of any population xi at an impulse time tk. We point out that

efficient sufficient conditions which guarantee the positivity of the solutions of

such systems are given in [2].

Ahmad and Lazer [1] proved that, if for i = 1, ..., n,

m[bi] >

n∑

i=1

i6=j

aM
ij

aL
jj

M [bj ], (A)

then for any solution x(t) = col(x1(t), ..., xn(t)) of the corresponding system

to system (8) without impulses (i.e. with xi(tk + 0) = xi(tk), i = 1, ..., n, k =

1, 2, ...) if xi(0) > 0, i = 1, ..., n, then:

0 < inf
t≥0

xi(t) < sup
t≥0

xi(t) < ∞.
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Lemma 4.1. Assume that the condition (A) is satisfied and the functions Pik

are such that

−xi ≤ Pik(xi) ≤ 0 for xi ∈ R+, i = 1, 2, ..., n, k = 1, 2, ....

Then there exist positive constants r and R such that

r ≤ xi(t) ≤ R, t ∈ [0,∞). (10)

Proof. From corresponding theorem for the continuous case ([1]), it follows

that for all t ∈ [0, t1] ∪ (tk, tk+1], k = 1, 2, ... and 1 ≤ i ≤ n there exist positive

constants r∗i and R∗

i such that the following inequalities hold:

r∗i ≤ xi(t) ≤ R∗

i .

Using the positivity of the solutions and the condition of Lemma 4.1, we obtain

0 < xi(tk + 0) = xi(tk) + Pik(xi(tk)) ≤ xi(tk) ≤ R∗

i .

Therefore, there exist positive constants r and R such that the inequalities (10)

are valid.

Next, we will give sufficient conditions for the uniform stability and uniform

asymptotic stability of the equilibrium states of (8). The problems of existence

and uniqueness of equilibria of Lotka-Volterra systems with or without im-

pulses have been investigated by many authors. Some sufficient conditions for

impulsive models are given in [2, 3, 13].

Theorem 4.2. Assume that:

1. The assumptions of Lemma 4.1 holds.

2. r ≤ xi + Pik(xi) ≤ xi ≤ R for r ≤ xi ≤ R, i = 1, 2, ..., n, k = 1, 2, ....

3. The following inequalities are valid

ajj(t) ≥
n∑

i=1

i6=j

aij(t), t 6= tk, k = 1, 2, ....

Then the equilibrium x∗ of system (8) is uniformly stable.

Proof. Define a Lyapunov function

V (t, x, x∗) =

n∑

i=1

∣∣∣∣ln
xi

x∗

i

∣∣∣∣ . (11)
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By Mean Value Theorem and by (10), it follows that for any closed interval

contained in [0, t1] ∪ (tk, tk+1], k = 1, 2, ... and for all i = 1, 2, ...

1

R
|xi(t) − x∗

i | ≤ | lnxi(t) − lnx∗

i | ≤
1

r
|xi(t) − x∗

i |. (12)

For t > 0 and t = tk, k = 1, 2, ..., we have

V (tk + 0, x(tk + 0), x∗(tk + 0)) =

n∑

i=1

∣∣∣∣ln
xi(tk + 0)

x∗

i (tk + 0)

∣∣∣∣

=

n∑

i=1

∣∣∣∣ln
xi(tk) + Pik(xi(tk))

x∗

i (tk)

∣∣∣∣

≤
n∑

i=1

∣∣∣∣ln
xi(tk)

x∗

i (tk)

∣∣∣∣ = V (tk, x(tk), x∗(tk)).

(13)

Consider the upper right-hand derivative D+
(8)V (t, x(t), x∗) of the function

V (t, x(t), x∗) with respect to system (8). For t ≥ 0 and t 6= tk, k = 1, 2, ..., we

derive the estimate

D+
(8)V (t, x(t), x∗) =

n∑

i=1

ẋi(t)

xi(t)
sgn (xi(t) − x∗

i ) .

Since x∗ is the equilibrium of (8) and bi(t) = aii(t)x
∗

i +

n∑

j=1

j 6=i

aij(t)x
∗

j , then

D+
(8)V (t, x(t), x∗) ≤

n∑

j=1


−ajj(t)|xj(t) − x∗

j | +

n∑

i=1

i6=j

aij(t)|xj(t) − x∗

j |


 .

Thus in view of condition 3 of Theorem 4.2, we obtain

D+
(8)V (t, x(t), x∗) ≤ 0,

t ≥ 0 and t 6= tk, k = 1, 2, ....
Since all conditions of Theorem 3.1 hold, then the equilibrium x∗ of sys-

tem (8) is uniformly stable.

Theorem 4.3. In addition to the assumptions of Theorem 4.2, suppose there

exists a nonnegative constant µ such that

ajj(t) ≥ µ +

n∑

i=1

i6=j

aij(t), t 6= tk, k = 1, 2, .... (14)

Then the equilibrium x∗ of system (8) is uniformly asymptotically stable.
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Proof. We consider again the Lyapunov function (11). From (13) and (14), we

obtain

D+
(8)V (t, x(t), x∗) ≤ −µ

n∑

i=1

|xi(t) − x∗

i (t)|,

t ≥ 0 and t 6= tk, k = 1, 2, ....
Since all conditions of Theorem 3.2 are satisfied, the solution x∗ of sys-

tem (8) is uniformly asymptotically stable.

In order to illustrate some features of our results, in the following we will

apply Theorem 4.3 to two-dimensional systems, which have been studied ex-

tensively in the literature.

Example 4.4. For the system

{
ẋ(t) = x(t) [8 − 14x(t) − y(t)] ,

ẏ(t) = y(t) [15 − 4x(t) − 13y(t)] ,
(15)

one can show that the point (x∗, y∗) = ( 1
2 , 1) is an equilibrium which is uni-

formly asymptotically stable [1].

Now, we consider the impulsive Lotka-Volterra system





ẋ(t) = x(t) [8 − 14x(t) − y(t)] , t 6= tk,

ẏ(t) = y(t) [15 − 4x(t) − 13y(t)] , t 6= tk,

∆x(tk) = −
1

3

(
x(tk) −

1

2

)
, k = 1, 2, ...,

∆y(tk) = −
3

5

(
y(tk) − 1

)
, k = 1, 2, ...,

(16)

where 0 < t1 < t2 < ... and lim
k→∞

tk = ∞.

For the system (16), the point (x∗, y∗) = (1
2 , 1) is an equilibrium and all

conditions of Theorem 4.3 are satisfied. In fact, for µ ≤ 10, r = 1
2 and R = 1,

we have

1

2
≤

3x(tk) + 1

6
= x(tk) + P1k(x(tk))

= x(tk) −
1

3

(
x(tk) −

1

2

)
=

2

3

(
x(tk) −

1

2

)
+

1

2
≤ x(tk) ≤ 1,

1

2
≤

2y(tk) + 3

5
= y(tk) + P2k(y(tk))

= y(tk) −
3

5

(
y(tk) − 1

)
=

2

5

(
y(tk) − 1

)
+ 1 ≤ y(tk) ≤ 1,
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for 1
2 ≤ x(tk) ≤ 1, 1

2 ≤ y(tk) ≤ 1, k = 1, 2, ....

Therefore, the equilibrium (x∗, y∗) = (1
2 , 1) is uniformly asymptotically sta-

ble.

If, in the system (16), we consider the impulsive perturbations of the form:





∆x(tk) = −3
(
x(tk) −

1

2

)
, k = 1, 2, ...,

∆y(tk) = −
3

5

(
y(tk) − 1

)
, k = 1, 2, ...,

then the point (x∗, y∗) = (1
2 , 1) is again an equilibrium, but there is nothing we

can say about its uniform asymptotic stability, because for 1
2 ≤ x(tk) ≤ 1, we

have −
1

2
≤ x(tk) + P1k(x(tk)) ≤

1

2
, k = 1, 2, ....

The example shows that by means of appropriate impulsive perturbations we

can control the system’s population dynamics. We can see that impulses are

used to keep the stability properties of the system.

Example 4.5. The system

{
ẋ(t) = x(t) [2 − 6x(t) − y(t)] ,

ẏ(t) = y(t) [3 − 2x(t) − 5y(t)] .
(17)

has a boundary equilibrium point (x∗, y∗) = (1
3 , 0). We point out that efficient

sufficient conditions which guarantee the stability of such solutions of predator-

prey systems are given in [7, 10].

However, for the impulsive Lotka-Volterra system





ẋ(t) = x(t) [2 − 6x(t) − y(t)] , t 6= tk,

ẏ(t) = y(t) [3 − 2x(t) − 5y(t)] , t 6= tk,

∆x(tk) = −
1

2

(
x(tk) −

1

4

)
, k = 1, 2, ...,

∆y(tk) = −
1

3

(
y(tk) −

1

2

)
, k = 1, 2, ...,

where 0 < t1 < t2 < ... and lim
k→∞

tk = ∞, the point (x∗, y∗) = (1
4 , 1

2 ) is an

equilibrium which is uniformly asymptotically stable. In fact, all conditions of



STABILITY CRITERIA FOR KOLMOGOROV-TYPE SYSTEMS 31

Theorem 4.3 are satisfied for µ ≤ 3, r = 1
4 , R = 1

2 and

1

4
≤

4x(tk) + 1

8
= x(tk) + P1k(x(tk))

= x(tk) −
1

2

(
x(tk) −

1

4

)
=

1

2

(
x(tk) −

1

4

)
+

1

4
≤ x(tk) ≤

1

2
,

1

4
≤

4y(tk) + 1

6
= y(tk) + P2k(y(tk))

= y(tk) −
1

3

(
y(tk) −

1

2

)
=

2

3

(
y(tk) −

1

2

)
+

1

2
≤ y(tk) ≤

1

2
,

for 1
4 ≤ x(tk) ≤ 1

2 , 1
4 ≤ y(tk) ≤ 1

2 , k = 1, 2, ....
This shows that the impulsive perturbations can prevent the population from

going extinct.
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Abstract. A theorem by Bell and Meyer says that a stable and tran-

sitive Cantor set in the plane can be approximated by periodic points.

We prove that the periodic points can be chosen with index one. As a

consequence these Cantor sets are always persistent invariant sets.

Keywords: Lyapunov stability, Cantor set, fixed point index, translation arc

MS Classification 2010: 37E30

1. Introduction

Cantor sets often appear as invariant sets of planar homeomorphisms. Well

known examples are the Bernoulli shift in Smale’s horseshoe, Aubry-Mather

sets in non-integrable twist maps or adding machines obtained as sections of a

solenoid. Some concrete constructions can be found in [1, 3, 6]. In general we

will consider a homeomorphism h : R
2 −→ R

2 and a Cantor set Λ ⊂ R
2 with

h(Λ) = Λ.

In this paper homeomorphisms are understood as surjective maps, so that

h(R2) = R
2. Also, to avoid trivialities, it will be assumed that Λ is transitive.

This means that for some p ∈ Λ,

Lω(p, h) = Λ,

where Lω(p, h) is the corresponding ω-limit set. A Cantor set is a compact,

perfect and totally disconnected metric space. All Cantor sets are homeomor-

phic but they can support many different transitive dynamics. In the examples

mentioned above one can find chaos, Denjoy dynamics or almost-periodicity.

1Supported by the research project MTM2011-23652, Spain



34 R. ORTEGA AND A. RUIZ-HERRERA

An invariant set Λ ⊂ R
2 is stable (in the sense of Lyapunov) if each neighbor-

hood U of Λ contains another neighborhood V such that

hn(V ) ⊂ U for every n ≥ 1.

In [2], Bell and Meyer obtained a remarkable result: in the plane, stable Cantor

sets are never isolated, in fact they can be approximated by periodic points lying

outside Λ. The purpose of our paper is to prove that these periodic points have

non-zero index. Here we refer to the fixed point index that can be expressed in

terms of Brouwer’s degree. As a consequence we will prove that stable Cantor

sets are persistent as invariant sets. An invariant compact set Λ is persistent if,

given any positive ε > 0, there exists δ > 0 such that for any homeomorphism

h̃ : R
2 −→ R

2 with

‖h(x) − h̃(x)‖ ≤ δ

for each x ∈ R
2, there exists a compact set Λ̃ ⊂ R

2 such that

h̃(Λ̃) = Λ̃ and DH(Λ, Λ̃) ≤ ǫ.

The symbol DH refers to the Hausdorff distance between compact subsets of

the plane. In our result, Λ̃ will be composed by periodic points derived from

the properties of degree. Summing up we can say that stable Cantor sets in

the plane are simultaneously non-isolated and persistent. This is in contrast

with the properties enjoyed by stable finite sets. At the end of the paper

we will present an example of a fixed point that is stable and non-persistent.

The structure of the paper is as follows. The main theorem on index and a

corollary on persistence are stated in Section 2. The proofs of both results

are presented in Section 3. Finally, in Section 4 we discuss some connections

with the literature. To finish this introduction we notice that an example

constructed in [2] shows that our results do not admit a direct extension to

higher dimensions.

2. Main results

Given a Jordan curve Γ ⊂ R
2, the bounded component of R

2\Γ will be indicated

by Γ̂. Brouwer’s degree in the plane will be denoted by d[f,G, 0] where G ⊂ R
2

is a bounded and open set and f : cl(G) −→ R
2 is a continuous function defined

on the closure of G. We must also assume that f does not vanish on ∂G, the

boundary of G. We recall two properties of the degree that will be employed

later,

i) existence of zeros: the function f has at least one zero on G if d[f,G, 0] 6=0,
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ii) continuity of the degree: there exists η > 0, depending on f , such that

if g : cl(G) −→ R
2 is a continuous function with

‖f(x) − g(x)‖ ≤ η

for each x ∈ ∂G, then g does not vanish on ∂G and d[g,G, 0] = d[f,G, 0].

We refer to [10] for more information on degree theory. Given a continuous

function φ : cl(G) −→ R
2, the fixed point index is defined as the degree of

f = id − φ. The zeros of f are precisely the fixed points of φ.
We will prove that the existence of a stable Cantor set has strong consequences

on the fixed point index of the map hN = h ◦
(N)
· · · ◦h. Notice that the fixed

points of hN are the periodic points of h whose minimal period is a divisor

of N .

Theorem 2.1. Assume that h : R
2 −→ R

2 is a homeomorphism and Λ is

an invariant Cantor set that is stable and has a transitive point. Then for

every δ > 0 and p ∈ Λ there exist a Jordan curve Γ = Γ(δ, p) and an integer

N = N(δ, p) ≥ 1 such that the following properties hold,

DH(Γ, {p}) ≤ δ, hN (x) 6= x if x ∈ Γ, d[id − hN , Γ̂, 0] = 1.

The existence property of the degree implies that each region Γ̂(δ, p) contains

a periodic point. This implies that Λ can be obtained as a limit of periodic

points.

Theorem 2.2. (Bell and Meyer) In the assumptions of Theorem 2.1 and given

p ∈ Λ, there exist a sequence of points {xn} in R
2 and integers σ(n) ≥ 1 such

that

xn −→ p and hσ(n)(xn) = xn.

The persistence of Λ will be deduced from the continuity of the degree.

Corollary 2.3. In the assumptions of Theorem 2.1, the set Λ is persistent.

3. Proofs

The proof by Bell and Meyer in [2] is based on a well known fixed point theorem

due to Cartwright and Littlewood. This theorem deals with orientation pre-

serving homeomorphisms and it has been extended to the orientation reversing

case by Bell. We will employ a strategy similar to that in [2] but without

making use of this fixed point theorem. Instead we will use the following result

which is a consequence of Brouwer’s theory on translations arcs.
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Lemma 3.1. Assume that Ω ⊂ R
2 is an open and simply connected set and let

H : Ω −→ Ω be an orientation preserving embedding. In addition, assume that

H has a recurrent point that is not fixed. Then there exists a Jordan curve

Γ ⊂ Ω such that H(x) 6= x if x ∈ Γ and

d[id − H, Γ̂, 0] = 1.

Let us recall that an embedding is a continuous and one-to-one map. In

contrast to homeomorphisms, embeddings are not necessarily onto, that is

H(Ω) ⊂ Ω. For this reason, orbits are well defined for the future but not

necessarily for the past. The embedding is orientation-preserving if

d[H,B, y] = 1,

where y is any point in H(Ω) and B is an open ball centered at H−1(y).

Given any embedding H, the second power H2 = H ◦H is always orientation-

preserving. This is well known and follows from the properties of the degree of

a composition of maps, see for instance [10].

By a recurrent point x∗ ∈ Ω we mean a point such that Hσn(x∗) → x∗ for

some increasing sequence of positive integers {σn}. Notice that the sequence

{Hn(x∗)}n≥0 could be unbounded.

Proof of Lemma 3.1. This is a well known result and we refer to [4, 8, 9] for the

case of homeomorphisms. The proof for the case of embeddings is similar. We

sketch it. Since Ω is homeomorphic to R
2 we can restrict to the case Ω = R

2.

For this reduction we are using the invariance of the fixed point index under

topological conjugation. This is again a consequence of the properties of the

degree of a composition.

Let C be a connected component of R
2 \ Fix(H) containing the recurrent

point x∗. We can find a small and closed disk D centered at x∗ and such

that D ⊂ C and D ∩ H(D) = ∅. This is possible because x∗ is not fixed.

From [15, Chapter 3, Proposition 20] we know that H(D) is contained in C.

The recurrence of x∗ allows us to obtain an integer σ ≥ 2 such that y∗ = Hσ(x∗)

belongs to the interior of D. The points x∗ and y∗ lie on D and so it is possible

to apply [15, Chapter 3, Proposition 17] to deduce the existence of a translation

arc α containing x∗ and y∗. In consequence, y∗ belongs to α ∩ Hσ(α) and

Brouwer’s Arc Translation Lemma is applicable. An adaptation to embeddings

of the proof by Brown of this lemma can be found in [15].

We will also use the following result on minimal homeomorphisms.

Lemma 3.2. Assume that K is a compact metric space and φ : K −→ K is a

minimal homeomorphism. Then, for each integer N ≥ 1, the set

RN = {k ∈ K : k ∈ Lω(k, φN )}

is dense in K.
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We recall that φ is minimal if every point is transitive; that is, Lω(k, φ) = K
for each k ∈ K.

Proof. First of all we prove that RN is non-empty. The existence of minimal

sets for general homeomorphisms implies that there exists a non-empty compact

set M ⊂ K that is minimal for φN . This means that φN (M) = M and if N is

a compact subset of M with φN (N) = N then either N = ∅ or N = M . In

particular, the set Lω(m,φN ) has to coincide with M for each m ∈ M. This

implies that M is contained in RN . The second observation is that RN is

invariant under φ. This is easily checked and leads to the identity φ(cl(RN )) =

cl(RN ). The minimality of φ implies that cl(RN ) = K.

We need two more lemmas. The setting and the assumptions correspond

to those of the main theorem.

Lemma 3.3. The restricted homeomorphism hΛ : Λ −→ Λ is minimal.

Proof. This is a particular case of [5, Lemma 2] but we present the proof for

completeness. Assume by contradiction that h is not minimal on Λ. Then

there exists a point p ∈ Λ such that the limit set Lω(p, h) is a proper subset

of Λ. Let us fix another point q ∈ Λ \ Lω(p, h). The compact sets Lω(p, h)

and {q} can be separated by two open sets U and V of R
2. Since Λ is totally

disconnected they can be chosen so that

• Λ ⊂ U ∪ V ,

• cl(V ) ∩ cl(U) = ∅,

• Lω(p, h) ⊂ U ,

• q ∈ V .

Let V∗ be the connected component of V containing q. Notice that this is also

a component of the larger set U ∪ V . The stability of Λ implies the existence

of an open set W ⊂ R
2 satisfying that

Λ ⊂ W ⊂ U ∪ V, hn(W ) ⊂ U ∪ V

for each n ≥ 2. Let W∗ be the connected component of W containing p. By

assumption we know that Λ contains a transitive point. All the points in

the orbit will be transitive and therefore we know that transitive points are

dense in Λ. Let r ∈ Λ be a transitive point close enough to p in order to

guarantee that r ∈ W∗. Let (σn) be an increasing sequence of positive integers

with hσn(r) −→ q. This implies that hσn(r) belongs to V∗ for large n and so

hσn(W∗) ∩ V∗ 6= ∅. Since hσn(W∗) is a connected subset of U ∪ V we conclude

that it must be contained in one component. Hence hσn(W∗) ⊂ V∗. Finally, we
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observe that the iterates hσn(p) belong to hσn(W∗) ⊂ V∗ and therefore Lω(p, h)

has to contain a point in cl(V∗). This is a contradiction with the conditions

imposed on U and V .

The last lemma needs some preliminary remarks on the topology of R
2.

Given an open set G in R
2, the set Ĝ ⊂ R

2 is the smallest open and simply

connected set containing G. We refer to [14] for an elementary construction

of this set. In [2], this set Ĝ is called the topological hull of G. In fact its

construction is purely topological and this explains the property h(Ĝ) = ĥ(G).

Lemma 3.4. Given a point p ∈ Λ and a disk D centered at p, there exists an

integer N ≥ 1 and an open and simply connected domain Ω ⊂ R
2 satisfying

that

p ∈ Ω ⊂ D, hN (Ω) ⊂ Ω.

Proof. Since Λ is totally disconnected it is possible to find open sets A and B
in R

2 satisfying that

p ∈ A ⊂ int(D),

Λ ⊂ A ∪ B,

cl(A) ∩ cl(B) = ∅.

The open set A∪B is a neighborhood of Λ and the stability of this set implies the

existence of another open set V ⊂ R
2 with Λ ⊂ V ⊂ A∪B and hn(V ) ⊂ A∪B

if n ≥ 1. Define W =
⋃

n≥0 hn(V ). This is also a neighborhood of Λ satisfying

Λ ⊂ W ⊂ A ∪ B and hn(W ) ⊂ W if n ≥ 1.

Let G be the connected component of W containing p. This component has to

be contained in A, and hence in D. In consequence Ĝ is also contained in D.

We know by Lemma 3.3 that the limit set Lω(p, h) is the whole Cantor set Λ.

From here we deduce that p ∈ Lω(p, h) and there exists an integer N ≥ 1

such that hN (p) belongs to G. This implies that G ∩ hN (G) 6= ∅. But hN (G)

is a connected set inside W and so it must be contained in one component

of W . This component is obviously G. From hN (G) ⊂ G we obtain that

hN (Ĝ) = ĥN (G) ⊂ Ĝ and the set Ĝ is the searched domain Ω.

Proof of Theorem 2.1. We fix p ∈ Λ and a disk D of radius δ > 0. From

Lemma 3.4 we obtain a simply connected domain Ω ⊂ R
2 and an integer

N ≥ 1 with

p ∈ Ω ⊂ D, hN (Ω) ⊂ Ω.

Consider the orientation preserving embedding H = h2N : Ω −→ Ω. We know

from Lemmas 3.3 and 3.2 that the set

R2N = {q ∈ Λ : q ∈ Lω(q, h2N )}
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is dense in Λ. In consequence we can find a point lying in Ω∩R2N . This point

is recurrent for H and Lemma 3.1 applies.

Proof of Corollary 2.3. We fix ε > 0. The stability of Λ as an invariant set of

h guarantees the existence of δ∗ > 0 such that

dist(x,Λ) ≤ δ∗ =⇒ dist(hi(x), Λ) ≤
ε

2

for each i ≥ 0. In particular, δ∗ ≤ ε
2 . Since Λ is compact it can be covered

by a finite number of open balls B1, ..., Bk of radius δ∗ and centered at points

p1, ..., pk lying in Λ. Next we apply Theorem 2.1 at each pi to find Jordan curves

Γ1,...,Γk and integers N1, ..., Nk ≥ 1 such that Γj ⊂ Bj and d[id−hNj , Γ̂j , 0] =

1, j = 1, ..., k. Define K =
⋃k

j=1(Γj ∪ Γ̂j) and N = max{N1, ..., Nk}.

We consider the family F1 composed by homeomorphisms h̃ : R
2 −→ R

2

satisfying

‖h − h̃‖∞ := sup
x∈R2

‖h(x) − h̃(x)‖ ≤ 1.

We need some properties of the iterates of h̃ which are common to the whole

family F1.

Claim 1: There exists a compact set K∗ ⊂ R
2 such that

h̃i(K) ⊆ K∗

for all i = 0, 1, ..., N and for each h̃ ∈ F1.

Let C0 > 0 be a large number so that K is contained in the ball of radius C0

centered at the origin. By induction, we define

Ci+1 = 1 + max
‖x‖≤Ci

‖h(x)‖, i ≥ 0.

We claim that

‖h̃i(x)‖ ≤ Ci if x ∈ K.

Indeed, using the induction method,

‖h̃i+1(x)‖ ≤ ‖h̃(h̃i(x)) − h(h̃i(x))‖ + ‖h(h̃i(x))‖

≤ ‖h̃ − h‖∞ + max
‖x‖≤Ci

‖h(x)‖.

Claim 2: Given ∆ > 0 there exists δ2 > 0 such that h̃ ∈ F1 and ‖h− h̃‖∞ ≤ δ2

implies that ‖hi(x) − h̃i(x)‖ ≤ ∆ if x ∈ K, i = 1, ..., N.
In view of Claim 1 we can find a modulus of continuity for h on K∗. This

means a function ω : [0,∞[−→ R with limr→0+ ω(r) = 0 and

‖h(x) − h(y)‖ ≤ ω(‖x − y‖) if x, y ∈ K∗.
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Define Di = maxx∈K ‖h̃i(x) − hi(x)‖. Then, by induction, we prove that

Di+1 ≤ ‖h̃ − h‖∞ + ω(Di), i = 1, ..., N − 1

and the claim follows easily. Notice that

‖h̃i+1(x) − hi+1(x)‖ ≤ ‖h̃(h̃i(x)) − h(h̃i(x))‖ + ‖h(h̃i(x)) − h(hi(x))‖.

After these claims we are ready to prove the existence of Λ̃. First we apply the

continuity of the degree to find positive numbers η1, ..., ηk such that if

‖hNj (x) − h̃Nj (x)‖ ≤ ηj , x ∈ Γj ,

then

d[id − h̃Nj , Γ̂j , 0] = d[id − hNj , Γ̂j , 0] = 1.

Next we apply Claim 2 with ∆ = min{ ǫ
2 , η1, ..., ηk} and find δ2 ∈]0, δ∗[ such

that the conclusion of the claim holds if ‖h− h̃‖∞ ≤ δ2. The existence property

of the degree allows us to select points x̃j ∈ Γ̂j such that h̃Nj (x̃j) = x̃j . The

set

Λ̃ = {h̃i(x̃j) : j = 1, ..., k, 0 ≤ i < Nj}

is finite and invariant under h̃. It remains to prove that DH [Λ, Λ̃] ≤ ǫ. Assume

first that p is a point in Λ. Since Λ is covered by B1, ..., Bk we find an index j
such that p ∈ Bj . The ball Bj also contains the point x̃j . In consequence,

dist(p, Λ̃) ≤ ‖p − x̃j‖ ≤ 2δ∗ ≤ ǫ.

Consider now a point in Λ̃, say h̃i(x̃j). From

dist(x̃j , Λ) ≤ ‖x̃j − pj‖ ≤ δ∗,

we deduce that

dist(hi(x̃j), Λ) ≤
ǫ

2
.

Hence, using Claim 2 and this estimate, if ‖h − h̃‖∞ ≤ δ2,

dist(h̃i(x̃j), Λ)≤ ‖h̃i(x̃j) − hi(x̃j)‖ + dist(hi(x̃j), Λ)

≤
ǫ

2
+

ǫ

2
.
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4. Miscelaneous remarks

4.1. Invariant finite sets can be stable and non-persistent

A finite and invariant set Λ has to be composed by periodic points. We consider

the simple case of a singleton Λ = {p} and present an example of a stable fixed

point that is not persistent as invariant set.

Consider the map

h : C −→ C

h(z) = z exp

(
iy

1 + |z|2

)

with z = x + iy. We have expressed it in complex notation but for many

purposes it is more convenient the use of polar coordinates,

h :

{
θ1 = θ + r

1+r2 sin θ ,

r1 = r .

It is not hard to prove that h is a real analytic diffeomorphism of the plane.

We also observe that every disk of the type |z| ≤ constant is invariant under

h and so the fixed point z = 0 is stable. An useful property of h is that

V (z) = ℜe z = x is a Lyapunov function. This means that

V (h(z)) ≤ V (z)

for each z ∈ C. Let us now consider the perturbed map hε = Tε ◦ h where

Tε(z) = z − ε is a horizontal translation with ε > 0. Again V is a Lyapunov

function with

V (hε(z)) = V (h(z)) − ε ≤ V (z) − ε.

More generally, if n ≥ 1,

V (hn
ε (z)) ≤ V (z) − nε

and so all the orbits for hε are unbounded. This shows that hε has no compact

invariant sets. Since ‖h− hε‖∞ = ε, the maps h and hε are close and Λ = {0}
is not persistent.

Incidentally, we notice that the set of fixed points Fix(h) is the real axis and

so z = 0 is not an isolated fixed point. This is no surprise because stable

fixed points are persistent as soon as they are isolated in Fix(h). This is a

consequence of the main result in [7]: if h : R
2 −→ R

2 is an orientation-

preserving homeomorphism and p = h(p) is a stable fixed point which is isolated

in Fix(h), then

d[id − h, Γ̂, 0] = 1
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for each Jordan curve Γ ⊂ R
2 with Γ̂ ∩ Fix(h) = {p}, Γ ∩ Fix(h) = ∅. The

case of orientation-reversing homeomorphisms was treated by Ruiz del Portal

in [16].

4.2. Unstable Cantor sets can be isolated and

non-persistent

With the help of a Denjoy homeomorphism on S
1, it is possible to construct

homeomorphisms h : R
2 −→ R

2 having a unique fixed point p∗ and an invariant

Cantor set Λ. In addition, the limit set of any point x ∈ R
2 is either the fixed

point, Lω(x, h) = {p∗}, or the Cantor set, Lω(x, h) = Λ. In particular, Λ is

minimal. The details of the construction can be found in [11]. The map h has

not periodic points and this implies that

d[id − hN , Γ̂, 0] = 0

for any N ≥ 1 and any Jordan curve Γ ⊂ R
2 such that p∗ lies in the exterior,

that is, p∗ 6∈ Γ ∪ Γ̂. This example shows that the conclusion of Theorem 2.1

does not hold if we drop the stability assumption. In the example constructed

in [11], the fixed point was placed at the origin, p∗ = 0, and the Cantor set

was inside the unit circumference, Λ ⊂ S
1. Moreover the Euclidean norm

V (x) = ‖x‖ was a Lyapunov function satisfying

V (h(x)) < V (x)

if x ∈ R
2\(Λ∪{0}). Consider the perturbed homeomorphism hε = Dε ◦h, with

ε > 0 and

Dε(x) =





(1 − ε)x, if ‖x‖ ≤ 2 ;

(1 − 3ε + ε‖x‖)x, if 2 ≤ ‖x‖ ≤ 3 ;

x, if ‖x‖ ≥ 3 .

Then ‖hε − h‖∞ = 2ε and

V (hε(x)) < V (x)

if x ∈ R
2\{0}. La Salle’s invariance principle implies that the origin is a global

attractor for hε. This shows that Λ is not persistent.

The dynamics of hΛ in the preceding example is of Denjoy type, a case that

can be excluded if Λ is stable. The reason for this exclusion lies in a result

by Buescu and Stewart [5] implying that stable Cantor sets are conjugate to

adding machines. The family of adding machines is composed by certain ex-

plicit maps describing all possible almost periodic dynamics on a Cantor set.

Denjoy dynamics is presented in [13] as the prototype of minimal dynamics

that is not almost periodic and so it is not conjugate to an adding machine.
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4.3. Adding machines cannot be isolated

In [17], Thomas obtained a result on the dynamics of solenoids in 3D flows

that can be adapted to a 2D discrete setting for adding machines. Assume

now that h : R
2 −→ R

2 is a C1 diffeomorphism that is orientation-preserving

and has an invariant Cantor set Λ such that hΛ is almost periodic. Then it is

possible to construct a T -periodic differential equation in the plane such that

h is the Poincaré map. See [12] for an explicit construction. In this way, we

obtain a C1 flow on the manifold M = (R/TZ)×R
2 and the results in [17] are

applicable. The closure of the orbit starting at any point of Λ is a solenoid

S ⊂ M and [17, Theorem 3] implies that S is not isolated as an invariant set

of the flow. The invariant sets accumulating on S must intersect the global

section M0 = {0} × R
2 and so Λ cannot be isolated as an invariant set of h.

Notice that the result by Bell and Meyer does not follow from [5] and [17]

because in principle one could find invariant sets without periodic points. The

smoothness of h was needed in [17] to work with a smooth isolating block. At

the end of that paper it is mentioned that the smoothness hypotheses can be

weakened. It seems reasonable to expect that the previous discussion can be

extended to homeomorphisms. We do not know if the conclusion of Bell and

Meyer is also valid when the assumption of stability for Λ is replaced by almost

periodicity.
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head [39, 40] and T. de Laguna [9] proposed a new theory of space,

known as region-based theory of space. They did not present their ideas
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that the locally compact Hausdorff spaces correspond bijectively (up to

homeomorphism and isomorphism) to some algebraical objects which

represent correctly Whitehead’s ideas of region and contact relation,
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cerning compact Hausdorff spaces (note that even a duality for the cate-

gory of compact Hausdorff spaces and continuous maps was constructed

by de Vries [10]). Recently, a duality for the category of locally compact

Hausdorff spaces and continuous maps, based on Roeper’s results, was

obtained in [11] (it extends de Vries’ duality mentioned above). In this

paper, using the dualities obtained in [10, 11], we construct directly (i.e.

without the help of the corresponding topological spaces) the dual objects

of Euclidean spaces, spheres, tori and Tychonoff cubes; these algebraical

objects completely characterize the mentioned topological spaces. Thus,

a mathematical realization of the original philosophical ideas of White-

head [39, 40] and de Laguna [9] about Euclidean spaces is obtained.

Keywords: Euclidean spaces, Tychonoff cubes, spheres, tori, (locally) compact Haus-

dorff spaces, duality, regular closed sets, sums of local contact algebras, sums of normal

contact algebras

MS Classification 2010: 54D45, 54D30, 54B10, 06E99, 18A40, 54E05

1This paper was supported by the project no. DID 02/32/2009 “Theories of the space and
time: algebraic, topological and logical approaches” of the Bulgarian Ministry of Education
and Science.



46 GEORGI D. DIMOV

1. Introduction

The region-based theory of space is a kind of point-free geometry and can be

considered as an alternative to the well known Euclidean point-based theory

of space. Its main idea goes back to Whitehead [40] (see also [39]) and de

Laguna [9] and is based on a certain criticism of the Euclidean approach to the

geometry, where the points (as well as straight lines and planes) are taken as

the basic primitive notions. A. N. Whitehead and T. de Laguna noticed that

points, lines and planes are quite abstract entities which have not a separate

existence in reality and proposed to put the theory of space on the base of

some more realistic spatial entities. In Whitehead [40], the notion of a region is

taken as a primitive notion: it is an abstract analog of a spatial body; also some

natural relations between regions are regarded. In [39], Whitehead considered

some mereological relations like “part-of”, “overlap” and some others, while

in [40] he adopted from de Laguna [9] the relation of “contact” (“connectedness”

in Whitehead’s original terminology) as the only primitive relation between

regions except the relation “part-of”. The regular closed (or, equivalently,

regular open) subsets of a topological space X are usually considered as a

standard model of the regions in the point-based approach, and the standard

contact relation ρX between regular closed subsets of X is defined (again in the

point-based approach) as follows: FρXG⇔ F ∩G 6= ∅.
Let us note that neither Whitehead nor de Laguna presented their ideas in a

detailed mathematical form. This was done by some other mathematicians and

mathematically oriented philosophers who presented various versions of region-

based theory of space at different levels of abstraction. Here we can mention

Tarski [36], who rebuilt Euclidean geometry as an extension of mereology with

the primitive notion of a ball. Remarkable is also Grzegorczyk’s paper [27].

Models of Grzegorczyk’s theory are complete Boolean algebras of regular closed

sets of certain topological spaces equipped with the relation of separation which

in fact is the complement of Whitehead’s contact relation. On the same line

of abstraction is also the point-free topology [28]. Survey papers describing

various aspects and historical remarks on region-based theory of space are [5,

24, 31, 37].

Let us mention that Whitehead’s ideas about region-based theory of space

flourished and in a sense were reinvented and applied in some areas of com-

puter science: Qualitative Spatial Reasoning (QSR), knowledge representation,

geographical information systems, formal ontologies in information systems,

image processing, natural language semantics etc. The reason is that the lan-

guage of region-based theory of space allows the researches to obtain a more

simple description of some qualitative spatial features and properties of space

bodies. Survey papers concerning various applications are [6, 7] (see also the

special issues of “Fundamenta Informaticae” [14] and “Journal of Applied Non-
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classical Logics” [4]). One of the most popular among the community of QSR-

researchers is the system of Region Connection Calculus (RCC) introduced by

Randell, Cui and Cohn [32]. RCC attracted quite intensive research in the

field of region-based theory of space, both on its applied and mathematical

aspects. For instance it was unknown for some time which topological mod-

els correspond adequately to RCC; this fact stimulated the investigations of a

topological representation theory of RCC and RCC-like systems (see [13, 15]).

Another impact of region-based theory of space is that it stimulated the ap-

pearance of a new area in logic, namely “Spatial Logics” [2], called sometimes

“Logics of Space”.

The ideas of de Laguna and Whitehead lead naturally to the following

general programme (or general region-based theory of space):

• for every topological space X belonging to some class C of topological

spaces, define in topological terms:

(a) a family R(X) of subsets ofX that will serve as models of Whitehead’s

“regions” (and call the elements of the family R(X) regions of X);

(b) a relation ρX on R(X) that will serve as a model of Whitehead’s re-

lation of “contact” (and call the relation ρX a contact relation on R(X));

• choose some (algebraic) structure which is inherent to the families R(X)

and contact relations ρX , for X ∈ C, fix some kind of morphisms between

the obtained (algebraic) objects and build in this way a category A;

• find a subcategory T of the category of topological spaces and continuous

maps which is equivalent or dually equivalent to the category A trough

a (contravariant) functor that assigns to each object X of T the chosen

(algebraic) structure of the family of all regions of X.

If all of this is done then, in particular, the chosen (algebraic) structure

of the regions of any object X of T is sufficient for recovering completely

(of course, up to homeomorphism) the whole space X. Hence, in this way,

a “region-based theory” of the objects and morphisms of the category T is

obtained.

Of course, during the realization of this programme, one can find the cate-

gory A starting with the category T , if the later is the desired one.

The M. Stone [35] duality between the category of Boolean algebras and

their homomorphisms and the category of compact zero-dimensional Hausdorff

spaces and continuous maps can be regarded as a first realization of this pro-

gramme, although M. Stone came to his results guided by ideas which are com-

pletely different from those of Whitehead and de Laguna. In M. Stone’s theory,

the clopen (= closed and open) subsets of a topological space serve as models

of the regions; here, however, the contact relation ρ is hidden, because it can be
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defined by the Boolean operations (indeed, we have that aρb ⇐⇒ a ∧ b 6= 0).

The localic duality (see, e.g., [28, Corollary II.1.7]) between the category of

spatial frames and functions preserving finite meets and arbitrary joins and

the category of sober spaces and continuous maps can also be regarded as a re-

alization of the ideas of the general region-based theory of space: in it the open

subsets of a topological space serve as models of the regions and, as above, the

contact relation ρ between the regions is hidden because it can be recovered

by the lattice operations (indeed, we have that aρb ⇐⇒ a ∧ b 6= 0). The

de Vries duality [10] for the category HC of compact Hausdorff spaces and

continuous maps is the first realization of the ideas of the general region-based

theory of space in their full generality and strength (and again, as it seems,

de Vries was unaware of the papers [9] and [40]): the models of the regions

in de Vries’ theory are the regular closed sets and, in contrast to the case

of the Stone duality and localic duality, the contact relation between regions,

which is in the basis of de Vries’ duality theorem, cannot be derived from the

Boolean structure on the regions. (Note that in [10], instead of the Boolean

algebra RC(X) of regular closed sets, the Boolean algebra RO(X) of regular

open sets was regarded (RO(X) and RC(X) are isomorphic); also, instead of

the relation ρX on the set RC(X) which was described above (let us recall it:

FρXG ⇐⇒ F ∩G 6= ∅), de Vries used in [10] the so-called “compingent rela-

tion” between regular open sets whose counterpart for RC(X) is the relation

≪X , defined by F ≪X G ⇐⇒ F ⊆ int(G), for F,G ∈ RC(X); the relations

ρX and ≪X are inter-definable.) It is natural to try to extend de Vries’ Duality

Theorem to the category HLC of locally compact Hausdorff spaces and con-

tinuous maps. An important step in this direction was done by P. Roeper [33].

Being guided by the ideas of de Laguna [9] and Whitehead [40], he proved that

there is a bijective correspondence between all (up to homeomorphism) locally

compact Hausdorff spaces and all (up to isomorphism) algebras of some sort

called by him “region-based topologies” (we call them complete LC-algebras).

The notion of a complete LC-algebra, introduced by Roeper [33], is an ab-

straction of the triples (RC(X), ρX , CR(X)), where X is a locally compact

Hausdorff space and CR(X) is the ideal of all compact regular closed subsets

of X. P. Roeper [33] showed that every complete LC-algebra can be realized as

a triple (RC(X), ρX , CR(X)), where X is a uniquely (up to homeomorphism)

determined locally compact Hausdorff space. In [11], using Roeper’s result,

we obtained a duality between the category HLC and the category DHLC

of complete LC-algebras and appropriate morphisms between them; it is an

extension of de Vries’ duality mentioned above; the dual object of a locally

compact Hausdorff space X is the triple (RC(X), ρX , CR(X)) which will be

called the Roeper triple of the space X. Let us note that the famous Gelfand

duality [20, 21, 22, 23] also gives an algebraical description of (locally) compact

Hausdorff spaces but it is not in the spirit of the ideas of Whitehead and de
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Laguna.

A description of the dual object of the real line under the localic duality

(i.e., a description of the frame (or locale) determined by the topology of the

real line) without the help of the real line was given by Fourman and Hy-

land [19] (see, also, Grayson [26] and Johnstone [28, IV.1.1-IV.1.3]), assuming

the set of rationals as given. As we have seen above, the ideas of the localic

duality are in the spirit of the ideas of the general region-based theory of space

but, nevertheless, they are far from the well-known and commonly accepted

interpretations of the original philosophical ideas of Whitehead [39, 40] and de

Laguna [9] given in [27] and [33] (see also [32]).

In this paper we construct directly the dual objects of Euclidean spaces,

spheres, tori and Tychonoff cubes under the dualities obtained in [10, 11],

i.e. we construct the complete LC-algebras isomorphic to the Roeper triples

(see [33]) of these spaces without the help of the corresponding spaces, assuming

the set of natural numbers as given. For doing this, we first obtain some direct

descriptions of the DHLC-sums of complete LC-algebras and the DHC-sums

of complete NC-algebras (where DHC is the de Vries category dual to the

category HC, and the objects of the category DHC are the complete NC-

algebras) using the dualities obtained in [10] and [11]. Let us note explicitly

that, as it follows from the results of de Vries [10] and Roeper [33], the Euclidean

spaces, spheres, tori and Tychonoff cubes can be completely reconstructed as

topological spaces from the algebraical objects which we describe in this paper.

Therefore, our results can be regarded as a mathematical realization of the

original philosophical ideas of Whitehead [39, 40] and de Laguna [9] about

Euclidean spaces; this realization is in accordance with the Grzegorczyk’s [27]

and Roeper’s [33] mathematical interpretations of these ideas.

We now fix the notation.

If C denotes a category, we write X ∈ |C| if X is an object of C, and

f ∈ C(X,Y ) if f is a morphism of C with domain X and codomain Y .

All lattices are with top (= unit) and bottom (= zero) elements, denoted

respectively by 1 and 0. We do not require the elements 0 and 1 to be distinct.

If (X, τ) is a topological space and M is a subset of X, we denote by

cl(X,τ)(M) (or simply by cl(M) or clX(M)) the closure of M in (X, τ) and

by int(X,τ)(M) (or briefly by int(M) or intX(M)) the interior of M in (X, τ).
The Alexandroff compactification of a locally compact Hausdorff non-compact

space X will be denoted by αX. The positive natural numbers are denoted by

IN+, the real line (with its natural topology) – by R, the n-dimensional sphere

(with its natural topology) – by S
n (here n ∈ IN+).
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2. Preliminaries

Definition 2.1. An algebraic system (B, 0, 1,∨,∧, ∗, C) is called a contact

Boolean algebra or, briefly, contact algebra (abbreviated as CA or C-algebra)

([13]) if the system (B, 0, 1,∨,∧, ∗) is a Boolean algebra (where the operation

“complement” is denoted by “ ∗ ”) and C is a binary relation on B, satisfying

the following axioms:

(C1) If a 6= 0 then aCa;
(C2) If aCb then a 6= 0 and b 6= 0;

(C3) aCb implies bCa;
(C4) aC(b ∨ c) iff aCb or aCc.

We shall simply write (B,C) for a contact algebra. The relation C is called

a contact relation. When B is a complete Boolean algebra, we will say that

(B,C) is a complete contact Boolean algebra or, briefly, complete contact

algebra (abbreviated as CCA or CC-algebra). If a ∈ B and D ⊆ B, we will

write “aCD” for “(∀d ∈ D)(aCd)”.
We will say that two C-algebras (B1, C1) and (B2, C2) are CA-isomorphic iff

there exists a Boolean isomorphism ϕ : B1 −→ B2 such that, for each a, b ∈ B1,

aC1b iff ϕ(a)C2ϕ(b). Note that in this paper, by a “Boolean isomorphism”

we understand an isomorphism in the category Bool of Boolean algebras and

Boolean homomorphisms.

A contact algebra (B,C) is called a normal contact Boolean algebra or,

briefly, normal contact algebra (abbreviated as NCA or NC-algebra) ([10, 18])

if it satisfies the following axioms which are very similar to the Efremovič [16]

axioms of proximity spaces (we will write “ − C” for “not C”):

(C5) If a(−C)b then a(−C)c and b(−C)c∗ for some c ∈ B;

(C6) If a 6= 1 then there exists b 6= 0 such that b(−C)a.

A normal CA is called a complete normal contact Boolean algebra or, briefly,

complete normal contact algebra (abbreviated as CNCA or CNC-algebra) if

it is a CCA. The notion of a normal contact algebra was introduced by Fe-

dorchuk [18] under the name Boolean δ-algebra as an equivalent expression

of the notion of a compingent Boolean algebra of de Vries (see its definition

below). We call such algebras “normal contact algebras” because they form a

subclass of the class of contact algebras and naturally arise in normal Hausdorff

spaces.

Note that if 0 6= 1 then the axiom (C2) follows from the axioms (C6)

and (C4).

For any CA (B,C), we define a binary relation “ ≪C” on B (called non-

tangential inclusion) by “ a ≪C b ↔ a(−C)b∗ ”. Sometimes we will write

simply “ ≪” instead of “ ≪C”.

The relations C and ≪ are inter-definable. For example, normal contact
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algebras could be equivalently defined (and exactly in this way they were in-

troduced (under the name of compingent Boolean algebras) by de Vries in [10])

as a pair of a Boolean algebra B = (B, 0, 1,∨,∧, ∗) and a binary relation ≪ on

B subject to the following axioms:

(≪1) a≪ b implies a ≤ b;
(≪2) 0 ≪ 0;

(≪3) a ≤ b≪ c ≤ d implies a≪ d;
(≪4) a≪ c and b≪ c implies a ∨ b≪ c;
(≪5) If a≪ c then a≪ b≪ c for some b ∈ B;

(≪6) If a 6= 0 then there exists b 6= 0 such that b≪ a;
(≪7) a≪ b implies b∗ ≪ a∗.

Note that if 0 6= 1 then the axiom (≪2) follows from the axioms (≪3),

(≪4), (≪6) and (≪7).

Obviously, contact algebras could be equivalently defined as a pair of a

Boolean algebra B and a binary relation ≪ on B subject to the axioms (≪1)-

(≪4) and (≪7).

It is easy to see that axiom (C5) (resp., (C6)) can be stated equivalently in

the form of (≪5) (resp., (≪6)).

Example 2.2. Recall that a subset F of a topological space (X, τ) is called

regular closed if F = cl(int(F )). Clearly, F is regular closed iff it is the closure

of an open set.

For any topological space (X, τ), the collection RC(X, τ) (we will often

write simply RC(X)) of all regular closed subsets of (X, τ) becomes a complete

Boolean algebra (RC(X, τ), 0, 1,∧,∨, ∗) under the following operations:

1 = X, 0 = ∅, F ∗ = cl(X \ F ), F ∨G = F ∪G,F ∧G = cl(int(F ∩G)).

The infinite operations are given by the formulae:

∨
{Fγ | γ ∈ Γ} = cl

(⋃
{Fγ | γ ∈ Γ}

) (
= cl

(⋃
{int(Fγ) | γ ∈ Γ}

))
,

and ∧
{Fγ | γ ∈ Γ} = cl

(
int
(⋂

{Fγ | γ ∈ Γ}
))

.

It is easy to see that setting Fρ(X,τ)G iff F ∩ G 6= ∅, we define a con-

tact relation ρ(X,τ) on RC(X, τ); it is called a standard contact relation. So,

(RC(X, τ), ρ(X,τ)) is a CCA (it is called a standard contact algebra). We

will often write simply ρX instead of ρ(X,τ). Note that, for F,G ∈ RC(X),

F ≪ρX
G iff F ⊆ intX(G).

Clearly, if (X, τ) is a normal Hausdorff space then the standard contact

algebra (RC(X, τ), ρ(X,τ)) is a complete NCA.
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A subset U of (X, τ) such that U = int(cl(U)) is said to be regular open.

The set of all regular open subsets of (X, τ) will be denoted by RO(X, τ) (or

briefly, by RO(X)).

The following notion is a lattice-theoretical counterpart of Leader’s notion

of a local proximity ([30]):

Definition 2.3 ([33]). An algebraic system B l = (B, 0, 1,∨,∧, ∗, ρ, IB) is called

a local contact Boolean algebra or, briefly, local contact algebra (abbreviated

as LCA or LC-algebra) if (B, 0, 1,∨,∧, ∗) is a Boolean algebra, ρ is a binary

relation on B such that (B, ρ) is a CA, and IB is an ideal (possibly non proper)

of B, satisfying the following axioms:

(BC1) If a ∈ IB, c ∈ B and a ≪ρ c then a ≪ρ b ≪ρ c for some b ∈ IB (see

Definition 2.1 for “ ≪ρ”);

(BC2) If aρb then there exists an element c of IB such that aρ(c ∧ b);
(BC3) If a 6= 0 then there exists b ∈ IB \ {0} such that b≪ρ a.

We shall simply write (B, ρ, IB) for a local contact algebra. We will say that

the elements of IB are bounded and the elements of B\IB are unbounded. When

B is a complete Boolean algebra, the LCA (B, ρ, IB) is called a complete local

contact Boolean algebra or, briefly, complete local contact algebra (abbreviated

as CLCA or CLC-algebra).

We will say that two local contact algebras (B, ρ, IB) and (B1, ρ1, IB1) are

LCA-isomorphic if there exists a Boolean isomorphism ϕ : B −→ B1 such

that, for a, b ∈ B, aρb iff ϕ(a)ρ1ϕ(b), and ϕ(a) ∈ IB1 iff a ∈ IB. A map

ϕ : (B, ρ, IB) −→ (B1, ρ1, IB1) is called an LCA-embedding if ϕ : B −→ B1

is an injective Boolean homomorphism (i.e. Boolean monomorphism) and,

moreover, for any a, b ∈ B, aρb iff ϕ(a)ρ1ϕ(b), and ϕ(a) ∈ IB1 iff a ∈ IB.

Remark 2.4. Note that if (B, ρ, IB) is a local contact algebra and 1 ∈ IB then

(B, ρ) is a normal contact algebra. Conversely, any normal contact algebra

(B,C) can be regarded as a local contact algebra of the form (B,C,B).

Definition 2.5 ([38]). Let (B, ρ, IB) be a local contact algebra. Define a binary

relation “Cρ,IB” on B by

aCρ,IBb iff aρb or a, b 6∈ IB. (1)

It is called the Alexandroff extension of ρ relatively to the LCA (B, ρ, IB) (or,

when there is no ambiguity, simply, the Alexandroff extension of ρ).

The following lemma is a lattice-theoretical counterpart of a theorem from

Leader’s paper [30].

Lemma 2.6 ([38]). Let (B, ρ, IB) be a local contact algebra. Then (B,Cρ,IB),

where Cρ,IB is the Alexandroff extension of ρ, is a normal contact algebra.
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Notation. Let (X, τ) be a topological space. We denote by CR(X, τ) the

family of all compact regular closed subsets of (X, τ). We will often write

CR(X) instead of CR(X, τ).

Proposition 2.7 ([33]). Let (X, τ) be a locally compact Hausdorff space. Then

the triple (RC(X, τ), ρ(X,τ), CR(X, τ)) (see Example 2.2 for ρ(X,τ)) is a com-

plete local contact algebra; it is called a standard local contact algebra.

The next theorem was proved by Roeper[33] (but its particular case concern-

ing compact Hausdorff spaces and NC-algebras was proved by de Vries [10]).

Theorem 2.8 (P. Roeper [33] for locally compact spaces and de Vries [10] for

compact spaces). There exists a bijective correspondence Ψt between the class

of all (up to homeomorphism) locally compact Hausdorff spaces and the class

of all (up to isomorphism) CLC-algebras; its restriction to the class of all (up

to homeomorphism) compact Hausdorff spaces gives a bijective correspondence

between the later class and the class of all (up to isomorphism) CNC-algebras.

Let us recall the definition of the correspondence Ψt mentioned in the above

theorem: if (X, τ) is a locally compact Hausdorff space then

Ψt(X, τ) = (RC(X, τ), ρ(X,τ), CR(X, τ)) (2)

(see Proposition 2.7 for the notation).

Definition 2.9 (De Vries [10]). Let HC be the category of all compact Haus-

dorff spaces and all continuous maps between them.

Let DHC be the category whose objects are all complete NC-algebras and

whose morphisms are all functions ϕ : (A,C) −→ (B,C ′) between the objects

of DHC satisfying the conditions:

(DVAL1) ϕ(0) = 0;

(DVAL2) ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b), for all a, b ∈ A;

(DVAL3) If a, b ∈ A and a≪C b, then (ϕ(a∗))∗ ≪C′ ϕ(b);
(DVAL4) ϕ(a) =

∨
{ϕ(b) | b≪C a}, for every a ∈ A,

and let the composition “⋄” of two morphisms ϕ1 : (A1, C1) −→ (A2, C2) and

ϕ2 : (A2, C2) −→ (A3, C3) of DHC be defined by the formula

ϕ2 ⋄ ϕ1 = (ϕ2 ◦ ϕ1)̌ , (3)

where, for every function ψ : (A,C) −→ (B,C ′) between two objects of DHC,

ψˇ : (A,C) −→ (B,C ′) is defined as follows:

ψ (̌a) =
∨

{ψ(b) | b≪C a}, (4)

for every a ∈ A.
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De Vries [10] proved the following duality theorem:

Theorem 2.10 ([10]). The categories HC and DHC are dually equivalent.

In [11], an extension of de Vries’ Duality Theorem to the category of locally

compact Hausdorff spaces and continuous maps was obtained. Let us recall its

formulation.

Definition 2.11 ([11]). Let HLC be the category of all locally compact Haus-

dorff spaces and all continuous maps between them.

Let DHLC be the category whose objects are all complete LC-algebras and

whose morphisms are all functions ϕ : (A, ρ, IB) −→ (B, η, IB′) between the

objects of DHLC satisfying conditions

(DLC1) ϕ(0) = 0;

(DLC2) ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b), for all a, b ∈ A;

(DLC3) If a ∈ IB, b ∈ A and a≪ρ b, then (ϕ(a∗))∗ ≪η ϕ(b);
(DLC4) For every b ∈ IB′ there exists a ∈ IB such that b ≤ ϕ(a);
(DLC5) ϕ(a) =

∨
{ϕ(b) | b ∈ IB, b≪ρ a}, for every a ∈ A;

let the composition “⋄” of two morphisms ϕ1 : (A1, ρ1, IB1) −→ (A2, ρ2, IB2)

and ϕ2 : (A2, ρ2, IB2) −→ (A3, ρ3, IB3) of DHLC be defined by the formula

ϕ2 ⋄ ϕ1 = (ϕ2 ◦ ϕ1)̌ , (5)

where, for every function ψ : (A, ρ, IB) −→ (B, η, IB′) between two objects of

DHLC, ψˇ : (A, ρ, IB) −→ (B, η, IB′) is defined as follows:

ψ (̌a) =
∨

{ψ(b) | b ∈ IB, b≪ρ a}, (6)

for every a ∈ A.

(We used here the same notation as in Definition 2.9 for the composition

between the morphisms of the category DHLC and for the functions of the type

ψˇ because the NC-algebras can be regarded as those LC-algebras (A, ρ, IB) for

which A = IB, and hence the right sides of the formulae (6) and (4) coincide

in the case of NC-algebras.)

It can be shown that condition (DLC3) in Definition 2.11 can be replaced

by any of the following four constrains:

(DLC3′) If a, b ∈ IB and a≪ρ b, then (ϕ(a∗))∗ ≪η ϕ(b).
(DLC3S) If a, b ∈ A and a≪ρ b, then (ϕ(a∗))∗ ≪η ϕ(b).
(LC3) If, for i = 1, 2, ai ∈ IB, bi ∈ A and ai ≪ρ bi, then ϕ(a1 ∨ a2) ≪η

ϕ(b1) ∨ ϕ(b2).
(LC3S) If, for i = 1, 2, ai, bi ∈ A and ai ≪ρ bi, then ϕ(a1∨a2) ≪η ϕ(b1)∨ϕ(b2).

Theorem 2.12 ([11]). The categories HLC and DHLC are dually equivalent.
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The duality, constructed in Theorem 2.12 and denoted by Ψt : HLC −→
DHLC, is an extension of the Roeper’s correspondence Ψt defined by (2) (i.e.

the definition of the contravariant functor Ψt on the objects of the category

HLC coincides with the definition of the Roeper’s correspondence).

We will also need a lemma from [8]:

Lemma 2.13. Let X be a dense subspace of a topological space Y . Then the

functions r : RC(Y ) −→ RC(X), F 7→ F ∩ X, and e : RC(X) −→ RC(Y ),

G 7→ clY (G), are Boolean isomorphisms between Boolean algebras RC(X) and

RC(Y ), and e ◦ r = idRC(Y ), r ◦ e = idRC(X).

For the notions and notation not defined here see [1, 17, 28, 34].

3. Sums in the categories DHLC and DHC

In [12], we described the DHLC-products of complete local contact algebras.

Here we will describe the DHLC-sums of finite families of complete local con-

tact algebras and the DHC-sums of arbitrarily many complete contact algebras

using the notion of a sum of a family of Boolean algebras (see [25]) which is

known also as a free product (see [29]). (We will denote the sum of a family

{Aγ | γ ∈ Γ} of Boolean algebras by
⊕

γ∈ΓAγ (as in [29]).) Note that the sums

(resp., finite sums) in the category DHC (resp., DHLC) surely exist because

the dual category HC (resp., HLC) of all compact (resp., locally compact)

Hausdorff spaces and continuous maps has products (resp., finite products).

Let us recall the definition of the notion of a sum of a family (Ai)i∈I of

Boolean algebras (see, e.g. [29]): a pair (A, (ei)i∈I) is a sum of (Ai)i∈I if A is

a Boolean algebra, each ei is a homomorphism from Ai into A and, for every

family (fi)i∈I of homomorphisms from Ai into any Boolean algebra B, there is

a unique homomorphism f : A −→ B such that f ◦ ei = fi for i ∈ I. It is well

known that every family of Boolean algebras has, up to isomorphism, a unique

sum. Recall, as well, that a family (Bi)i∈I of subalgebras of a Boolean algebra

A is independent if, for arbitrary n ∈ IN+, pairwise distinct i(1), . . . , i(n) ∈ I
and non-zero elements bi(k) of Bi(k), for k = 1, . . . , n, bi(1) ∧ . . . ∧ bi(n) > 0 in

A. The following characterization of the sums holds (see, e.g., [29]):

Proposition 3.1. Let A be a Boolean algebra and, for i ∈ I, ei : Ai −→ A a

homomorphism; assume that no Ai is trivial. The pair (A, (ei)i∈I) is a sum of

(Ai)i∈I iff each of (a) through (c) holds:

(a) each ei : Ai −→ A is an injection,

(b) (ei(Ai))i∈I is an independent family of subalgebras of A,

(c) A is generated by
⋃

i∈I ei(Ai).

Moreover, if (A, (ei)i∈I) is a sum of (Ai)i∈I then

(d) ei(Ai) ∩ ej(Aj) = {0, 1}, for i 6= j.
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We start with a proposition which should be known, although I was not

able to find it in the literature. Recall that a topological space X is called

semiregular if RO(X) is a base of X. By a completion of a Boolean algebra A,

we will understand the MacNeille completion of A.

Proposition 3.2. Let {Xγ | γ ∈ Γ} be a family of semiregular topological

spaces and X =
∏
{Xγ | γ ∈ Γ}. Then the Boolean algebra RC(X) is isomor-

phic to the completion of
⊕

γ∈ΓRC(Xγ).

Proof. Let, for every γ ∈ Γ, πγ : X −→ Xγ be the projection. Using the fact

that πγ is an open map (and, thus, the formulae cl(π−1
γ (M)) = π−1

γ (cl(M))

and int(π−1
γ (M)) = π−1

γ (int(M)) hold for every M ⊆ Xγ) (see, e.g., [17]), it

is easy to show, that the map ϕγ : RC(Xγ) −→ RC(X), F 7→ π−1
γ (F ), is a

complete monomorphism for every γ ∈ Γ. Set Aγ = ϕγ(RC(Xγ)), for every

γ ∈ Γ, and let A be the subalgebra of RC(X) generated by
⋃
{Aγ | γ ∈ Γ}.

It is easy to check that, for every finite non-empty subset Γ0 of Γ, we have

that if aγ ∈ Aγ \ {0} for every γ ∈ Γ0, then
∧
{aγ | γ ∈ Γ0} 6= 0 (i.e. the

family {Aγ | γ ∈ Γ} is an independent family (see, e.g., [29])). Thus, by [29,

Proposition 11.4], we get that A =
⊕

γ∈ΓRC(Xγ). Since RO(Xγ) is a base of

Xγ , for every γ ∈ Γ, we obtain that A is a dense subalgebra of RC(X). Thus,

RC(X) is the completion of A.

The proof of this proposition shows that the following is even true:

Corollary 3.3. Let {Xγ | γ ∈ Γ} be a family of semiregular topological spaces

and X =
∏
{Xγ | γ ∈ Γ}. Let, for every γ ∈ Γ, Bγ be a subalgebra of RC(Xγ)

such that {int(F ) | F ∈ Bγ} is a base of Xγ . Then the Boolean algebra RC(X)

is isomorphic to the completion of
⊕

γ∈ΓBγ .

Definition 3.4. Let n ∈ N
+ and let, for every i = 1, . . . , n, (Ai, ρi, IBi) be a

CLCA. Let

(A, (ϕi)
n
i=1) =

n⊕

i=1

Ai,

where, for every i ∈ {1, . . . , n},

ϕi : Ai −→ A

is the canonical complete monomorphism, and let Ã be the completion of A.

We can suppose, without loss of generality, that A ⊆ Ã. Set

E =

{
n∧

i=1

ϕi(ai) | ai ∈ IBi

}

and let ĨB be the ideal of Ã generated by E (thus,

ĨB = {x ∈ Ã | x ≤ e1 ∨ . . . ∨ en for some n ∈ IN+ and e1, . . . , en ∈ E}).
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For every two elements a =
∧n

i=1 ϕi(ai) and b =
∧n

i=1 ϕi(bi) of E, set

aρ̃b⇔ (aiρibi,∀i ∈ {1, . . . , n}).

Further, for every two elements c and d of ĨB, set

c(−ρ̃)d⇔
(
∃k, l ∈ N

+ and ∃c1, . . . , ck, d1, . . . , dl ∈ E such that

c ≤
k∨

i=1

ci, d ≤
l∨

j=1

dj and ci(−ρ̃)dj , ∀i = 1, . . . , k and ∀j = 1, . . . , l
)
.

Finally, for every two elements a and b of Ã, set

aρ̃b⇔ (∃c, d ∈ ĨB such that c ≤ a, d ≤ b and cρ̃d).

Then the triple (Ã, ρ̃, ĨB) will be denoted by
⊕n

i=1(Ai, ρi, IBi).

Theorem 3.5. Let n ∈ IN+ and A = {(Ai, ρi, IBi) | i = 1, . . . , n} be a family

of CLCAs. Then
⊕n

i=1(Ai, ρi, IBi) is a DHLC-sum of the family A.

Proof. As the Duality Theorem 2.12 shows, for every i ∈ {1, . . . , n} there exists

a Xi ∈ |HLC| such that the CLCAs (RC(Xi), ρXi
, CR(Xi)) and (Ai, ρi, IBi)

are LCA-isomorphic. Let X =
∏n

i=1Xi. Then we have, in the notation of

Definition 3.4, that the Boolean algebras RC(X) and Ã are isomorphic (see

Proposition 3.2). Also, again in the notation of Definition 3.4, (A, (ϕi)
n
i=1) is

isomorphic to (
⊕n

i=1RC(Xi), (ψi)
n
i=1), where ψi : RC(Xi) −→ RC(X), F 7→

π−1
i (F ), and πi : X −→ Xi is the projection, for every i ∈ {1, . . . , n} (this

follows from Proposition 3.1). Thus, the set E from Definition 3.4 corresponds

to the following set:

E′ =

{
n∧

i=1

ψi(Fi) | Fi ∈ CR(Xi)

}
.

Let F ∈ E′. Then there exist Fi ∈ CR(Xi), for i = 1, . . . , n, such that F =∧n

i=1 ψi(Fi). Set Ui = intXi
(Fi), for i = 1, . . . , n. Then F =

∧n

i=1 π
−1
i (Fi) =

clX(
⋂n

i=1 intX(π−1
i (Fi))) = clX(

⋂n

i=1 π
−1
i (Ui)) = cl(

∏n

i=1 Ui) =
∏n

i=1 Fi (note

that we used [17, 1.4.C,2.3.3] here). Hence, for every F,G ∈ E′, where F =∏n

i=1 Fi and G =
∏n

i=1Gi, we have that

FρXG⇔ F ∩G 6= ∅ ⇔ (Fi∩Gi 6= ∅,∀i = 1, . . . , n) ⇔ (FiρXi
Gi,∀i = 1, . . . , n).

Further, since {
∏n

i=1 Ui | Ui ∈ RO(Xi),∀i = 1, . . . , n} is a base of X and X is

regular, we obtain that CR(X) coincides with the ideal of RC(X) generated

by E′. The fact that every two disjoint compact subsets of X can be separated
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by open sets implies that if F,G ∈ CR(X) then F (−ρX)G (i.e. F ∩ G = ∅)
iff there exists finitely many elements F1, . . . , Fk, G1, . . . , Gl ∈ E′ such that

F ⊆
⋃k

i=1 Fi, G ⊆
⋃l

i=1Gi and Fi ∩ Gj = ∅ (i.e. Fi(−ρX)Gj) for all i =

1, . . . , k and all j = 1, . . . , l. Finally, since (RC(X), ρX , CR(X)) is an LCA (see

2.7), we have (by (BC2)) that for any F ′, G′ ∈ RC(X), F ′ρXG
′ ⇔ ∃F,G ∈

CR(X) such that F ⊆ F ′, G ⊆ G′ and FρXG. All this shows that the triple

(Ã, ρ̃, ĨB) from 3.4 is an LCA which is LCA-isomorphic to (RC(X), ρX , CR(X)).

Now, using Theorem 2.12 and the facts that Ψt(X) = (RC(X), ρX , CR(X)),

Ψt(Xi) = (RC(Xi), ρXi
, CR(Xi)) for all i = 1, . . . , n, and X is a HLC-product

of the family {Xi | i = 1, . . . , n}, we get that (RC(X), ρX , CR(X)) is a DHLC-

sum of the family {(RC(Xi), ρXi
, CR(Xi)) | i = 1, . . . , n}. Thus (Ã, ρ̃, ĨB) is a

DHLC-sum of the family {(Ai, ρi, IBi) | i = 1, . . . , n}.

Definition 3.6. Let J be a set and let, for every j ∈ J , (Aj , ρj) be a CNCA.

Let

(A, (ϕj)j∈J) =
⊕

j∈J

Aj ,

where, for every j ∈ J ,

ϕj : Aj −→ A

is the canonical complete monomorphism, and let Ã be the completion of A.

We can suppose, without loss of generality, that A ⊆ Ã. Set

E =

{
∧

i∈I

ϕi(ai) | I ⊆ J, |I| < ℵ0, ai ∈ Ai,∀i ∈ I

}
.

For every two elements a =
∧

i∈I1
ϕi(ai) and b =

∧
i∈I2

ϕi(bi) of E, set

aρ̃b⇔ (aiρibi,∀i ∈ I1 ∩ I2).

Further, for every two elements c and d of Ã, set

c(−ρ̃)d⇔
(
∃k, l ∈ N

+ and ∃c1, . . . , ck, d1, . . . , dl ∈ E such that

c ≤
k∨

i=1

ci, d ≤
l∨

j=1

dj and ci(−ρ̃)dj , ∀i = 1, . . . , k and ∀j = 1, . . . , l
)
.

Then the pair (Ã, ρ̃) will be denoted by
⊕

j∈J(Aj , ρj).

Theorem 3.7. Let A = {(Aj , ρj) | j ∈ J} be a family of complete normal

contact algebras. Then
⊕

j∈J(Aj , ρj) is a DHC-sum of the family A.

Proof. The proof is similar to that one of Theorem 3.5. In it de Vries’ Duality

Theorem 2.10 instead of Theorem 2.12 can be used.
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4. A Whiteheadian-type description of Euclidean spaces

Notation. We will denote by Z the set of all integers with the natural order,

by I the unit interval [0, 1] with its natural topology and by I
′ – the open

interval (0, 1) with its natural topology, by IN the set of natural numbers, by J

the subspace of the real line consisting of all irrational numbers, and by D the

set of all dyadic numbers in the interval (0, 1). We set Z0 = Z\{0}, Z
− = Z\IN

and J2 = I
′ \ D. If (X,<) is a linearly ordered set and x ∈ X, then we set

succ(x) = {y ∈ X | x < y}, pred(x) = {y ∈ X | y < x};

also, we denote by x+ the successor of x (when it exists) and by x− – the

predecessor of x (when it exists). If M is a set, then we will denote by P (M)

the power set Boolean algebra of M ; the cardinality of M will be denoted by

|M |. If X is a topological space, then we will denote by CO(X) the set of all

clopen (= closed and open) subsets of X.

Now we will construct a CLCA (Ã, σ̃, ĨB) and we will show that it is LCA-

isomorphic to Ψt(R).

The construction of (Ã, σ̃, ĨB). Let Ai = P (Z0), for every i ∈ IN+. Thus, if

i ∈ IN+ and ai ∈ Ai, then ai is a subset of Z0 and its cardinality will be denoted

by |ai|. Let (A, (ϕi)i∈IN+) be the sum of Boolean algebras {Ai | i ∈ IN+}; then,

by Proposition 3.1, for every i ∈ IN+, ϕi : Ai −→ A is a monomorphism, the

family {ϕi(Ai) | i ∈ IN+} is an independent family and the set
⋃

i∈IN+ ϕi(Ai)

generates A. Let Ã be the completion of A. We can suppose, without loss of

generality, that A ⊆ Ã.

The following subset of A will be important for us:

B0 = {ϕ1(a1) ∧ . . . ∧ ϕk(ak) | k ∈ IN+,
(∀i = 1, . . . , k)(ai ∈ Ai and |ai| = 1)} .

(7)

If b ∈ B0 and b = ϕ1(a1) ∧ . . . ∧ ϕk(ak), where ak = {p}, then we set

b− = ϕ1(a1) ∧ ϕ2(a2) ∧ . . . ∧ ϕk−1(ak−1) ∧ ϕk({p−}). (8)

For every b ∈ B0, where b = ϕ1(a1) ∧ . . . ∧ ϕk(ak), and every n ∈ IN+, we set

qbn = (b− ∧ ϕk+1(succ(n))) ∨ (b ∧ ϕk+1(pred(−n))). (9)

Now we set

B1 = {qbn | b ∈ B0, n ∈ IN+}. (10)

Let ĨB be the ideal of Ã generated by the set B0 ∪B1. Now, we will define

a relation σ̃ on Ã. It will be, by definition, a symmetric relation.
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Let r, r′ ∈ IN+, b, b′ ∈ B0, b = ϕ1(a1)∧ . . .∧ϕk(ak), b′ = ϕ1(a
′

1)∧ . . .∧ϕl(a
′

l)

and ak = {n}, a′k = {m}. We can suppose, without loss of generality, that

k ≤ l. If k < l, then let a′k+1 = {p}. Now we set

bσ̃b′ ⇔

[(
ai = a′i, ∀i ∈ {1, . . . , k − 1}

)

&

({
m ∈ {n−, n, n+}, if k = l

m = n, if k < l

)]
,

(11)

and

qbrσ̃qb′r′ ⇔



(
ai = a′i, ∀i ∈ {1, . . . , k − 1}

)

&








m=n, if l=k

(m=n and p≤−r) or (m=n− and p>r), if l=k+1

(m=n and p<−r) or (m=n− and p>r), if l>k+1





 .

(12)

Let r ∈ IN+, b, b′ ∈ B0, b = ϕ1(a1) ∧ . . . ∧ ϕk(ak), b′ = ϕ1(a
′

1) ∧ . . . ∧ ϕl(a
′

l)

and ak = {n}, a′k = {m}. If k < l, then let a′k+1 = {p}. Now, if k > l, we set

qbrσ̃b
′ ⇔ (ai = a′i, ∀i ∈ {1, . . . , l}); (13)

if k ≤ l, we set

qbrσ̃b
′ ⇔



(
ai = a′i, ∀i ∈ {1, . . . , k − 1}

)

&








m ∈ {n−, n}, if l=k

(p≥r and m=n−) or (p≤−r and m=n), if l=k+1

(p>r and m=n−) or (p<−r and m=n), if l>k+1





 .

(14)

Further, for every two elements c and d of ĨB, set

c(−σ̃)d⇔
(
∃k, l ∈ N

+ and ∃c1, . . . , ck, d1, . . . , dl ∈ B0 ∪B1 such that

c ≤
k∨

i=1

ci, d ≤
l∨

j=1

dj and ci(−σ̃)dj , ∀i=1, . . . , k and∀j=1, . . . , l
)
.

(15)
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Finally, for every two elements a and b of Ã, set

aσ̃b⇔ (∃c, d ∈ ĨB such that c ≤ a, d ≤ b and cσ̃d). (16)

Theorem 4.1. The triple (Ã, σ̃, ĨB) (constructed above) is a CLCA; it is LCA-

isomorphic to the CLCA (RC(R), ρR, CR(R)). Thus, the triple (Ã, σ̃, ĨB) com-

pletely determines the real line R with its natural topology.

Proof. In this proof, we will use the notation introduced in the construction

of (Ã, σ̃, ĨB).

Let Z0 be endowed with the discrete topology. Then RC(Z0) = P (Z0) and

Proposition 3.2 shows that the algebra Ã is isomorphic to RC(ZIN+

0 ). Since the

space Z
IN+

0 is homeomorphic to J (see, e.g., [17]), we get, by Lemma 2.13, that Ã
is isomorphic to RC(R). Clearly, RC(J) can be endowed with an LCA-structure

LCA-isomorphic to the LCA (RC(R), ρR, CR(R)). Then, using the homeomor-

phism between J and Z
IN+

0 , we can transfer this structure to RC(ZIN+

0 ) and,

hence, to Ã. For technical reasons, this plan will be slightly modified. We

will use the homeomorphism between Z
IN+

0 and J2 described in [3]. Since J2

is dense in the open interval I
′, and I

′ is homeomorphic to R, we can use J2

instead of J for realizing the desired transfer. So, we start with the descrip-

tion (given by P. S. Alexandroff [3]) of the homeomorphism f : Z
IN+

0 −→ J2.

Let, for every j ∈ N
+, ∆j = [1 − 1

2j , 1 − 1
2j+1 ] and let, for every j ∈ Z

−,

∆j = [2j−1, 2j ]. Set δ1 = {∆j | j ∈ Z0}. Further, for every ∆j ∈ δ1, where

∆j = [aj , bj ], set dj = bj − aj and ∆jk = [bj − dj

2k , bj − dj

2k+1 ] when k ∈ N
+,

∆jk = [aj + dj .2
k−1, aj + dj .2

k] when k ∈ Z
−. Let δ2 = {∆jk | j, k ∈ Z0}.

In the next step we construct analogously the family δ3, and so on. Set

δ =
⋃
{δi | i ∈ IN+}. It is easy to see that the set of all end-points of the

elements of the family δ coincides with the set D. Now we define the function

f : Z
IN+

0 −→ J2 by the formula

f(n1, n2, . . . , nk, . . .) = ∆n1
∩ ∆n1n2

∩ . . . ∩ ∆n1n2...nk
∩ . . . .

One can prove that the definition of f is correct and that f is a homeomorphism.

Set Xi = Z0, for every i ∈ IN+. Let X =
∏
{Xi | i ∈ IN+} and let

πi : X −→ Xi,

where i ∈ IN+, be the projection. Then, for every k ∈ IN+ and every ni ∈ Xi,

where i = 1, . . . , k, we have that (writing, for short, “π−1
i (ni)” instead of

“π−1
i ({ni})”)

f

(
k⋂

i=1

π−1
i (ni)

)
= ∆n1n2...nk

∩ J2. (17)
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Let ψi : RC(Xi) −→ RC(X), F 7→ π−1
i (F ), where i ∈ IN+; then, as we

have seen in the proof of Proposition 3.2, ψi is a complete monomorphism. Set

A′

i = ψi(RC(Xi)). Since Xi is a discrete space, we have that Ai = RC(Xi) and

A′

i ⊆ CO(X), for all i ∈ IN+. Thus, for the elements of the subset
⋃

i∈IN+ A′

i

of RC(X), the Boolean operation “meet in RC(X)” coincides with the set-

theoretic operation “intersection” between the subsets of X, and the same for

the Boolean complement in RC(X) and the set-theoretic complement in X. We

also have that the Boolean algebras Ai and A′

i are isomorphic. Let A′ be the

subalgebra of P (X) generated by
⋃

i∈IN+ A′

i. Then A′ is isomorphic to A. Note

that A′ is a subalgebra of CO(X). Also, A′ is a dense subalgebra of RC(X);

therefore, RC(X) is the completion of A′. Thus, Ã is isomorphic to RC(X). So,

without loss of generality, we can think that Ã is RC(X), A is A′, ϕi = ψi and

hence ϕi(Ai) is A′

i, for i ∈ IN+. We will now construct an LCA (RC(X), σ, IB)

LCA-isomorphic to (RC(R), ρR, CR(R)). Then, identifying RC(X) with Ã, we

will show that σ = σ̃ and IB = ĨB.

Let IB2 = {M ∈ RC(J2) | clI′(M) is compact}. For every two elements

M and N of RC(J2), set Mρ2N ⇔ clI′(M) ∩ clI′(N) 6= ∅. Then, using

Lemma 2.13, we get that the triple (RC(J2), ρ2, IB2) is LCA-isomorphic to the

LCA (RC(I′), ρI′ , CR(I′)) (which, in turn, is LCA-isomorphic to the local con-

tact algebra (RC(R), ρR, CR(R))). Now, for every two elements F,G ∈ RC(X),

we set

FσG⇔ f(F )ρ2f(G). (18)

Also, we put

IB = {f−1(M) | M ∈ IB2}. (19)

Obviously, (RC(X), σ, IB) is LCA-isomorphic to (RC(R), ρR, CR(R)). In the

rest of this proof, we will show that the definitions of IB and σ given above

agree with the corresponding definitions of ĨB and σ̃ given in the construction

of (Ã, σ̃, ĨB).

Note first that the subset B′

0 of A′, which corresponds to the subset B0 of

A described in the construction of (Ã, σ̃, ĨB), is the following:

B′

0 =

{
k⋂

i=1

π−1
i (ni) | k ∈ IN+, (∀i = 1, . . . , k)(ni ∈ Xi)

}
. (20)

Let F,G ∈ B′

0 and F =
⋂k

i=1 π
−1
i (ni), G =

⋂l

i=1 π
−1
i (mi). We can sup-

pose, without loss of generality, that k ≤ l. Then, by (17) and Lemma 2.13,

clI′(f(F )) = ∆n1n2...nk
and clI′(f(G)) = ∆m1m2...ml

. If k = l, then, clearly,

∆n1n2...nk
∩ ∆m1m2...mk

6= ∅ iff (ni = mi, for all i = 1, . . . , k − 1, and mk ∈
{n−k , nk, n

+
k }). If k < l, then, obviously, ∆n1n2...nk

∩ ∆m1m2...ml
6= ∅ iff

(ni = mi, for all i = 1, . . . , k). Then, using (18) and the formula (11), we

get that σ and σ̃ agree on B′

0 (or, equivalently, on B0).
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Let F ∈ B′

0, F =
⋂k

i=1 π
−1
i (ni) and n ∈ IN+. Then the element QFn of A′

corresponding to the element qbn of A, where b ∈ B0 corresponds to F , is the

following:

QFn =

[(
k−1⋂

i=1

π−1
i (ni)

)
∩ π−1

k (n−k ) ∩ π−1
k+1(succ(n))

]
∪
[
F ∩π−1

k+1(pred(−n))
]
.

Clearly,

QFn =


 ⋃

s∈succ(n)

(
k−1⋂

i=1

π−1
i (ni) ∩ π

−1
k (n−k ) ∩ π−1

k+1(s)

)


∪


 ⋃

s∈pred(−n)

(
k⋂

i=1

π−1
i (ni) ∩ π

−1
k+1(s)

)
 .

(21)

(It is easy to see, as well, that in the formula (21) the sign of the union can

be replaced everywhere with the sign of the join in RC(X).) Thus,

f(QFn) =




 ⋃

s∈succ(n)

∆n1n2...nk−1n
−
k

s


 ∪


 ⋃

s∈pred(−n)

∆n1n2...nks




∩ J2. (22)

Let d be the left end-point of the closed interval ∆n1n2...nk
. Then it is easy

to see that

clI′(f(QFn)) = [d− εn, d+ ε′n], (23)

where εn and ε′n depend from n and also from n1, . . . , nk (for simplicity, we

don’t reflect this dependence on the notation), but for fixed n1, . . . , nk, we

have that εn > εn+1 > 0, ε′n > ε′n+1 > 0, for all n ∈ IN+, and limn→∞ εn = 0,

limn→∞ ε′n = 0; also, the closed interval [d−εn, d+ε′n] lies in the open interval

having as end-points the middles of the closed intervals ∆n1n2...nk−1n
−
k

and

∆n1n2...nk
. Since the family {D∩ J2 | D ∈ δ} is a base of J2 and every element

of D appears as a left end-point of some element of the family δ, we get that

the family

B = {intI′(clI′((f(F ))), intI′(clI′((f(QFn))) | n ∈ IN+, F ∈ B′

0}

is a base of I
′. Also, if

B = {clI′((f(F )), clI′((f(QFn)) | n ∈ IN+, F ∈ B′

0},

then B = {clI′(U) | U ∈ B} and B ⊆ CR(I′). Hence, B generates the ideal

CR(I′) of RC(I′). Clearly, the family

B′

1 = {QFn | F ∈ B′

0, n ∈ IN+} (24)
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corresponds to the subset B1 of A constructed above (before the formulation

of our theorem). Since B = {clI′(G) | G ∈ f(B′

0 ∪B
′

1)}, we get that the subset

f(B′

0 ∪ B′

1) of RC(J2) generates the ideal IB2 of RC(J2). Thus, the subset

B′

0 ∪B
′

1 of RC(X) generates the ideal IB of RC(X). Therefore, IB corresponds

to ĨB; we can even write that IB = ĨB.

Let now r, r′ ∈ IN+, F, F ′ ∈ B′

0, F = π−1
1 (n1) ∩ . . . ∩ π

−1
k (nk) and F ′ =

π−1
1 (n′1) ∩ . . . ∩ π−1

l (n′l). We can suppose, without loss of generality, that

k ≤ l. Let d and d′ be the left end-points of the closed intervals ∆n1n2...nk

and ∆n′
1
n′

2
...n′

l
, respectively. Then, using (23), we get that clI′(f(QFr)) =

[d− εr, d+ ε′r] and clI′(f(QF ′r′)) = [d′ − εr′ , d′ + ε′r′ ]. If k = l, then it is easy

to see that clI′(f(QFr)) ∩ clI′(f(QF ′r′)) 6= ∅ iff (ni = n′i, for all i = 1, . . . , k).
If l = k + 1, then one readily checks that clI′(f(QFr)) ∩ clI′(f(QF ′r′)) 6= ∅ iff

[(ni = n′i, for all i = 1, . . . , k−1) and ((nk = n′k and n′k+1 ≤ −r) or (n′k = (nk)−

and n′k+1 > r))]. Finally, if l > k + 1, then clI′(f(QFr)) ∩ clI′(f(QF ′r′)) 6= ∅ iff

[(ni = n′i, for all i = 1, . . . , k−1) and ((nk = n′k and n′k+1 < −r) or (n′k = (nk)−

and n′k+1 > r))]. All this shows that the relations σ and σ̃ agree on B′

1 (or,

equivalently, on B1).

Let r ∈ IN+, F, F ′ ∈ B′

0, F = π−1
1 (n1) ∩ . . . ∩ π

−1
k (nk) and F ′ = π−1

1 (n′1) ∩
. . . ∩ π−1

l (n′l). If l < k, then we get that clI′(f(QFr)) ∩ clI′(f(F ′)) 6= ∅ iff

(ni = n′i, for all i = 1, . . . , l). If l = k, then clI′(f(QFr)) ∩ clI′(f(F ′)) 6= ∅
iff (ni = n′i, for all i = 1, . . . , k − 1, and n′k ∈ {n−k , nk}). If l = k + 1,

then clI′(f(QFr)) ∩ clI′(f(F ′)) 6= ∅ iff [(ni = n′i, for all i = 1, . . . , k − 1), and

((n′k = n−k and n′k+1 ≥ r) or (n′k = nk and n′k+1 ≤ −r))]. Finally, if l > k + 1,

then clI′(f(QFr)) ∩ clI′(f(F ′)) 6= ∅ iff [(ni = n′i, for all i = 1, . . . , k − 1), and

((n′k = n−k and n′k+1 > r) or (n′k = nk and n′k+1 < −r))]. We get that the

relations σ and σ̃ agree on B′

0 ∪B
′

1 (or, equivalently, on B0 ∪B1).

Now, using the facts that B is a base of I
′, I

′ is a regular space, and clI′(f(F ))

is a compact set for all F ∈ IB, we get that for all F,G ∈ IB, clI′(f(F )) ∩
clI′(f(G)) = ∅ iff (there exist F1, . . . , Fk, G1, . . . , Gl ∈ B′

0 ∪ B
′

1 such that F ⊆⋃k

i=1 Fi, G ⊆
⋃l

j=1Gj and clI′(f(Fi)) ∩ clI′(f(Gj)) = ∅ for all i = 1, . . . , k
and all j = 1, . . . , l). This shows that the relations σ and σ̃ agree on IB (or,

equivalently, on ĨB).

Finally, as in every LCA, for every F,G ∈ RC(X), we have that FσG iff

(there exist F ′, G′ ∈ IB such that F ′ ⊆ F , G′ ⊆ G and F ′σG′). Therefore, the

relations σ and σ̃ agree on RC(X) (or, equivalently, on Ã).

Theorem 4.2. For every n ∈ IN+, the CLCA (RC(Rn), ρRn , CR(Rn)) (=

Ψt(Rn)) is LCA-isomorphic to the DHLC-sum (Ãn, σ̃n, ĨBn) of n copies of

the CLCA (Ã, σ̃, ĨB) (see Theorem 4.1 for it); thus, the CLCA (Ãn, σ̃n, ĨBn)

completely determines the Euclidean space R
n with its natural topology. For

every n ∈ IN+, the Boolean algebras Ãn and Ã are isomorphic.

Proof. Since J
n is homeomorphic to J and is dense in R

n, we get that RC(Rn)
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is isomorphic to RC(J), and thus, to Ã (see “The construction of (Ã, σ̃, ĨB)”

and the proof of Theorem 4.1). Now all follows from Theorems 4.1 and 3.5.

We will now present the description of the CLCA (RC(R), ρR, CR(R)) in

two new forms; the notation used in them permits to obtain a more compact

form of the definitions of the corresponding relations. As we have already

mentioned, RC(R) is isomorphic to RC(J), i.e. to RC(ZIN+

0 ) or, equivalently,

to RC(ωω). The last algebra, which is one of the collapsing algebras RC(kω)

(where k is an infinite cardinal equipped with the discrete topology), has many

abstract descriptions. The one, which is the most appropriate for our purposes,

is the following: a complete Boolean algebra C is isomorphic to the Boolean

algebra RC(kω) iff it has a dense subset isomorphic to T ∗, for the normal

tree T =
⋃
{kn | n ∈ IN+} (here T ∗ is the tree T with the opposite partial

order and kn ∩ km = ∅ for n 6= m) (see, e.g., [29, 14.16(a),(b)]). (Recall

that a partially ordered set (T,≤T ) is called a tree if for every t ∈ T , the

set pred(t) is well-ordered by ≤T .) This shows that RC(kω) is isomorphic

to the Boolean algebra RC(T ∗), where the ordered set T ∗ is endowed with

the left topology, i.e. that one generated by the base {LT∗(t) | t ∈ T} (here

LT∗(t) = {t′ ∈ T | t′ ≤T∗ t} = {t′ ∈ T | t ≤T t′}, for every t ∈ T ) (see, e.g.,

[29, 4.11-4.16] and [17, 1.7.2]).

Let us add some details and introduce some notation.

Notation. For any n ∈ IN+, we set

n = {1, . . . , n}.

We set

T0 =
⋃

{Zn
0 | n ∈ IN+},

where Z
n
0 ∩ Z

m
0 = ∅ for n 6= m. Any element t ∈ Z

n
0 is interpreted, as usual,

as a function t : n −→ Z0. Further, we let ⊥ ⊆ t and ⊥ 6= t, for any t ∈ T0; if

n, n′ ∈ IN+, t ∈ Z
n
0 and t′ ∈ Z

n′

0 , then we set t ⊆ t′ iff t′ is an extension of t, i.e.

iff n ≤ n′ and t(i) = t′(i) for any i ∈ n. Then the ordered set (T0 ∪ {⊥},⊆) is

a normal tree of height ω with Z
n
0 as its nth level (it will be denoted by Ln).

We also put, for any t, t′ ∈ T0 ∪ {⊥},

t ≤ t′ ⇔ t′ ⊆ t.

We set

T ∗

0 = (T0 ∪ {⊥},≤).

Let T ∗

0 be endowed with its left topology (i.e. let (T0∪{⊥},⊆) be equipped

with its right topology (which is defined analogously to the left topology (see

[17, 1.7.2]))). Further, for any t ∈ T0 ∪ {⊥}, put

ct = {t′ ∈ T0 | t and t′ are T ∗

0 -compatible}.
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(Recall that two elements x and y of a partially ordered set (M,�) are com-

patible if there is some z ∈ M such that z � x and z � y.) Then, as it is well

known (see, e.g., [29, 4.13, 4.16, the formula for cl(up) in the proof of 4.16]), the

embedding e of the partially ordered set T ∗

0 into the Boolean algebra RC(T ∗

0 )

is given by the formula

e(t) = ct, ∀t ∈ T0 ∪ {⊥}.

(Note that the map e is an embedding because T ∗

0 is a separative partial order

(see, e.g., [29, 4.15,4.16,p.226]).) Also, let us recall that the left topology on

T0 ∪ {⊥} induced by the ordered set T ∗

0 is an Alexandroff topology, i.e. the

union of arbitrarily many closed sets is a closed set (see, e.g., [17, 1.7.2]).

Thus, the (finite or infinite) joins
∨
{Fj | j ∈ J} in RC(T ∗

0 ) are just the unions⋃
{Fj | j ∈ J}.

Finally, for every n ∈ IN+ \ {1} and every t ∈ Ln (i.e. t : n −→ Z0), define

tλ : n −→ Z0 by the formulas (tλ)| n−1 = t| n−1 and tλ(n) = (t(n))−; (25)

let, for t ∈ L1, tλ : 1 −→ Z0 be defined by tλ(1) = (t(1))−.

Remark 4.3. As we have already mentioned, the Boolean algebra RC(ZIN+

0 ) is

isomorphic to the Boolean algebra RC(T ∗

0 ) (see, e.g., [29, 14.16(a),(b),4.11-

4.16]). We will recall the proof of this fact since we will use it later. For every

t ∈ T0, set

at = {x ∈ Z
IN+

0 | t ⊆ x}. (26)

Note that if t : n −→ Z0, where n ∈ IN+, then

at =

n⋂

i=1

π−1
i (t(i)) (27)

and thus at is a clopen subset of Z
IN+

0 . Set

S = {at | t ∈ T0} ∪ Z
IN+

0 . (28)

Then S ⊆ CO(ZIN+

0 ) ⊆ RC(ZIN+

0 ). Now it is easy to see that the set S is dense

in RC(ZIN+

0 ) and isomorphic to T ∗

0 (indeed, the map

s : T ∗

0 −→ S, where s(⊥) = Z
IN+

0 and s(t) = at,∀t ∈ T0 (29)

is an isomorphism). Therefore, RC(ZIN+

0 ) is isomorphic to the Boolean algebra

RC(T ∗

0 ).
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We will now equip the Boolean algebra RC(T ∗

0 ) defined above with an

LCA-structure (RC(T ∗

0 ), θ,BT ) and will prove that the obtained CLCA is LCA-

isomorphic to the CLCA (RC(R), ρR, CR(R)). Recall that two elements x and

y of a partially ordered set (M,4) are comparable if x 4 y or y 4 x.

The construction of (RC(T ∗

0 ), θ,BT ). For every k, n ∈ IN+ and for every

t ∈ Lk (recall that Lk = Z
k
0), set

dtn =
⋃{

ct′ | (t′ ∈ Lk+1)

&
(
(tλ ⊆ t′ & t′(k + 1) > n) or (t ⊆ t′ & t′(k + 1) < −n)

)}
.

Note that the fact that the left topology on T ∗

0 is an Alexandroff topology

implies that

dtn =
∨{

ct′ | (t′ ∈ Lk+1)

&
(
(tλ ⊆ t′ and t′(k + 1) > n) or (t ⊆ t′ and t′(k + 1) < −n)

)}
.

(30)

Let

C0 = {ct | t ∈ T0} and C1 = {dtn | t ∈ T0, n ∈ IN+}. (31)

Denote by BT0
the ideal of RC(T ∗

0 ) generated by C0 ∪ C1.

For every k, k′, n, n′ ∈ IN+ and every t ∈ Lk, t′ ∈ Lk′ , set

ctθct′ ⇔

{
t = t′ or t = t′λ or t′ = tλ, if k = k′

t and t′ are comparable, if k 6= k′,
(32)

and

dtnθdt′n′ ⇔ (33)




(t′ ⊆ t and t(k′ + 1) < −n′) or (t′λ ⊆ t and t(k′ + 1) > n′), if k > k′ + 1

(t′ ⊆ t and t(k) ≤ −n′) or (t′λ ⊆ t and t(k) > n′), if k = k′ + 1

t = t′, if k = k′

(t ⊆ t′ and t′(k′) ≤ −n) or (tλ ⊆ t′ and t′(k′) > n), if k = k′ − 1

(t ⊆ t′ and t′(k + 1) < −n) or (tλ ⊆ t′ and t′(k + 1) > n), if k < k′ − 1;

and also

dtnθct′ ⇔ ct′θdtn ⇔ (34)




t′ ⊆ t, if k′ < k
t′ = t or t′ = tλ, if k′ = k
(tλ ⊆ t′ and t′(k′) ≥ n) or (t ⊆ t′ and t′(k′) ≤ −n), if k′ = k + 1

(tλ ⊆ t′ & t′(k + 1) > n) or (t ⊆ t′ & t′(k + 1) < −n), if k′ > k + 1.
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Further, for every two elements c and d of BT0
, set

c(−θ)d⇔
(
∃k, l ∈ N

+ and∃c1, . . . , ck, d1, . . . , dl∈C0 ∪ C1 such that

c ⊆
k⋃

i=1

ci, d ⊆
l⋃

j=1

dj and ci(−θ)dj , ∀i=1, . . . , k and∀j=1, . . . , l
)
.

(35)

Finally, for every two elements a and b of RC(T ∗

0 ), set

aθb⇔ (∃c, d ∈ BT0
such that c ⊆ a, d ⊆ b and cθd). (36)

Theorem 4.4. The triple (RC(T ∗

0 ), θ,BT0
) (constructed above) is a CLCA; it

is LCA-isomorphic to the complete local contact algebra (RC(R), ρR, CR(R)).

Thus, the triple (RC(T ∗

0 ), θ,BT0
) completely determines the real line R with its

natural topology.

Proof. In this proof, we will use the notation introduced in the following places

of this paper: in Remark 4.3 and in the “Notation” before it, in “The con-

struction of (Ã, σ̃, ĨB)” and in “The construction of (RC(T ∗

0 ), θ,BT )”. As

it follows from Remark 4.3 and [29, the proof of 4.14], there is an isomorphism

h : RC(T ∗

0 ) −→ RC(ZIN+

0 ) defined by the formula h(c) =
∨

RC(ZIN+

0
)
{at | t ∈

T ∗

0 , ct ⊆ c}, for every c ∈ RC(T ∗

0 ). Thus, h(ct) = at =
⋂k

i=1 π
−1
i (t(i)) and ct

corresponds to
∧k

i=1 ϕi(t(i)) (see “The construction of (Ã, σ̃, ĨB)”), where

t ∈ Lk ⊆ T ∗

0 (i.e., t : k −→ Z0). This implies that h(C0) = B′

0 = {at | t ∈ T0}

and C0 corresponds to B0 = {
∧k

i=1 ϕi(t(i)) | k ∈ IN+, t ∈ Lk} (see (31), (20),

(7)). Note that tλ corresponds to b− (see (25) and (8)). Since h is a complete

homomorphism, we get that h(dtn) = Qatn and thus dtn corresponds to qatn,

for every k, n ∈ IN+ and every t ∈ Lk (see (30), (21), (9)). Then h(C1) = B′

1

and hence C1 corresponds to B1 (see (31), (24), (10)). Hence, h(BT0
) = B and

therefore BT0
corresponds to ĨB (see the line after (31), (19) and the paragraph

after (24), the line after (10)). Having all these facts in mind, we obtain eas-

ily that the formula (32) follows from the formula (11), (33) from (12), (34)

from (14), (35) from (15) and (36) from (16). This completes the proof of our

theorem.

Theorem 4.5. A CLCA (M,µ,M) is LCA-isomorphic to the complete local

contact algebra (RC(R), ρR, CR(R)) iff there exists an embedding (between par-

tially ordered sets) ζ : T ∗

0 −→ M such that the following two conditions are

satisfied:

(a) ζ(T0) is dense in M , and

(b) let ζ(t) = zt, for every t ∈ T0, and let the elements d̃tn be defined by the

formula (30) in which dtn is replaced by d̃tn, and ct is replaced by zt; then the

ideal M is generated by the set Z = ζ(T0) ∪ {d̃tn | t ∈ T0, n ∈ IN+} and the
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formulas (32), (33), (34), (15), (16) hold with θ and σ̃ replaced by µ, ct by zt,

dtn by d̃tn, B̃ by M, B0 ∪B1 by Z, and Ã by M .

Proof. It follows from Theorem 4.4 and [29, 4.14,14.16].

5. A Whiteheadian-type description of Tychonoff cubes,

spheres and tori

Theorem 5.1. For every n ∈ IN+, the CNCA (RC(Sn), ρSn) (= Ψt(Sn)) is

CA-isomorphic to the CNCA (Ãn, Cσ̃n,ĨBn
) (see 4.2 for the LCA (Ãn, σ̃n, ĨBn),

and 2.5 for C
σ̃n,ĨBn

); thus, the CNCA (Ãn, Cσ̃n,ĨBn
) completely determines the

n-dimensional sphere S
n with its natural topology. Note that Ãn is isomorphic

to Ã, for every n ∈ IN+.

Proof. As it follows from the proof of [38, Theorem 4.8], if X is a locally com-

pact Hausdorff space then the complete normal contact algebra (RC(αX), ραX)

is CA-isomorphic to the complete normal contact algebra (RC(X), CρX ,CR(X)).

Now, since αR
n is homeomorphic to S

n, our result follows from Theorem 4.2.

For every cardinal number τ , denote by T
τ the space (S1)τ (for finite τ ,

this is just the τ -dimensional torus).

Theorem 5.2. For every cardinal number τ , the complete normal contact alge-

bra (RC(Tτ ), ρTτ ) (= Ψt(Tτ )) is CA-isomorphic to the DHC-sum of τ copies

of the CNCA (Ã, C
σ̃,ĨB) (see Theorem 5.1 for it); therefore, this DHC-sum

completely determines the space T
τ .

Proof. Since the CNCA (RC(S1), ρS1) is CA-isomorphic to the complete nor-

mal contact algebra (Ã, C
σ̃,ĨB) (see Theorem 5.1), our result follows from The-

orem 3.7.

Recall that if A is a Boolean algebra and a ∈ A then the set ↓ (a) = {b ∈
A | b ≤ a} endowed with the same meets and joins as in A and with complement

b′ defined by the formula b′ = b∗ ∧ a, for every b ≤ a, is a Boolean algebra; it

is denoted by A|a. If J =↓ (a∗) then A|a is isomorphic to the factor algebra

A/J ; the isomorphism h : A|a −→ A/J is the following: h(b) = [b], for every

b ≤ a (see, e.g., [29]).

In [12], we proved the following theorem:

Theorem 5.3 ([12, Theorem 6.8]). Let X be a locally compact Hausdorff space

and F ∈ RC(X). Set B = RC(X)|F , IB′ = {G∧F | G ∈ CR(X)} and let, for

every a, b ∈ B, aηb iff aρXb (i.e. a∩b 6= ∅). Then (B, η, IB′) is LCA-isomorphic

to Ψt(F ).
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Using this assertion, we obtain the following result:

Theorem 5.4. Let (M,µ,M) be a CLCA which is LCA-isomorphic to the

CLCA (RC(R), ρR, CR(R)) and ζ : T ∗

0 −→ M be the embedding described

in Theorem 4.5. Then, for each t ∈ T0, the CNCA (M |ζ(t), µ′), where µ′ is

the restriction of the relation µ to M |ζ(t), is NCA-isomorphic to the CNCA

(RC(I), ρI).

Proof. By (17), (27) and the beginning of the proof of Theorem 4.1, if t ∈ T0,

i.e. t : n −→ Z0 for some n ∈ IN+, then the element ζ(t) coresponds to the

element ∆t(1)...t(n) of RC(I′) (see also the proofs of theorems 4.4 and 4.5). Since

∆t(1)...t(n) is homeomorphic to I, our assertion follows from Theorem 5.3.

The last theorem shows, in particular, that the following assertion holds

(the notation from “The construction of (Ã, σ̃, ĨB)” will be used in it):

Theorem 5.5. Let m ∈ IN+, n1, . . . , nm ∈ Z0, aj = {nj} for j = 1, . . . ,m, u =∧m

j=1 ϕj(aj) and B = Ã|u. Then the CNCA (B, σ̃′), where σ̃′ is the restriction

of the relation σ̃ to B, is NCA-isomorphic to the CNCA (RC(I), ρI). In partic-

ular, the CNCA (RC(I), ρI) is NCA-isomorphic to the CNCA (Ã|ϕ1({1}), σ̃
′).

A direct description of the CNCA (RC(I), ρI) is given below.

The construction of (Ã, σ̃′). We will use the notation from “The construc-

tion of (Ã, σ̃, ĨB)”.

We will define a relation σ̃′ on the Boolean algebra Ã.

For every n ∈ IN+, set

u↑n = ϕ1(succ(n)) and u↓n = ϕ1(pred(−n))

and let

B2 = {u↑n, u
↓

n | n ∈ IN+}.

For every a, b ∈ B0 ∪B1 ∪B2, set

aσ̃′b⇔ aσ̃b

(see the construction of (Ã, σ̃, ĨB) for the definition of the relation σ̃). For

convenience of the reader, we will write down the corresponding formulae. For

every n,m ∈ IN+,

u↑nσ̃
′u↑m, u↓nσ̃

′u↓m and u↓n(−σ̃′)u↑m.

Further, for every n, r ∈ IN+ and every b = ϕ1(a1) ∧ . . . ∧ ϕk(ak) ∈ B0, where

a1 = {m},

bσ̃′u↑n ⇔

{
m ≥ n, if k = 1

m > n, if k > 1
, bσ̃′u↓n ⇔

{
m ≤ −n, if k = 1

m < −n, if k > 1
(37)
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and

qbrσ̃
′u↑n ⇔ m > n, qbrσ̃

′u↓n ⇔

{
m ≤ −n, if k = 1

m < −n, if k > 1.
(38)

Now, for every c, d ∈ Ã, set

c(−σ̃′)d⇔
(
∃k, l ∈ N

+ and∃c1, . . . , ck, d1, . . . , dl ∈ B0 ∪B1 ∪B2 such that

c ≤
k∨

i=1

ci, d ≤
l∨

j=1

dj and ci(−σ̃
′)dj , ∀i=1, . . . , k and∀j=1, . . . , l

)
.

(39)

Theorem 5.6. The pair (Ã, σ̃′) (constructed above) is a complete normal con-

tact algebra; it is CA-isomorphic to the CNCA (RC(I), ρI). Thus, the pair

(Ã, σ̃′) completely determines the closed interval I with its natural topology.

Proof. The proof of this assertion is analogous to the proof of Theorem 4.1. We

will use in it the notation introduced in Theorem 4.1, in “The construction

of (Ã, σ̃, ĨB)” and in the above construction.

Clearly, RC(R) is isomorphic to RC(I) (by Lemma 2.13). Thus, RC(I) is

isomorphic to RC(X), where X = Z
IN+

0 (see the proof of Theorem 4.1). We

will now construct an NCA (RC(X), σ′) CA-isomorphic to (RC(I), ρI). Then,

identifying RC(X) with Ã, we will show that σ′ = σ̃′.

For every two elementsM andN of RC(J2), setMρ1N ⇔ clI(M)∩clI(N) 6=
∅. Then, using Lemma 2.13, we get that the pair (RC(J2), ρ1) is CA-isomorphic

to the NCA (RC(I), ρI). Now, for every two elements F,G ∈ RC(X), we set

Fσ′G⇔ f(F )ρ1f(G), (40)

where f : X −→ J2 is the homeomorphism constructed in the proof of Theo-

rem 4.1. Obviously, (RC(X), σ′) is CA-isomorphic to (RC(I), ρI). In the rest

of this proof, we will show that the definition of σ′ given above agrees with the

definition of σ̃′ given in the construction of (Ã, σ̃′).

Using the proof of Proposition 3.2, it is easy to see that the set

B′

2 =
{
π−1

1 (succ(n)), π−1
1 (pred(−n)) | n ∈ IN+

}

corresponds to the set B2 introduced in the construction of (Ã, σ̃′). Now, the

formula (17) implies that, for every n ∈ IN+,

clI(f(π−1
1 (succ(n)))) =

[
1 −

1

2n+1
, 1

]
(41)
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and

clI(f(π−1
1 (pred(−n)))) =

[
0 ,

1

2n+1

]
. (42)

Thus, for every m,n ∈ IN+, clI(f(π−1
1 (succ(n))))∩clI(f(π−1

1 (pred(−m)))) = ∅.
Also, for every m,n ∈ IN+, we have that f(π−1

1 (succ(n)))∩f(π−1
1 (succ(m))) 6=

∅ and f(π−1
1 (pred(−n))) ∩ f(π−1

1 (pred(−m))) 6= ∅. Having in mind these for-

mulae and the fact that clI(f(F )) = clI′(f(F )), for every F ∈ B′

0 ∪B
′

1 (see the

proof of Theorem 4.1 for the notation), we get that GσH ⇔ Gσ′H, for every

G,H ∈ B′

0∪B
′

1∪B
′

2. This shows that aσ̃′b⇔ aσ̃b, for every a, b ∈ B0∪B1∪B2.

Hence, the definitions of σ′ and σ̃′ agree on B′

0 ∪B
′

1 ∪B
′

2 (or, equivalently, on

B0 ∪B1 ∪B2).

Further, using (41) and (42), we get that the family

B1 = B ∪ {intI(clI(f(F ))) | F ∈ B′

2}

(see the proof of Theorem 4.1 for the notation and for the fact that B is a base

of I
′) is a base of I. Thus, by the regularity of I, every two disjoint elements

of RC(I) can be separated by the finite unions of the elements of the family

{clI(f(F )) | F ∈ B′

0 ∪B
′

1 ∪B
′

2}. This implies that the definitions of σ′ and σ̃′

agree on RC(X) (or, equivalently, on Ã).

Theorem 5.7. For every cardinal number τ , the complete normal contact al-

gebra (RC(Iτ ), ρIτ ) (= Ψt(Iτ )) is CA-isomorphic to the DHC-sum of τ copies

of the CNCA (Ã, σ̃′) (see Theorem 5.6 for it); therefore, this DHC-sum com-

pletely determines the space I
τ .

Proof. It follows from Theorems 5.6 and 3.7.
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1. Introduction

In [8], Manásevich, Zanolin and the author have used topological degree ar-

guments to study the existence of periodic solutions for some complex-valued

differential equations of the form

z′′ = f(t, z, z′). (1)

or for systems of such equations, where the nonlineary f : [0, T ] × C
2 → C

has some special structure inspired by the equations of Liénard or Rayleigh.

The existence conditions, as well as the technicalities to obtain the requested

a priori bounds, are rather involved.

On the other hand, Bereanu and the author [1, 2, 3] have considered the

existence of solutions of quasilinear differential equations or systems of the form

(φ(u′))′ = f(t, u, u′), (2)

where f : [0, T ] × R
2n → R

n satisfies Carathéodory conditions and φ : B(a) →
R

n belongs to a suitable class of so-called singular homeomorphisms between

the open ball B(a) ⊂ R
n of center 0 and radius a > 0 and R

n. A solution of (2)
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on [0, T ] is a function u ∈ C1([0, T ], Rn) such that u′(t) ∈ B(a) for all t ∈ [0, T ],
φ ◦ u′ is absolutely continuous and equation (2) holds almost everywhere. A

motivating example of singular homeomorphism comes from the relativistic

acceleration, associated to the homeomorphism

φ : B(1) → R
n, v 7→

v√
1 − |v|2

.

Despite of the apparent greater complexity of equation (2) with respect to (1),

existence conditions for periodic solutions of (2) are in general weaker than

those for (1).

Hence it may be of interest to study the problem of the existence of periodic

solutions for quasilinear complex-valued differential systems of the form

(φ(z′))′ = f(t, z, z′). (3)

where φ : B(a) ⊂ C
m → C

m is a singular homeomorphism and f : [0, T ] ×
C

2m → C
m is a Carathéodory function. This is done in Section 3, where we

state and prove fairly general results for nonlinearities containing the Liénard

or Rayleigh types. A very special case is the existence of a solution for the

problem

(
z′√

1 − |z|2

)′

= αzn + h(t), z(0) = z(T ), z′(0) = z′(T ) (4)

for every integer n ≥ 1, α ∈ C\{0}, and h ∈ L1([0, T ], C). Such a result is sharp

because, when α = 0, problem (4) has no solution when T−1
∫ T

0
h(t) dt 6= 0.

On the other hand, motivated by some work of Szrednicki [10, 11], Ma-

násevich, Zanolin and the author have proved in [7] existence conditions for

periodic solutions of some first order complex-valued differential equations. In

the special case of the complex Riccati equation

z′ = z2 + h(t), z(0) = z(T ),

interesting existence and non-existence results have been subsequently obtained

by Campos and Ortega [4, 5]. Hence it may be of interest to consider first order

periodic problems of the type

(φ(z))′ = f(t, z), z(0) = z(T ),

where φ : B(a) ⊂ C → C is a suitable singular homeomorphism. This is done

in Section 4, where a very special case of the obtained results is the existence

of a solution for the problem

(
z√

1 − |z|2

)′

= αzn + h(t), z(0) = z(T ), (5)
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for every n ≥ 1, α ∈ C \ {0} and h ∈ L1([0, T ], C) such that

∣∣∣∣∣T
−1

∫ T

0

h(t) dt

∣∣∣∣∣ < |α|.

Again, this condition is sharp because, when α = 0, problem (5) has no solution

when T−1
∫ T

0
h(t) dt 6= 0.

We end this introduction with some notations. We denote some norm in

R
n by | · |, and the usual norm in Lp := Lp(0, T ; Rn) (1 ≤ p ≤ ∞) by | · |p. For

k ≥ 0, we set Ck := Ck([0, T ], Rn) and W 1,1 := W 1,1([0, T ], Rn). The usual

norm | · |∞ is considered on C, and the space C1 is endowed with the norm

|v|1,∞ = |v|∞ + |v′|∞.

Each v ∈ C can be written v(t) = v0 + v̂(t), with v0 = v(0) and v̂(0) = 0. For

u ∈ W 1,1 such that u(0) = u(T ), we have

û(t) =

∫ t

0

u′(s) ds = −

∫ T

t

u′(s) ds,

and max[0,T ] |û| being reached either in [0, T/2] or in [T/2, T ], this gives

|û|∞ ≤
T

2
|u′|∞ (6)

It is easily shown that the constant T/2 is optimal. We define the mean value

u of u ∈ L1 by

u := T−1

∫ T

0

u(t) dt,

2. A continuation theorem for periodic solutions of

quasilinear systems involving singular φ-Laplacians

Let us consider now the periodic problem

(φ(u′))′ = f(t, u, u′), u(0) = u(T ), u′(0) = u′(T ), (7)

where f : [0, T ] × R
2n → R

n is a Carathéodory function and φ : B(a) → R
n

(a < +∞) satisfies the following assumption introduced in [3].

(HΦ) φ is a homeomorphism from B(a) ⊂ R
n onto R

n such that φ(0) = 0,

φ = ∇Φ, with Φ : B(a) → R of class C1 on B(a), continuous, strictly convex

on B(a), and such that Φ(0) = 0.
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The motivating example is given by the C∞-mapping Φ : B(1) ⊂ R
n → R

defined by

Φ(u) = 1 −
√

1 − |u|2 (u ∈ B(1)),

so that

φ(u) = ∇Φ(u) =
u√

1 − |u|2
(u ∈ B(1)).

Hence (φ(u′))′ describes the relativistic acceleration.

Notice that the scalar problem

(φ(u′))′ = 1, u(0) = u(T ), u′(0) = u′(T )

has no solution, because the existence of a solution would imply, by integration

over [0, T ] of both members of the differential equation and use of the boundary

conditions, that 0 = T . Hence we cannot expect an existence result for any

right-hand side of the differential system in (7).

The following continuation result essentially comes from [1], and its present

form is given in [9]. We denote by dB the Brouwer degree for continuous

mappings in R
n (see e.g. [6]).

Lemma 1. Assume that there exists an open bounded set Ω ⊂ C such that the

following conditions hold :

1. For each λ ∈ (0, 1], there is no solution of the problem

(φ(u′))′ = λf(t, u, u′), u(0) = u(T ), u′(0) = u′(T ) (8)

such that u ∈ ∂Ω.

2. There is no solution u0 ∈ ∂Ω ∩ R
n of the system in R

n

f(u0) := T−1

∫ T

0

f(t, u0, 0) dt = 0, (9)

where, in ∂Ω∩R
n, R

n is identified with the subspace of constant functions

in C.

3. dB [f,Ω ∩ R
n, 0] 6= 0.

Then problem (7) has at least one solution such that u ∈ Ω.
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3. Periodic solutions of complex-valued quasilinear

systems involving singular φ-Laplacians

In this section, let us provide R
2 with the multiplication structure of the com-

plex plane C, and consider the complex-valued periodic system in C
m ≃ R

2m

with m ≥ 1 an integer,

(φk(z′))′ = αk(t)znk

k + [Fk(t, z)]′ + hk(t, z, z′) (k = 1, 2, . . . , m)

z(0) = z(T ), z′(0) = z′(T ), (10)

where z′ = (z′1, . . . , z
′

m), z = (z1, . . . , zm), φ = (φ1, . . . , φm) : B(a) ⊂ C
m →

C
m satisfies Assumption (Hφ), nk ≥ 1 is an integer, αk ∈ L1, Fk : [0, T ]×C

m →
C

m is of class C1, and hk : [0, T ] × C
2m → C

m is a Carathéodory function

(k = 1, 2, . . . , m). For z = (z1, . . . , zm), we take

|z| = max{|z1|, . . . , |zm|},

and for z ∈ C,

|z|∞ = max
t∈[0,T ]

|z(t)|.

We set

n = min{n1, . . . , nm}, N = max{n1, . . . , nm}.

Theorem 1. Assume that, for each k = 1, 2, . . . , m, αk 6= 0, and there exist

1 ≤ σk < n and βk, γk ∈ L1 such that

|hk(t, z, v)| ≤ βk(t)|z|σk + γk(t) (11)

for a.e. t ∈ [0, T ], all z ∈ C
m and all v ∈ C

m such that |v| < a. Then

problem (10) has at least one solution.

Proof. Following Lemma 1, we introduce the homotopy

(φk(z′))′ = λ[αk(t)znk + [Fk(t, z)]′ + hk(t, z, z′)] (k = 1, 2, . . . , m)

z(0) = z(T ), z′(0) = z′(T ) (λ ∈ (0, 1]). (12)

If z(t) = z0 + ẑ(t) with z0 = z(0) is a possible solution of (12), then z′ satisfies

the inequality,

|z′|∞ < a. (13)

and hence by (6) the inequality

|ẑ|∞ <
aT

2
. (14)
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On the other hand, integrating both members of (12) over one period and using

the periodicity gives

0 =

∫ T

0

αk(t)[z0,k + ẑk(t)]nk dt +

∫ T

0

hk[t, z0 + ẑ(t), z′(t)] dt

(k = 1, 2, . . . , m),

and hence, letting Cj
n = n!

j!(n−j)! ,

αkznk

0,k = −T−1

∫ T

0




nk−1∑

j=0

Cj
nk

zj
0,kẑk(t)nk−j


 dt

−T−1

∫ T

0

hk(t, z0 + ẑ(t), z′(t)) dt (k = 1, . . . , m).

Consequently, using (11), (13) and (14),

|αk||z0,k|
nk ≤

nk−1∑

j=0

Cj
nk

(aT/2)nk−j |z0,k|
j + βk2σk [|z0|

σk + (aT/2)σ] + γk

(k = 1, . . . , m). (15)

Let k0 ∈ {1, . . . , m} be such that |z0,k0
| = |z0|. Then, either |z0| < 1 or, using

(15) with k = k0, |z0| ≥ 1 and

α|z0|
n ≤

N−1∑

j=0

Cj
Nη(a, T )N−j |z0|

j + 2σβ[|z0|
σ + η(a, T )σ] + γ,

where

α = min{|α1|, . . . , |αm|}, β = max{β1, . . . , βm}, γ = max{γ1, . . . , γm},

σ = max{σ1, . . . , σm}, η(a, T ) = max{1, aT/2}.

Hence there exists ρ > 0 depending only upon a, T , α, β and γ such that

|z0| < ρ

which, together with (14) gives

|z|∞ < max{1, ρ} +
aT

2
:= R. (16)

Thus Assumption (1) of Lemma 1 holds with Ω = B(R) ⊂ C. System (9) can

be written

fk(z0) := αkznk

0,k + T−1

∫ T

0

hk(t, z0, 0) dt = 0 (k = 1, . . . , m),
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and any of its possible solution is such that either |z0| < 1 or |z0| ≥ 1 and

α|z0|
n ≤ β|z0|

σ + γ. (17)

Consequently, |z0| < max{1, ρ} < R and Assumption (2) of Lemma 1 is satis-

fied. Finally, introducing the homotopy F : C × [0, 1] → C defined by

Fk(z0, µ) = αkznk

0,k +
µ

T

∫ T

0

hk(t, z0, 0) dt (k = 1, . . . , m; µ ∈ [0, 1])

we see that any possible solution z0 of F(z0, µ) = 0 again is such that (17)

holds, so that |z0| < R and, by the homotopy invariance of Brouwer degree,

with

p(z) = (zn1

1 , zn2

2 , . . . , znm
m )

and A is the diagonal matrix

A = diag(α1, . . . , αm),

we obtain

dB [f, B(R), 0] = dB [F(·, 1), B(R), 0] = dB [F(·, 0), B(R), 0]

= dB [Ap, B(R), 0] = dB [p, B(R), 0] = n1 n2 . . . nm,

and Assumption (3) of Lemma 1 holds.

The special case of Theorem 1 with m = 1 states as follows. Consider the

complex-valued periodic equation

(φ(z′))′ = α(t)zn + [F (t, z)]′ + h(t, z, z′), z(0) = z(T ), z′(0) = z′(T ), (18)

where φ : B(a) ⊂ C → C satisfies Assumption (Hφ), n ≥ 1 is an integer,

α ∈ L1, F : [0, T ] × C → C is of class C1 and h : [0, T ] × C
2 → C is a

Carathéodory function.

Corollary 1. Assume that α 6= 0, and that there exist 1 ≤ σ < n and

β, γ ∈ L1 such that

|h(t, z, v)| ≤ β(t)|z|σ + γ(t)

for a.e. t ∈ [0, T ], all z ∈ C and all v ∈ C such that |v| < a. Then problem (18)

has at least one solution.

Remark 1. Such a result does not hold in classical case. The problem

z′′ = −z + sin t, z(0) = z(2π), z′(0) = z′(2π),

has no solution, as shown by multiplying each member by sin t and integrating

the result over [0, 2π].
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Remark 2. Such a result does not hold in the real case. The problem

(φ(u′))′ = u2 + 1, u(0) = u(T ), u′(0) = u′(T )

has no solution, as shown by integrating each member of the differential equa-

tion over [0, 2π] and using the boundary conditions.

Remark 3. The periodic problem (18) is of course equivalent to a periodic

problem for a system of two real-valued differential equation. Getting the re-

quested a priori bounds for the solutions from the real form is less apparent,

showing the help of the complex structure in their obtention.

It follows from Corollary 1 that, for any integer n ≥ 1, any C1 function

F : C → C and any h ∈ L1 the periodic problem for the Liénard-type equation

(φ(z′))′ = α(t)zn + [F (z)]′ + h(t), z(0) = z(T ), z′(0) = z′(T ),

has a solution when α 6= 0. This is in particular the case for the complex-valued

relativistic van der Pol equation

(
z′

1 − |z′|2

)′

+ (β + γz2)z′ + αz = h(t), z(0) = z(T ), z′(0) = z′(T ) (19)

when α 6= 0, β, γ ∈ R and h ∈ L1. When α = 0, problem (19) has no solution

when h 6= 0.

Another consequence of Corollary 1 is that the problem

(φ(z′))′ = αn(t)zn +

n−1∑

k=0

αk(t, z′)zk, z(0) = z(T ), z′(0) = z′(T ),

where n ≥ 1, αn ∈ L1 and the αk : [0, T ] × C → C are Carathéodory functions

(k = 1, . . . , n − 1), has at least one solution if αn 6= 0.

In particular, for any integer n ≥ 1 and any h ∈ L1, the periodic problem

(φ(z′))′ = α(t)zn + h(t), z(0) = z(T ), z′(0) = z′(T )

has a solution for any α ∈ L1 such that α 6= 0, and the periodic problem for

the complex-valued relativistic Rayleigh equation

(
z′

1 − |z′|2

)′

+ βz′ + γz′3 + αz = h(t), z(0) = z(T ), z′(0 = z′(T ),

has a solution when α 6= 0, β, γ ∈ R and h ∈ L1.
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4. The case of first order equations

Let us consider the periodic problem for first order quasilinear systems of the

form

(φ(u))′ = f(t, u), u(0) = u(T ) (20)

where φ : B(a) ⊂ R
n → R

n satisfies Assumption (Hφ) and f : [0, T ]×R
n → R

n

is a Carathéodory function. By solution of (20) we mean a continuous function

u : [0, T ] → B(a) such that φ ◦ u ∈ W 1,1 and equation (20) holds almost

everywhere. We keep the notations of the previous sections, and define the

mapping Nf : C → W 1,1 by

Nf (u)(t) :=

∫ t

0

f(s, u(s)) ds (t ∈ [0, T ]).

The following result is the analog of Lemma 1 for problem (20).

Lemma 2. Assume that the following conditions hold.

(i) There is no solution u0 ∈ ∂B(a) ⊂ R
n of equation

f(u0) := T−1

∫ T

0

f(t, u0) dt = 0.

(ii) dB [f, B(a) ∩ R
n, 0] 6= 0.

Then problem (20) has at least one solution in B(a).

Proof. Let us consider the family of problems

(φ(u))′ = λf(t, u), u(0) = u(T ) (λ ∈ [0, 1]). (21)

We first show that, for λ ∈ (0, 1], problem (21) is equivalent to the fixed point

problem in C

u(t) = φ−1 ◦ [φ(u(0)) − Nf (u)(T ) + λNf (u)(t)] (t ∈ [0, T ]). (22)

Indeed, if u is a solution of (21), then by integrating the differential equation

from 0 to t, and from 0 to T and using boundary conditions, we get

φ(u(t)) − φ(u(0)) − λNf (u)(t) = 0, Nf (u)(T ) = 0,

hence, both equations taking values in supplementary subspaces,

φ(u(t)) = φ(u(0)) − Nf (u)(T ) + λNf (u)(t),
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which is equivalent to (22). Conversely, if u satisfies (22), then u ∈ B(a) (as

φ−1 : R
n → B(a)), and

φ(u(t)) = φ(u(0)) − Nf (u)(T ) + λNf (u)(t) (t ∈ [0, T ]). (23)

Differentiating, we get the differential equation in (21), taking t = 0 we obtain

Nf (u)(T ) = 0, (24)

and taking t = T and using (24) we get

φ(u(T )) = φ(u(0)),

which is equivalent to the boundary condition in (21).

For λ = 0, equation (22) reduces to

u(t) = φ−1 ◦ [φ(u(0)) − Nf (u)(T )] (t ∈ [0, T ])

which means that any solution u = u(0) is constant with u(0) ∈ B(a) ⊂ R
n

and u(0) solution of (24). Conversely, the solutions of (24) in B(a) are the

solutions of (22) with λ = 0.

Now, the operator M : C × [0, 1] → B(a) ⊂ C defined by

M(u)(t) := φ−1 ◦ [φ(u(0)) − Nf (u)(T ) + λNf (u)(t)] (t ∈ [0, T ])

is easily seen to be completely continuous on C, using Arzela-Ascoli’s theorem.

Hence, if Assumption (i) holds, we have

u 6= M(u, λ) ∀ (u, λ) ∈ ∂B(a) × [0, 1],

and the homotopy invariance and reduction property of Leray-Schauder degree

dLS , together with Brouwer degree results for homeomorphisms (see e.g. [6]),

imply, with P : C → C ∩ R
n, u 7→ u(0), that

dLS [I −M(·, 1), B(a), 0] = dLS [I −M(·, 0), B(a), 0]

= dLS [I − φ−1 ◦ {φ ◦ P − Nf (·)(T )}, B(a), 0]

= dB [(I− φ−1 ◦ {φ − Nf (·)(T )})|Rn , B(a) ∩ R
n, 0]

= ±dB [φ ◦ {I − φ−1 ◦ [φ − Nf (·)(T )], B(a), 0]

= ±dB [Nf (·)(T ), B(a), 0] = ±dB [f, B(a), 0] 6= 0,

using Assumption (ii). The result follows from the existence property of Leray-

Schauder’s degree.

Let us apply Lemma 2 to the periodic problem for the complex-valued

differential equation

(φ(z))′ = α(t)zn + h(t, z), z(0) = z(T ) (25)

where φ : B(a) ⊂ C → C satisfies condition (Hφ), α ∈ L1, n ≥ 1 is an integer,

and h : [0, T ] × C → C is a Carathéodory function.
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Theorem 2. Assume that α 6= 0 and that there exists 0 ≤ σ < n and β ≥
0, γ ≥ 0 such that

(a)
∣∣∣T−1

∫ T

0
h(t, z) dt

∣∣∣ ≤ β|z|σ + γ for all z ∈ B(a) ⊂ C.

(b) the unique positive root u0 of equation

|α|un = βuσ + γ

is such that u0 < a.

Then problem (25) has at least one solution z.

Proof. With the notations of Lemma 2, we have

f(z0) = αzn
0 + T−1

∫ T

0

h(t, z0) dt,

so that any possible zero z0 of f is such that

|α||z0|
n ≤ β|z0|

σ + γ, (26)

and hence, by Assumption (b), |z0| < a. Now, let us consider the homotopy

F : C × [0, 1] → C, (z0, µ) 7→ αzn
0 + µT−1

∫ T

0

h(t, z0) dt (µ ∈ [0, 1]).

If F(z0, µ) = 0, then z0 satisfies inequality (26) and hence |z0| < a. By the

homotopy invariance of Brouwer degree, we get , with p(z) := zn,

dB [f, B(a), 0] = dB [F(·, 1), B(a), 0] = dB [F(·, 0), B(a), 0]

= dB [αp, B(a), 0] = dB [p, B(a), 0] = n.

The result follows from Lemma 2.

Corollary 2. Let φ : B(a) → C satisfy condition (Hφ), n ≥ 1 be an integer

and α ∈ L1. Then the periodic problem

(φ(z))′ = α(t)zn + h(t), z(0) = z(T ) (27)

has at least one solution when α 6= 0 and |h| < |α|an.

In particular, the problem

(
z√

1 − |z|2

)′

= αzn + h(t), z(0) = z(T ) (28)
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has at least one solution when α ∈ C \ {0} and |h| < |α|. This result is sharp

because if (28) has a solution z, then letting

y =
z√

1 − |z|2
so that z =

y√
1 + |y|2

we have

y′ = α

(
y√

1 + |y|2

)n

+ h(t), y(0) = y(T ).

Hence, taking the mean value of the differential equation and using the bound-

ary conditions,

0 = αT−1

∫ T

0

(
y(t)√

1 + |y(t)|2

)n

dt + h,

which gives

|h| ≤ |α|T−1

∫ T

0

(
|y(t)|√

1 + |y(t)|2

)n

dt < |α|.

Remark 4. A result like Corollary 2 does not hold in the classical case

z′ = α(t)zn + h(t), z(0) = z(T ),

as shown by

z′ = iz + eit, z(0) = z(2π)

which has no solution, because if it were the case, we would have

(e−itz)′ = e−itz′ − ie−itz = 1, z(0) = z(2π)

leading to a contradiction by integration over [0, 2π].

Remark 5. By analogy with the results of Section 3, the reader will easily

state and proof the extension of Theorem 2 to complex-valued systems of the

form

(φk(z))′ = αk(t)znk

k + hk(t, z), z(0) = z(T ) (k = 1, . . . , m).
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1. Introduction

The question of the continuity properties of the Lyapunov exponents of a linear

differential system under perturbation of the coefficient matrix is of intrinsic

interest and is of importance in various applications. Many important results

concerning this theme are due to the “Moscow school” centered around the

Nemytskii seminar; we mention some representative papers ([3, 4, 26]) and

refer especially to the book [5] by Bylov-Vinograd-Grobman-Nemytskii. In

the works of the Moscow school, attention is not restricted to the Lyapunov

exponents; other quantities such the upper and lower characteristic indexes and

the Bohl exponent are also studied in a systematic way, both from the point of

view of continuity and from that of intrinsic properties.

More recent work of Bochi-Viana [2] and of Bessa [1] permits one to make

statements concerning the discontinuity of the Lyapunov exponents of certain

topological/ergodic families of linear systems. The paper [1] adapts to the

continuous setting certain important results of [2] for discrete cocycles. The

basic object of study in [1, 2] is the set of Lyapunov exponents determined

by the Oseledets theorem relative to a discrete or continuous cocycle and an

ergodic measure defined on a compact metric flow. Generally speaking, it is

shown that, if the cocycle does not admit a dominated splitting (a.k.a. an

exponential separation), and if the Lyapunov exponents are not all equal, then



90 R. JOHNSON AND L. ZAMPOGNI

those exponents do not vary continuously under C0-perturbation of the cocycle.

See also ([28, 30]) for results in this vein.

In a somewhat different vein, Furman [14] studied the case of a discrete

cocycle over a strictly ergodic flow. He considered the time averages which

define the maximal Lyapunov exponent of the cocycle; that exponent is well-

defined by the subadditive ergodic theorem. He shows that, if the cocycle has

dimension d = 2, and if the time averages converge uniformly with respect to

the phase point of the flow, then the maximal Lyapunov exponent varies con-

tinuously if the cocycle is perturbed. If in addition the flow is equicontinuous,

then the converse statement holds as well.

In the present paper, our point of departure is similar to that of [14], though

we work with the usual Lyapunov exponents and not with the maximal expo-

nent. We assume that, for each phase point in the flow, each Lyapunov expo-

nent is defined by a true limit (and not by a non-convergent limit superior).

Let d ≥ 2 be the dimension of the cocycle. We show that, if the flow is minimal,

and if the Oseledets spectrum of the cocycle is simple (i.e., consists of d dis-

tinct numbers), then the cocycle has the discrete spectrum property of Sacker

and Sell. If d = 2, we do not need to assume that the Oseledets spectrum is

simple (but need slightly more information concerning the limits defining the

Lyapunov exponents). We are able to strengthen the continuity result of [14]

in the sense that the compact metric flow is minimal but need not be strictly

ergodic.

We wish to emphasize that our results will be proved by using quite classi-

cal techniques in the theory of linear differential and discrete systems. These

include the method of Krylov and Bogoliubov for constructing invariant mea-

sures, and the Lyapunov-Perron triangularization procedure. We will also

adapt a small part of that proof of the Oseledets theorem which is based on

those methods. Beyond that, we will apply some specific results, including

an ergodic oscillation result of [16], and two statements of [10] which concern

smoothing of real cocycles and the untwisting of invariant vector bundles.

The paper is organized as follows. In Section 2 we prepare the ground by

recalling the statement of the Oseledets theorem, and some elements of the

spectral theory of Sacker and Sell for linear cocycles. In Section 3 we work out

some consequences, regarding the continuity of Lyapunov exponents, of the

hypothesis that a cocycle Φ have discrete spectrum. These results are (mostly)

known, but perhaps not well -known.We also discuss a specific situation in

which the results of [1, 2] imply the discontinuity of the Lyapunov exponents

under a C0-perturbation of the cycle.

In Section 4 we present our main result. We show that, if Φ is a cocycle over

a compact minimal flow of dimension d = 2, and if the time averages which

define its Lyapunov exponents all converge, then Φ has discrete spectrum. If

the dimension d of Φ is greater than two, we encounter technical problems



REMARKS CONCERNING LYAPUNOV EXPONENTS 91

when attempting to prove the above result. We are, however, able to prove a

theorem which has the following corollary. Suppose that (Ω, {τt}) is strictly

ergodic with unique ergodic measure µ. Suppose that the cocycle Φ has simple

Oseledets spectrum with respect to µ. Finally, suppose that the time averages

which define the Lyapunov exponents of Φ all converge. Then Φ has discrete

spectrum, and in fact the Sacker-Sell spectrum of Φ is simple. In classical

language, this means that Φ has the Lillo property [23].

We finish this Introduction by listing some notational conventions which

will be in force throughout the paper. First, the brackets 〈 , 〉 will indicate

the Euclidean inner product on R
d. Second, the symbol | · | will denote a norm

whose significance will be clear from the context if it is not explicitly defined.

Third, we let GL(Rd) denote the set of invertible d × d matrices. Fourth, we

let L(Rd) denote the set of all d × d real matrices with the operator norm: if

A ∈ L(Rd), then |A| = sup{|Ax| | x ∈ R
d, |x| = 1}.

2. Preliminaries

In this section, we introduce basic concepts and results, and express in a precise

way the issue to be discussed in this paper.

Let Ω be a compact metric space, and let T be either the reals (T = R) or

the integers (T = Z). For each t ∈ T , let τt : Ω → Ω be a continuous map. We

say that the family {τt | t ∈ T} defines a topological flow on Ω if the following

conditions are satisfied:

(i) τ0(ω) = ω for all ω ∈ Ω;

(ii) τt ◦ τs = τt+s for all t, s ∈ T ;

(iii) the map τ : Ω × T → Ω : (t, ω) 7→ τt(ω) is continuous.

It is clear that, if these conditions are satisfied, then for each t ∈ T , the map

τt : Ω → Ω is a homeomorphism and (τt)
−1 = τ−t (t ∈ T ). If T = Z, then the

topological flow {τt | t ∈ Z} is generated by τ1, in the sense that τn = (τ1)
n

if n > 0 and τn = (τ−1)
−n if n < 0. We will refer to a pair (Ω, {τt | t ∈ T})

consisting of a compact metric space Ω and a flow {τt | t ∈ T} on Ω as a

compact metric flow.

Important examples of flows are obtained via the following construction.

Let T
g = R

g/Z
g be the g-dimensional torus, and let γ1, . . . , γg be rationally

independent numbers. Let θ1, . . . , θg be 1-periodic coordinates on T
g. If T = R

or Z, set τt(θ1, . . . , θg) = (θ1 + tγ1, . . . , θg + tγg) (t ∈ T ). Then {τt | t ∈ T} is

a flow on T
g, called a Kronecker flow.

A compact metric flow (Ω, {τt}) is called minimal or Birkhoff recurrent if

Ω is nonempty and for each ω ∈ Ω, the orbit {τt(ω) | t ∈ T} is dense in Ω. A

Kronecker flow as defined above on Ω = T
g is minimal. Actually a Kronecker
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flow satisfies a stronger property, namely that of Bohr almost periodicity : thus,

in addition to minimality, there is a metric d on Ω, which is compatible with

its topology, such that d(τt(ω1), τt(ω2)) = d(ω1, ω2) for all points ω1, ω2 ∈ Ω

and all t ∈ T . Clearly the Euclidean metric d on Ω = T
g satisfies this last

condition.

Let (Ω, {τt}) be a compact metric flow, and let µ be a regular Borel prob-

ability measure on Ω (thus in particular µ(Ω) = 1). The measure µ is called

{τt}-invariant if µ(τt(B)) = µ(B) for each Borel set B ⊂ Ω and t ∈ T . An in-

variant measure µ is called ergodic if it satisfies the following indecomposibility

condition: whenever B ⊂ Ω is a Borel set and µ(τt(B)∆B) = 0 for all t ∈ T ,

there holds µ(B) = 0 or µ(B) = 1 (∆ = symmetric difference of sets).

A classical construction of Krylov and Bogoliubov ([20, 29]) shows that a

compact metric flow (Ω, {τt}) always admits an ergodic measure µ. If (Ω, {τt})
is minimal and admits exactly one ergodic measure, then it is called strictly

ergodic. A Kronecker flow {τt} on Ω = T
g is strictly ergodic: the unique ergodic

measure is the normalized Haar measure on T
g.

Next we discuss cocycles. A T -cocycle over a compact metric flow (Ω, {τt})
with values in the general linear group GL(Rd) is a continuous map Φ : Ω×T →
GL(Rd) such that:

(i) Φ(ω, 0) = I= identity for all ω ∈ Ω;

(ii) Φ(ω, t + s) = Φ(τt(ω), s)Φ(ω, t) for all ω ∈ Ω and t, s ∈ T .

One obtains an important class of real cocycles (T = R) from appropriate

families of linear nonautonomous differential systems. Let (Ω, {τt}) be a com-

pact metric real flow, and let A : Ω → L(Rd) be a continuous function. Let

Φ(ω, t) be the fundamental matrix solution of the ODE

dx

dt
= A(τt(ω))x (x ∈ R

d); (1ω)

thus Φ(ω, 0) = I and
d

dt
Φ(ω, t) = A(τt(ω))Φ(ω, t) for all ω ∈ Ω and t ∈ T = R.

It can be checked that Φ is a real cocycle.

Actually the general real cocycle can be obtained in this way, up to “coho-

mology”. We explain this. Let (Ω, {τt}) be a compact metric real flow, and

let Ψ : Ω × R → GL(Rd) be a real cocycle. Then there exist continuous func-

tions A : Ω → L(Rd) and F : Ω → GL(Rd) such that, if Φ(ω, t) is the cocycle

generated by the family (1ω) corresponding to A(·), then

Ψ(ω, t) = F (τt(ω))Φ(ω, t)F (ω)−1 (ω ∈ Ω, t ∈ R).

See [10] for a proof; in fact one defines F (ω) =
1

ε

∫ ε

0

Φ(ω, s)ds for sufficiently

small ε. The function F is called a cohomology between Ψ and Φ. It turns out
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that the properties of a real cocycle which are of interest to us are preserved

under a cohomology. So we will always be able to assume that the real cocycles

which we study are derived from a family (1ω) of linear differential systems in

the manner described above.

An integer cocycle (T = Z) is obtained from a nonautonomous difference

equation, as follows. Set A(ω) = Φ(ω, 1), τ(ω) = τ1(ω), and consider

xn+1 = A(τn(ω))xn (n ∈ Z, x ∈ R
d). (2ω)

Then the family of difference equations (2ω) generates the cocycle Φ in the

sense that

Φ(ω, n) = A(τn−1(ω)) . . . A(ω) n > 0,

Φ(ω, 0) = I,

Φ(ω, n) = A−1(τn−1(ω)) . . . A−1(τ−1(ω)) n < 0

for all ω ∈ Ω. Note that an integer cocycle Φ(ω, n) is determined once Φ(ω, 1)

is known.

Next let T = R or Z, and let (Ω, {τt}) be a compact metric flow. Let

Φ : Ω × T → GL(Rd) be a cocycle. We recall the definition and some basic

properties of the Lyapunov exponents of Φ. Fix ω ∈ Ω. For each 0 6= x ∈ R
d,

let

β(ω, x) = lim sup
t→∞

1

t
ln |Φ(ω, t)x|.

The number β(ω, x) is called a Lyapunov exponent of Φ at ω. It is well-known

that, as x varies over R
d \ {0}, β(ω, x) takes on only finitely many values, say

β1(ω) ≤ β2(ω) ≤ · · · ≤ βs(ω) where 1 ≤ s ≤ d. Moreover, for each 1 ≤ r ≤ s,
one has that Wr(ω) = {0} ∪ {0 6= x ∈ R

d | β(ω, x) ≤ βr(ω)} is a vector

subspace of R
d. One says that {0} = W0(ω) ⊂ W1(ω) ⊂ · · · ⊂ Ws(ω) = R

d is

the filtration associated to Φ at ω. Set d1 = dimW1(ω), . . . , dr = dimWr(ω)−
dimWr−1(ω) (2 ≤ r ≤ s); the integer dr is called the multiplicity of βr(ω)

(1 ≤ r ≤ s).
Continuing the discussion, we now define the upper Lyapunov exponent of

Φ at ω to be

β∗(ω) = lim sup
t→∞

1

t
ln |Φ(ω, t)|.

It is clear that βs(ω) ≤ β∗(ω) for each ω ∈ Ω. According to the regularity theory

of Lyapunov [24], one has the following. Let dr be the multiplicity of βr(ω)

(1 ≤ r ≤ s), and suppose that d1β1(ω)+ · · ·+dsβs(ω) = lim inf
t→∞

1

t
ln det Φ(ω, t).

Then βs(ω) = β∗(ω), and the limit lim
t→∞

1

t
ln |Φ(ω, t)x| exists for each 0 6= x ∈

R
d. One says that Φ is regular at ω. The regularity concept is important in

the study of the stability of x = 0 relative to nonlinear perturbations of Φ.
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There is a considerable body of Russian literature concerning the theory

of the Lyapunov exponents, as well as other exponents related to a T -cocycle,

namely the central exponents and the Bohl exponents. We will not discuss

these important concepts, but refer the reader to [5].

It is useful to consider the Lyapunov exponents associated with the exterior

products of the cocycle Φ. For this, let Λ1R
d ∼= R

d, Λ2R
d, . . . ,ΛdR

d ∼= R be

the exterior product spaces of R
d. These spaces have natural inner products

and norms induced by the Euclidean inner product and Euclidean norm in R
d;

(see [13, Chapter 1]). The cocycle Φ induces a cocycle with values in GL(Rd)

for each 1 ≤ k ≤ d, via the formula ΛkΦ(ω, t)(x1 ∧ · · · ∧ xk) = Φ(ω, t)x1 ∧
· · · ∧ Φ(ω, t)xk. Each of these cocycles admits Lyapunov exponents which are

analogues of these introduced above for Φ. In this paper, we will only make

use of the upper Lyapunov exponents of these cocycles, which are determined

as follows

λk(ω) = lim sup
t→∞

1

t
ln |ΛkΦ(ω, t)| (ω ∈ Ω, 1 ≤ k ≤ d).

Of course, λ1(ω) = β∗(ω) and λk(ω) = lim sup
t→∞

1

t
ln det Φ(ω, t).

Let us state a corollary of a result of Ruelle ([36, Proposition 1.3]).

Proposition 2.1. Let T = R or Z, let (Ω, {τt}) be a compact metric flow, and

let Φ : Ω × T → GL(n, R) be a T -cocycle. Let ω ∈ Ω. Suppose that, for each

k = 1, 2, . . . , d, the following limit exists:

lim
t→∞

1

t
ln |Λk(ω, t)| = λk(ω).

Let β1(ω) < . . . < βs(ω) be the Lyapunov exponents of Φ at ω, and let {0} =

W0(ω) ⊂ W1(ω) ⊂ · · · ⊂ Ws(ω) = R
d be the corresponding filtration. Then if

1 ≤ r ≤ s and if 0 6= x ∈ Wr(ω) \ Wr−1(ω), one has

lim
t→∞

1

t
ln |Φ(ω, t)x| = βr(ω) (1 ≤ r ≤ s).

Thus the limit lim
t→∞

1

t
ln |Φ(ω, t)x| exists for each 0 6= x ∈ R

d.

We now recall certain results concerning T -cocycles, namely the Oseledets

theorem [31] and the spectral theorem of Sacker and Sell [38].

Theorem 2.2 (Oseledets). Let T = R or Z, let (Ω, {τt}) be a compact metric

flow, and let µ be a {τt}-ergodic measure on Ω. Let Φ : Ω × T → GL(Rd)

be a T -cocycle over (Ω, {τt}). If ω ∈ Ω, let β1(ω), . . . , βs(ω) be the Lyapunov

exponents of Φ at ω.
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There is a {τt}-invariant µ-measurable subset Ω1 ⊂ Ω with µ(Ω1) = 1, such

that, if ω ∈ Ω1, then R
d admits a direct sum decomposition

R
d = V

(m)
1 (ω) ⊕ V

(m)
2 (ω) ⊕ · · · ⊕ V (m)

s (ω),

such that the following statements are valid. First, if 0 6= x ∈ V
(m)
r (ω), then

lim
t→±∞

1

t
ln |Φ(ω, t)x| = βr(ω);

note the two-sidedness of the limit. The dimension of V
(m)
r (ω) equals the mul-

tiplicity dr of βr(ω). Second, the number s and the multiplicities d1, . . . , ds do

not depend on ω ∈ Ω1, and moreover βr(ω) is constant on Ω1 (1 ≤ r ≤ s).

Third, the correspondence ω 7→ V
(m)
r (ω) is µ-measurable in the Grassmann

sense (1 ≤ r ≤ s). Fourth, the “measurable bundle”

V (m)
r =

⋃

ω∈Ω1

{
(ω, x) | x ∈ V (m)

r (ω)
}

is Φ invariant in the sense that, if ω ∈ Ω1, t ∈ T and x ∈ V
(m)
r (ω), then

(τt(ω), Φ(ω, t)x) ∈ V
(m)
r .

This is not the most general form of the Oseledets theorem but it will be

sufficient for our purposes. We note that the “µ-measurability” of ω 7→ V
(m)
r (ω)

has the following meaning. – For each ω ∈ Ω1, V
(m)
r (ω) defines an element of

the Grassmannian manifold Gr(d, dr) of dr-dimensional subspaces of R
d; the

mapping Ω1 7→ Gr(d, dr) : ω 7→ V
(m)
r (ω) is µ-measurable. – The numbers

β1 < . . . < βs, which do not depend on ω ∈ Ω1, are collectively referred to as

the Oseledets spectrum or µ-spectrum of Φ.
The Oseledets theorem is a basic result in the theory of real or discrete

cocycles. It has been proved using two distinct approaches. One method of

proof uses the triangularization technique of Lyapunov-Perron; see [18, 31].

The other approach makes use of the subadditive ergodic theorem of Kingman

[15, 36]. Both methods offer advantages and important information.

Next we review some aspects of the Sacker-Sell spectral theory, which taken

together can be thought of as a continuous analogue of the Oseledets theory.

First recall that a T -cocycle Φ over a compact metric flow (Ω, {τt}) is said to

have an exponential dichotomy if there are positive constants k > 0, γ > 0 and

a continuous, projection-valued function ω 7→ Pω = P 2
ω : Ω → L(Rd) such that

the following estimates hold:

|Φ(ω, t)PωΦ(ω, s)−1| ≤ ke−γ(t−s) t ≥ s

|Φ(ω, t)(I − Pω)Φ(ω, s)−1| ≤ keγ(t−s) t ≤ s
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for all ω ∈ Ω and t, s ∈ T .

The following basic theorem was proved by Sacker-Sell [37] and Selgrade [39].

Recall that a compact metric flow (Ω, {τt}) is said to be chain recurrent [7] if

for each ω ∈ Ω, ε > 0 and T > 0, there are points ω = ω0, ω1, . . . , ωN = ω
and times t1 > T, . . . , tN > T such that d(τti

(ωi−1), ωi) ≤ ε (1 ≤ i ≤ N). A

minimal flow (Ω, {τt}) is chain recurrent.

Theorem 2.3. Suppose that the compact metric flow (Ω, {τt}) is chain recur-

rent, where t ∈ T = R or Z. Let Φ : Ω× T → GL(Rd) be a T -cocycle. Suppose

that, for each ω ∈ Ω, the condition sup
t∈T

|Φ(ω, t)x| < ∞ implies that x = 0;

i.e., the cocycle Φ admits no nontrivial “bounded orbits”. Then Φ admits an

exponential dichotomy over Ω.

Let us define the dynamical (or Sacker-Sell ) spectrum σΦ of the T -cocycle

Φ over the compact metric flow (Ω, {τt}) to be {λ ∈ R | the translated cocycle

eλtΦ(ω, t) does not admit an exponential dichotomy over Ω}. Let us also recall

that a compact metric flow (Ω, {τt}) is said to be invariantly connected [21] if Ω

cannot be expressed as the union of two nonempty disjoint compact invariant

subsets. We state the spectral theorem of Sacker-Sell.

Theorem 2.4 ([38]). Let (Ω, {τt}) be a compact metric invariantly connected

flow, where T = R or Z. Let Φ : Ω × T → GL(Rd) be a T -cocycle. Then

the dynamical spectrum σΦ of Φ is a disjoint union of finitely many compact

intervals:

σΦ = [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [aq, bq]

where 1 ≤ q ≤ d and −∞ < a1 ≤ b1 < a2 ≤ . . . < aq ≤ bq < ∞. To each

interval [ap, bp] there corresponds a Φ-invariant topological vector subbundle

V
(c)
p ⊂ Ω × R

d with the property that

(ω, x) ∈ V
(c)
p and x 6= 0~w�

ap ≤ lim inft→∞

1

t
ln |Φ(ω, t)x| ≤ lim supt→∞

1

t
ln |Φ(ω, t)x| ≤ bp

and

ap ≤ lim inft→−∞

1

t
ln |Φ(ω, t)x| ≤ lim supt→−∞

1

t
ln |Φ(ω, t)x| ≤ bp

(1 ≤ p ≤ q).

One has further

Ω × R
d = V

(c)
1 ⊕ V

(c)
2 ⊕ · · · ⊕ V (c)

q (Whitney sum).
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We will emphasize the following concept:

Definition 2.5. Let T = R or Z, let (Ω, {τt}) be a compact metric flow, and let

Φ be a T -cocycle over (Ω, {τt}). Suppose that (Ω, {τt}) is invariantly connected.

Then Φ is said to have discrete spectrum if each spectral interval [ap, bp] reduces

to a point: ap = bp for each 1 ≤ p ≤ q.

The discrete spectrum concept is related to but weaker than that of the

“Lillo property” [23]. See [19] in this regard.

In Section 3, we will state and prove some results to the effect that, if a

T -cocycle Φ has discrete spectrum, then its Lyapunov exponents vary contin-

uously under perturbation of Φ. We claim no particular originality for these

results as many statements of this type appear in the literature; e.g., [4, 26]. We

do wish to emphasize our use of the Krylov-Bogoliubov method in our proofs,

and the fact that one result (Proposition 3.4) appears to be more general than

most. We also note that quite recent papers [1, 2, 14] have taken up the theme

of the continuity of Lyapunov exponents, so it may not be inappropriate if we

do so as well.

In Section 4, we give conditions which are sufficient in order that a cocycle

Φ have discrete spectrum. One of our results (Theorem 4.4) generalizes a result

of Furman [14] when d = 2.

To our knowledge, the connection between the expressibility of β(ω, x) as

a limit for all ω ∈ Ω, 0 6= x ∈ R
d, and the discrete spectrum property has

not received much attention in the literature. However that may be, the said

connection has turned out to be important in the spectral theory of quasi-

crystals. In this context d = 2. For example, in the paper [8] by Damanik-

Lenz, the authors use the so-called avalance principle and detailed properties

of certain strictly ergodic shift flows to verify that lim
t→∞

1

t
ln |Φ(ω, t)| exists for

all ω ∈ Ω. One can then use Proposition 2.1 to show that β(ω, x) is expressible

as a limit for all ω ∈ Ω, 0 6= x ∈ R
2. In [8], the authors use the Furman result

mentioned above to show that Φ has discrete spectrum; that result is subsumed

in ours. They go on to show that, for certain quasicrystals, the spectrum of

the associated Schrödinger operator has zero Lebesgue measure and is purely

singular and continuous.

Perhaps our results will be useful in the study of higher-dimensional spectral

problems of Atkinson type. We plan to investigate this issue in future work.

3. Discrete spectrum and Lyapunov exponents

In this section, we derive some continuity results for the Lyapunov exponents

of a T -cocycle Φ (T = R or Z) when Φ has discrete spectrum. As stated above,

we make no claims concerning the originality of these results, as there is a
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very substantial literature on the subject. On the other hand, we think it is

appropriate to present them here since they generalize some theorems in the

recent literature. Also our proofs differ from some others in our systematic use

of the classical Krylov-Bogoliubov method.

We begin the discussion with a simple consequence of Theorem 2.4.

Proposition 3.1. Let T = R or Z, let (Ω, {τt}) be a compact metric flow which

is invariantly connected, and let Φ : Ω× T → GL(Rd) be a T -cocycle. Suppose

that the dynamical spectrum σΦ of Φ is discrete:

σΦ = {a0 < a2 < . . . < aq} (1 ≤ q ≤ d).

Then for each ω ∈ Ω and 0 6= x ∈ R
d the limits lim

t→±∞

1

t
ln |Φ(ω, t)x| ex-

ist. In fact, if (ω, x) ∈ V
(c)
p then lim

t→±∞

1

t
ln |Φ(ω, t)x| = ap (1 ≤ p ≤ q),

while if x /∈ V
(c)
p (ω) for all p = 1, 2, . . . , q, then lim

t→∞

1

t
ln |Φ(ω, t)x| = am and

lim
t→−∞

1

t
ln |Φ(ω, t)x| = al where l ≤ m and x ∈ V

(c)
l (ω) ⊕ · · · ⊕ V

(c)
m (ω). .

Actually, if one restricts attention to the dynamics of Φ on a subbundle

V
(c)
p , then the limits defining the Lyapunov exponents converge uniformly, in

a sense which we now make precise. We first consider real cocycles, and carry

out a preliminary discussion concerning them.

Let L be the usual projective space of lines through the origin in R
d, so that

L is a compact (d− 1)-dimensional manifold. Let B = Ω×L. We assume that

the R-cocycle Φ = Φ(ω, t) is defined by the family of linear ordinary differential

equations

x′ = A(τt(ω))x ω ∈ Ω, x ∈ R
d (3ω)

where A : Ω → L(Rd) is a continuous function. Define a flow {τ̂t | t ∈ R}
on B by setting τ̂t(ω, l) = (τt(ω), Φ(ω, t)l) for ω ∈ Ω, l ∈ L. Then define

f : B → R : f(ω, l) = 〈A(ω)x, x〉/〈x, x〉 where 0 6= x ∈ l. It is easy to check

that, if x ∈ R
d has norm 1, and if l ∈ L is the line containing x, then

ln |Φ(ω, t)x| =

∫ t

0

f(τ̂t(ω, l))ds. (4)

This formula allows one to use ergodic theory (in particular the method of

Krylov-Bogoliubov) to study the limiting expressions which define Lyapunov

exponents.

Proposition 3.2. Let (Ω, {τt, t ∈ R}) be a compact metric invariantly con-

nected flow, and let Φ : Ω × R → GL(Rd) be a real cocycle. Let [ap, bp] be

the p-th interval in the dynamical spectrum σΦ of Φ, and let the corresponding
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spectral subbundle be V
(c)
p (1 ≤ p ≤ q). Suppose that [ap, bp] degenerates to a

point for some p ∈ {1, 2, . . . , q}: thus ap = bp. Then

lim
t→±∞

1

t
ln |Φ(ω, t)x| = ap

where the limit is uniform with respect to pairs (ω, x) ∈ V
(c)
p with |x| = 1.

Proof. It follows from (4) that it is sufficient to prove that
1

t

∫ t

0

f(τ̂s(b))ds

converges uniformly to ap with respect to b = (ω, l) ∈ Bp = {(ω, l) | l ⊂

V
(c)
p (ω)}. We do this by using arguments of the classical Krylov-Bogoliubov

type (see, e.g., [29]).

Suppose for contradiction that, for some ε > 0, there exist a sequence

{tn} ⊂ R with |tn| → ∞ and a sequence {bn = (ωn, ln)} ⊂ Bp such that

∣∣∣∣
1

tn

∫ tn

0

f(τ̂s(bn))ds − ap

∣∣∣∣ ≥ ε (n = 1, 2, . . . ).

Let C(Bp) be the space of continuous, real-valued functions on Bp with the uni-

form norm. Let F ⊂ C(Bp) be a countable dense set: F = {f1, f2, . . . , fk, . . . }
with f1 = f . Using a Cantor diagonal argument, we can determine a subse-

quence {tm} of {tn} such that

lim
m→∞

1

tm

∫ tm

0

fk(τ̂s(bm))ds

exists for k = 1, 2, . . . . Call the limit ν∗(fk) (1 ≤ k < ∞). One shows easily

that ν∗ extends to a bounded nonnegative linear functional on C(Bp), which

we also denote by ν∗. It is clear that ν∗(c) = c for each constant function c
on Bp. This functional is {τ̂t}-invariant in the sense that ν∗(g ◦ τ̂t) = ν∗(g) for

each g ∈ C(Bp) and each t ∈ R. Using the Riesz representation theorem, one

can find a {τ̂t}-invariant measure ν on Bp such that

∣∣∣∣∣

∫

Bp

fdν − ap

∣∣∣∣∣ ≥ ε.

We claim that there exists a {τ̂t}-ergodic measure e on Bp such that

∣∣∣∣∣

∫

Bp

fde − ap

∣∣∣∣∣ ≥ ε.

To see this, use the Krein-Mil’man theorem to represent the weak-∗ compact

convex set I of {τ̂t}-invariant linear functionals on Bp as the closed convex hull
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of its set E of extreme points. It is easy to see that e∗ ∈ E if and only if its

associated measure e is ergodic. By the Choquet representation theorem [35]:

∫

Bp

fdν =

∫

E

(∫

Bp

fde∗

)
dm(e∗)

where m is the representing measure of ν∗ on E. It is now clear that e can be

found.

Changing notation, let ν be a {τ̂t}-ergodic measure on Bp such that

∣∣∣∣∣

∫

Bp

fdν − ap

∣∣∣∣∣ ≥ ε.

By the Birkhoff ergodic theorem there is a set B∗ ⊂ Bp of full ν-measure such

that, if b∗ ∈ B∗, then

1

t

∫ t

0

f(τ̂s(b∗))ds →

∫

Bp

fdν 6= ap

as t → ∞. This contradicts Proposition 3.1 and completes the proof of Propo-

sition 3.2.

Remark 3.3. (a) We can prove the T = Z-analogue of Proposition 3.2 in the

following way. Set A(ω) = Φ(ω, 1), then define f∗ : Bp → R : f∗(ω, l) =
1

2
ln〈A(ω)x, A(ω)x〉 for each (ω, l) ∈ Bp and x ∈ l, |x| = 1. One can

check that Proposition 3.2 and its proof remain valid if one considers an

integer cocycle Φ and if f is substituted with the above function f∗.

(b) Let T = R or Z, let (Ω, {τt}) be an invariantly connected compact metric

flow, and let Φ : Ω×T → GL(Rd) be a T -cocycle for which the hypotheses

of Proposition 3.2 are valid. Let Φ∗(ω, t) be the restriction of Φ(ω, t) to

V
(c)
p , so that for each ω ∈ Ω and t ∈ T one has the linear transformation

Φ∗(ω, t) : V
(c)
p (ω) → V

(c)
p (τt(ω)). Define the norm |Φ∗(ω, t)| in the usual

way. Then

lim
t→±∞

1

t
ln |Φ∗(ω, t)| = ap,

where the limit is uniform in ω ∈ Ω. This statement is a consequence of

Proposition 3.2, because for each ω ∈ Ω and t ∈ R, there exists a unit

vector x ∈ V
(c)
p (ω) such that |Φ∗(ω, t)| = |Φ∗(ω, t)x|.

(c) By combining Propositions 3.1 and 3.2, one obtains a continuity result

for the Lyapunov exponents of Φ with respect to variation of ω ∈ Ω. In

fact, let {β1(ω), . . . , βs(ω)} be the Lyapunov exponents of Φ at ω, with
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multiplicities d1, . . . , ds. If the hypotheses of Propositions 3.1 and 3.2 are

valid, then the multiplicities and the exponents βr(ω) themselves do not

depend on ω ∈ Ω.

Now we consider another type of continuity result for the Lyapunov ex-

ponents of a T -cocycle Φ. We will see that it is possible to vary the matrix

function A(ω) in a non-uniform way, and still retain continuous variation of the

exponents. We formulate a result along these lines which illustrate the power

of a perturbation theorem due to Sacker and Sell ([38]; see also Palmer [34]).

For this, let Ω be the g-torus T
g = R

g/Z
g. Let γ1, . . . , γg be rationally

independent numbers. Consider the Kronecker flow {τt} on T
g defined by

γ = (γ1, . . . , γg). Thus if ω ∈ R
g/Z

g, then τt(ω) = ω + γt (t ∈ R).

Next, let A : T
g → L(Rd) be a continuous function. Let Φ(ω, t) be the

cocycle defined by the family of differential systems (1ω):

x′ = A(τt(ω))x.

Suppose that Φ has discrete spectrum; σΦ = {a1 < a2 < . . . < aq}.
Let γ(n) be a sequence in R

g such that γ(n) → γ. Each γ(n) defines a flow

{τ
(n)
t } on T

g via the formula τ
(n)
t (ω) = ω + γ(n)t. However these flows need

not be minimal because we do not assume that the components γ
(n)
1 , . . . , γ

(n)
g

of γ(n) are rationally independent. Let Φ(n)(ω, t) be the cocycle generated by

the family of linear systems

x′ = A(τ
(n)
t (ω))x.

Note that, if γ(n) 6= γ for n = 1, 2, . . . , then A(τ
(n)
t (ω)) certainly does not

converge uniformly in t ∈ R to A(τt(ω)) (ω ∈ Ω). Nevertheless we have the

following result.

Proposition 3.4. For each ω ∈ Ω and n ≥ 1, let {β
(n)
r (ω) | 1 ≤ r ≤ s = s(n)}

be the Lyapunov exponents of Φ(n). Also let β
(n)
∗ (ω) be the upper Lyapunov

exponent of Φ(n) at ω (ω ∈ Ω, n ≥ 1).

Given ε > 0, there exists n0 ≥ 1 such that, if n ≥ n0, then each Lyapunov

exponent β
(n)
r (ω) is in the ε-neighborhood of σΦ (ω ∈ Ω) and β

(n)
∗ (ω) is in the

ε-neighborhood of aq.

We sketch the proof of Proposition 3.4. Let C = {c : R → L(Rd) | c
is continuous and bounded} with the the topology of uniform convergence on

compact sets. Introduce the Bebutov (translation) flow {τ̂t} on C: thus τ̂tc(·) =

c(· + t) for each t ∈ R and c ∈ C.
Next let U ⊂ R

g be a compact neighborhood of γ. For each γ̂ ∈ U and each

ω ∈ Ω, set c(t, ω, γ̂) = A(ω+ γ̂t) (t ∈ R). Set Cγ̂ = {c(·, ω, γ̂) | ω ∈ Ω} ⊂ C, and
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further set C =
⋃
{Cγ̂ | γ̂ ∈ U} ⊂ C. It can be checked that C is a compact,

{τ̂t}-invariant subset of C which is invariantly connected.

Define a cocycle Φ̂ on C in the following way: Φ̂(c, t) is the fundamental

matrix solution of the linear differential equation x′ = c(t)x (c ∈ C, t ∈ R, x ∈
R

d). Let Cγ = {t 7→ A(ω + γt) | ω ∈ Ω} ⊂ C; it can be checked that

the dynamical spectrum of the restriction Φ̂γ = Φ̂|Cγ×R equals σΦ. Similarly,

let Cγn
= {t 7→ A(ω + γnt) | ω ∈ Ω}. Then the dynamical spectrum of the

restriction Φ̂n = φ̂|Cγn×R of Φ̂ to Cγn
× R equals σΦ(n) .

We are now in a position to apply the perturbation Theorem 6 of [38]. Ac-

cording to this theorem, there is a neighborhood W ⊂ C of Cγ with the prop-

erty that, if C∗ is a {τ̂t}-invariant subset of W , then the dynamical spectrum of

Φ̂C∗
is contained in the ε-neighborhood of σΦ̂γ

= σΦ = {a1 < a2 < . . . < aq}.

Now if n is sufficiently large, then Cγ ⊂ W . So the remarks of the preceding

paragraph and Proposition 3.1 imply that the thesis of Proposition 3.4 is true.

Remark 3.5. Let T = Z, let A : Ω = T
g → GL(Rd) be a continuous map, let

γ ∈ R
g have rationally independent components, and let Φ(ω, t) be the cocycle

generated by the family of difference equations

xt+1 = A(ω + γt)xt (ω ∈ Ω, t ∈ Z).

Similarly, let Φ(n)(ω, t) be the cocycle generated by the family

xt+1 = A(ω + γ(n)t)xt (ω ∈ Ω, t ∈ Z)

where γ(n) ∈ R
g (n = 1, 2, . . . ). Then Proposition 3.4 is true as stated for Φ and

Φ(n). The proof is practically identical to that given above for real cocycles (one

must introduce a discrete Bebutov flow, and one must note that [38, Theorem 6]

holds also for integer cocycles).

We have shown that the discrete spectrum condition has significant conse-

quences for the convergence of the limits which define the Lyapunov exponents,

and for the continuity of those Lyapunov exponents. Our results can be viewed

as generalizations of [14, Theorem 3].

If the discrete spectrum condition does not hold, then one cannot expect

the Lyapunov exponents of Φ to vary continuously when Φ is subjected to a

C0-perturbation. We indicate a concrete result along these lines, the proof of

which uses important theorems of Bochi-Viana [2] and Bessa [1]. These papers

were motivated by a well-known conjecture of Mañe [25].

Let T = R or Z. Let (Ω, {τt}) be a compact metric flow which is strictly

ergodic with unique ergodic measure µ. Thus for example it can be a Kronecker

flow as defined in Section 2.

Let Φ : Ω × T → GL(Rd) be a cocycle over (Ω, {τt}). Suppose that the

dynamical spectrum σΦ of Φ is a single interval: σΦ = [a, b]. Suppose that
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a < b. Let {β1 < . . . < βs} be the Oseledets spectrum of Φ with respect to µ,

and let V
(m)
1 , . . . , V

(m)
s be the corresponding Oseledets bundles.

According to the results of [1] and [2], there is a C0-residual set {Ψ} of

GL(Rd)-valued cocycles over (Ω, {τt}) for which one of the following alterna-

tives holds.

(i) The Oseledets spectrum of Ψ reduces to a single point;

(ii) The Oseledets bundles give rise to a dominated splitting (or exponential

separation) of Ψ over (Ω, {τt}).

Moreover, it is shown that, if Ψ does not admit a dominated splitting, then an

arbitrarily small C0-perturbation of Ψ has property (i). See also [28, 30] for re-

lated results. We will not define the concept of dominated splitting/exponential

separation here. For this we refer to [1, 2] or to the older literature on expo-

nential separation (e.g., [3, 4, 5, 32, 33]).

Now, one can use a Krylov-Bogoliubov argument to show that, if the Os-

eledets bundles of Ψ give rise to a dominated splitting, then the dynamical

spectrum σΨ of Ψ consists of at least two disjoint intervals. We omit the proof,

but note that it uses the hypothesis that (Ω, {τt}) admits just one ergodic

measure.

Returning to the cocycle Φ, one can use another Krylov-Bogoliubov argu-

ment to show that the endpoints a and b of σΦ = [a, b] are in the Oseledets

spectrum; see [18]. But an arbitrarily small C0-perturbation of Φ has the prop-

erty that its Oseledets spectrum reduces to a single point. This implies that

the Lyapunov exponents of Φ cannot vary continuously if Φ is varied in the

C0-sense.

4. Consequences of convergence

In this section, we consider a problem which is inverse to that taken up in

Section 3. Namely, suppose that Φ is a cocycle over a compact metric flow

(Ω, {τt}), and suppose that lim
t→∞

1

t
ln |Φ(ω, t)| exists for all ω ∈ Ω and all 0 6=

x ∈ R
d. We ask if the cocycle Φ has discrete spectrum. In general this is not

true, as the following example shows.

Example 4.1. Let Ω be the annulus 0 < α ≤ r ≤ β, 0 ≤ θ ≤ 2π in the plane R
2

with polar coordinates (r, θ). Let a : Ω → R be a continuous function such that

the correspondence r 7→

∫ 2π

0

a(r, θ̄)dθ̄ takes on more than one value. Consider

the family of one-dimensional ODEs

x′ = a(r, θ + t)x x ∈ R (5ω)
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where ω = (r, θ) ∈ Ω. The family (5ω) has the form of the family (1ω) if we

put τt(r, θ) = (r, θ + t) for t ∈ R and (r, θ) ∈ Ω. It it clear that the cocycle Φ

which is determined by equations (5ω) has the form

Φ(ω, t) = exp

(∫ t

0

a(r, θ + s)ds

)
(ω = (r, θ) ∈ Ω, t ∈ R).

We see that, if ω = (r, θ) ∈ Ω and 0 6= x ∈ R, then lim
t→∞

1

t
ln |Φ(ω, t)x| exists

and equals
1

2π

∫ 2π

0

a(r, θ̄)dθ̄. This integral traces out a nondegenerate interval

I as r varies from α to β. It turns out that I is the dynamical spectrum of the

family (5ω).

This example is in fact “too simple” and only indicates that we must

specify our inverse problem in a more detailed way. So let us suppose that

(Ω, {τt}) is minimal, and that, for each ω ∈ Ω and each 0 6= x ∈ R
d, the limit

lim
t→∞

1

t
ln |Φ(ω, t)x| exists. We ask: does Φ have discrete spectrum?

This question has an affirmative answer if d = 1. It may well be that

the answer is still affirmative if d ≥ 2. We have not been able to prove this,

however. Here is what we can and will do.

(1) If d ≥ 2, we suppose (in addition to the conditions already listed) that,

for each ergodic measure µ on Ω, the corresponding Oseledets spectrum

{β1(µ) < β2(µ) < . . . < βs(µ)} is simple. That is, s = d, or equivalently

all the multiplicities dr are equal to 1 (1 ≤ r ≤ s = d: see Theorem

2.2). Under these conditions, we will show that Φ has discrete spectrum.

In fact, it will turn out that the numbers β1(µ) = β1, . . . , βd(µ) = βd

do not depend on the choice of the ergodic measure µ, and that σΦ =

{β1 < β2 < . . . < βd}. Thus in particular Φ satisfies the classical Lillo

property [23].

(2) If d = 2, we make no a priori hypothesis regarding the Oseledets spec-

trum: we suppose that (Ω, {τt}) is minimal, and that, for each ω ∈ Ω and

each 0 6= x ∈ R
2, the limits lim

t→∞

1

t
ln |Φ(ω, t)x| and lim

t→−∞

1

t
ln |Φ(ω, t)x|

exist (they need not be equal). We will prove that, subject to these

hypotheses, Φ has discrete spectrum. As noted in the Introduction, we

generalize a result of Furman [14], who assumes that (Ω, {τt}) is strictly

ergodic. He uses certain properties of the projective flow defined by Φ

when d = 2. See also [17] in this regard.

To our knowledge, our inverse problem has not been frequently discussed

in the literature. We point out that the hypothesis concerning the existence of
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the limits lim
t→∞

1

t
ln |Φ(ω, t)x| (and lim

t→−∞

1

t
ln |Φ(ω, t)x| in point (2)) is rather

delicate since no uniformity is assumed. We also remark that there are various

results in the literature to the effect that the set of cocycles over a given compact

metric flow which have simple Oseledets spectrum is dense in various topologies.

See, e.g., [12, 27].

After these preliminary remarks, we express point (1) in a formal statement:

Theorem 4.2. Let T = R or Z. Let (Ω, {τt}) be a compact metric minimal

flow, and let Φ : Ω× T → GL(Rd) be a T -cocycle over (Ω, {τt}). Suppose that,

for every {τt}-ergodic measure µ on Ω, the Oseledets spectrum is simple. This

means that it consists of d distinct points β1 < . . . < βd (which may depend on

µ). Suppose that, for each ω ∈ Ω and 0 6= x ∈ R
d, the limit lim

t→∞

1

t
ln |Φ(ω, t)x|

exists. Then the dynamical spectrum σΦ of Φ consists of d distinct points (and

in particular is discrete).

Note that, if (Ω, {τt}) is minimal, then it is invariantly connected and chain

recurrent. So the results stated in Section 2 will be available to us in the proof

of Theorem 4.2, to which we now turn.

Before beginning the proof of Theorem 4.2, we describe several convenient

constructions. Let Φ be a T -cocycle over (Ω, {τt}), let σΦ = [a1, b1]∪· · ·∪[aq, bq],

and let V
(c)
1 , . . . , V

(c)
q be the corresponding spectral subbundles of Theorem 2.4.

These are topological vector subbundles of Ω × R
d, of fiber dimension 1 ≤

d1, . . . , dq where d1 + · · ·+ dq = d. They need not be topologically trivial; i.e.,

they need not be equivalent to product bundles Ω × R
dp , 1 ≤ p ≤ q.

However, it is explained in [10] how these bundles can be trivialized via an

appropriate cohomology. We explain the relevant constructions of [10].

Let us recall that a minimal flow (Ω̂, {τ̂t}) is said to be an extension of

the minimal flow (Ω, {τt}) if there is a continuous map π : Ω̂ → Ω such that

π ◦ τ̂t = τt ◦ π for all t ∈ T (one says that π is a flow homomorphism). Using

the minimality of (Ω, {τt}) one sees that π must be surjective.

The cocycle Φ can be lifted to a cocycle Φ̂ on Ω̂ via the formula Φ̂(ω̂, t) =

Φ(π(ω̂), t) (ω̂ ∈ Ω̂, t ∈ T ). Moreover the bundles V
(c)
1 , . . . , V

(c)
q lift to Ω̂ via

the usual pullback construction. Call the lifted bundles V̂
(c)
1 , . . . , V̂

(c)
q ; they are

Φ̂-invariant and it is easy to see that they are the spectral subbundles of Φ̂.

Let us write V̂
(c)
p (ω̂) = V̂

(c)
p ∩ ({ω̂} × R

d) for the fiber of V̂p(c) at ω̂ ∈ Ω̂.

Next let O(d) be the group of orthogonal d× d matrices. According to [10,

Theorem 4.5], one can find a minimal extension (Ω̂, {τ̂t}) of (Ω, {τt}) together

with a continuous map F : Ω̂ → O(d) such that, if Ṽ
(c)
p (ω̂) = F (ω̂)V̂

(c)
p (ω̂), then

the bundle Ṽ
(c)
p =

⋃

ω̂∈Ω̂

Ṽ (c)
p (ω̂) is a product bundle. In fact, let e1, . . . , ed be

the standard basis of R
d. For each p ∈ {2, 3, . . . , q}, let us identify R

dp with the
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span of the set of unit vectors {ed1+...dp−1+1, . . . , ed1+···+dp
}; if p = 1 we identify

R
d1 with Span{e1, . . . , ed1

}. Then F can be chosen so that Ṽ
(c)
p = Ω × R

dp

(1 ≤ p ≤ q).
Define the cocycle Φ̃ by

Φ̃(ω̂, t) = F (τ̃t(ω̂))Φ̂(ω̂, t)F (ω̂)−1 (ω̂ ∈ Ω̂, t ∈ T );

thus Φ̃ is cohomologous to the cocycle Φ via the cohomology F . We see that

Φ̃ admits the spectral decomposition Ṽ
(c)
1 = Ω × R

d1 , . . . , Ṽ
(c)
q = Ω × R

dq .
We conclude that, to prove Theorem 4.2, there is no loss of generality in

assuming that the spectral subbundles of Φ are product bundles: V
(c)
p = Ω×R

dp

(1 ≤ p ≤ q). This is equivalent to saying that there is no loss of generality in

assuming that: (i) Φ has block-diagonal form:

Φ =




Φ1 0

. . .

0 Φq


 (6)

where Φp is a T -cocycle over (Ω, {τt}) with values in GL(Rd), and (ii) the

dynamical spectrum of Φp is the single interval [ap, bp] (1 ≤ p ≤ q). (The reader

is warned that, if (Ω, {τt}) is strictly ergodic, then the extension (Ω̂, {τ̂t}) of

the above construction need not be strictly ergodic.)

We pass to a second construction. Say that Φ is upper triangular if Φ = (Φij)

where Φij = 0 if i > j and Φii > 0 (1 ≤ i ≤ d). Our construction will give rise

to a cohomology between a suitable lifted version of Φ, and an upper triangular

cocycle.

Let O(d) be the group of orthogonal d × d matrices. If u0 ∈ O(d), then

Φ(ω, t)u0 can be uniquely decomposed in the form

Φ(ω, t)u0 = U(ω, u0, t)∆(ω, u0, t) (ω ∈ Ω, t ∈ T )

where U ∈ O(d) and ∆ is upper triangular with positive diagonal elements.

This follows from the Gram-Schmidt decomposition of Φ(ω, t)u0. It turns out

that, if one sets τ̂t(ω, u0) = (τt(ω), U(ω, u0, t)) then {τ̂t | t ∈ T} is a flow on

Ω ×O(d), and ∆ is a {τ̂t}-cocycle.

Note that, if Φ has a block diagonal structure as in (6), then U and ∆ have

corresponding block-diagonal structures.

Next let Ω̂ ⊂ Ω × O(d) be a minimal {τ̂t}-subflow (such a subflow exists

by Zorn’s Lemma). Then the projection π : Ω̂ → Ω : (ω, u0) 7→ ω is con-

tinuous, and π ◦ τ̂t = τt ◦ π. We introduce the lifted cocycle Φ̂ : Ω̂ × T →
GL(Rd) : Φ̂(ω, t) = Φ(π(ω̂), t) where ω̂ = (ω, t) ∈ Ω̂. Note that the map

F : Ω̂ → O(d) : F (ω, u0) = u0 defines a cohomology between Φ̂ and ∆. In fact,

F (τ̂t(ω̂))∆(ω̂)F (ω̂)−1 = Φ̂(ω̂, t) for ω̂ = (ω, t) ∈ Ω̂ and t ∈ T .
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Our third and final construction was already discussed in Section 2. Namely,

assume that T = R. Then there exists a continuous function A : Ω → L(Rd)

such that Φ is cohomologous to the cocycle generated by the family of linear

ODEs (1ω):

x′ = A(τt(ω))x.

We observe that, if a given cocycle Φ has a block-triangular form as in the

first construction, then the coefficient matrix A(·) in (1ω) may be chosen to

have the corresponding block-diagonal form. Moreover, if Φ has an upper

triangular from as in the second construction, then A(·) may be chosen to have

the corresponding upper triangular form.

We assume until further notice that T = R. Using the above construc-

tions, we see that by introducing a suitable minimal extension of (Ω, {τt}), and

by introducing a suitable cohomology, it can be arranged that Φ satisfies the

following conditions.

Hypotheses 4.3. (a) The cocycle Φ is generated by a family of linear ODEs

x′ = A(τt(ω))x ω ∈ Ω, x ∈ R
d (7ω)

where the matrix function A(·) has block-diagonal form: A =




A1 0

. . .

0 Aq


 .

(b) If Φp is the cocycle over (Ω, {τt}) which is generated by the family x′ =

Ap(τt(ω))x, then the dynamical spectrum σp of Φp is the single interval [ap, bp]

(1 ≤ p ≤ q).
(c) Each matrix function Ap is upper triangular (1 ≤ p ≤ q).

It can be shown that, if Φ and Ψ are cohomologous cocycles, and if Φ

satisfies the hypotheses of Theorem 4.2, then so does Ψ. It can also be shown

that, if Φ and Ψ are cohomologous, and if Φ satisfies the thesis of Theorem 4.2,

then so does Ψ.

We pass to the proof of Theorem 4.2 in the case when T = R. According

to the above constructions and remarks, we can assume that Φ satisfies any or

all of Hypotheses 4.3 (a)–(c), when it is appropriate to do so.

We proceed by induction on the dimension d of the cocycle Φ. Suppose

that d = 1. There is no loss of generality in assuming that Φ is generated by a

family of one dimensional systems of the form (1ω). The family (1ω) has the

form x′ = A(τt(ω))x where A : Ω → R is a continuous scalar function. Using

the hypothesis concerning the existence of the limits which define the Lyapunov

exponents of Φ, we see that lim
t→∞

1

t

∫ t

o

A(τs(ω))ds exists for all ω ∈ Ω.

Now the flow (Ω, {τt}) is by assumption minimal, so one can use an oscilla-

tion result of Johnson [16] to show that the quantity ā = lim
t→∞

1

t

∫ t

0

A(τs(ω))ds
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does not depend on ω ∈ Ω, and the limit is uniform in ω. Moreover ā =

lim
t→−∞

1

t

∫ t

0

A(τs(ω))ds, where again the limit is uniform in ω ∈ Ω. One can

now check directly that the dynamical spectrum of Φ satisfies σΦ = {ā}; i.e.,

it is discrete.

Next, suppose that Theorem 4.2 is valid for all continuous R-cocycles of

dimension ≤ d − 1, over all minimal flows (Ω, {τt}). We suppose without loss

of generality that our given cocycle Φ satisfies Hypotheses 4.3 (a) and (b).
Suppose first that the number of diagonal blocks of the (d-dimensional) matrix

function A(·) is at least 2. Each block A1, . . . , Aq then has dimension ≤ d− 1.

So by the induction hypothesis, the family

x′ = Ap(τt(ω))x (ω ∈ Ω, x ∈ R
d)

has discrete spectrum (1 ≤ p ≤ q). By Hypotheses 4.3 (2), this spectrum is

the singleton {ap}, and it follows that the cocycle Φ has discrete spectrum:

σΦ = {a1, . . . , aq}. So Theorem 4.2 is proved in this case.

We now assume that q = 1, which means that the spectrum σΦ of Φ consists

of a single interval [a, b]. We must show that a = b. We assume w.l.o.g. that

Hypotheses (a), (b) and (c) are valid. The matrix function A(·) has values in

L(Rd) and is upper triangular.

Let us write

A(ω) =




A∗(ω) a1d(ω)

0 add(ω)




where A∗ takes values in L(Rd−1) and is upper triangular. Consider the family

of subsystems

y′ = A∗(τt(ω))y ω ∈ Ω, y ∈ R
d−1. (8ω)

Note that a solution y(t) of (8ω) determines a solution x(t) =

(
y(t)
xn(t)

)
of (7ω)

by setting xn(t) = 0; that is, x(t) =

(
y(t)
0

)
is a solution of (7ω) if and only if

y(t) is a solution of (8ω).

We see that the family (8ω) has the property that lim
t→∞

1

t
ln |y(t)| exists

whenever y(t) is a nonzero solution of equation (8ω) (ω ∈ Ω). By the induction

hypothesis, the dynamical spectrum σ∗ of the family (8ω) is discrete, say

σ∗ = {α1 < α2 < . . . < αj}

where 1 ≤ j ≤ d−1. By Proposition 2.2, the set of Lyapunov exponents of (8ω)

is exactly {α1, . . . , αj} for each ω ∈ Ω. Moreover, if di is the multiplicity of αi

for 1 ≤ i ≤ j, then d1 + · · · + dj = d − 1.
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Now, for each ergodic measure µ on Ω, the Oseledets spectrum of the fam-

ily (8ω) is contained in the dynamical spectrum σ∗ of that family. Moreover,

the Oseledets spectrum equals the set of averages

{∫

Ω

aii(ω)dµ(ω) | 1 ≤ i ≤ d − 1

}

of the diagonal elements of A∗; see [18, 31]. By hypothesis, the µ-Oseledets

spectrum of Φ is simple, and therefore the µ-Oseledets spectrum of the cocycle

Φ∗ generated by equations (8ω) is also simple. Using the fact that σ∗ = {α1 <
α2 < . . . < αj}, we see that each multiplicity di = 1, and that σ∗ = {α1 < α2 <
. . . < αd−1} consists of d−1 distinct real numbers. It is clear that these numbers

are just a reordered version of the numbers

{∫

Ω

aii(ω)dµ(ω) | 1 ≤ i ≤ d − 1

}
.

One can show (by applying Proposition 3.2, or by carrying out a “secondary”

induction on j, 1 ≤ j ≤ d − 1) that

∫

Ω

aii(ω)dµ(ω) does not depend on the

choice of the {τt}-ergodic measure µ, if 1 ≤ j ≤ d − 1.

We must now study the significance of the numbers

∫

Ω

add(ω)dµ(ω) as µ

ranges over the set of {τt}-ergodic measures on Ω. To do this, it is convenient

to introduce a projective flow. The construction is quite similar to that carried

out in the proof of Theorem 3.2 above. Let L be the (d − 1)-dimensional

manifold of lines through the origin in R
d. Let B = Ω × L, and define a

flow {τ̂t} on B by setting τ̂t(ω, l) = (τt(ω), Φ(ω, t)l) (ω ∈ Ω, l ∈ L). Define

f : B → R : f(ω, l) = 〈A(ω)x, x〉/〈x, x〉 if 0 6= x ∈ l. Then if x(t) is a solution

of (7ω), and if l ∈ L is the line containing x(0) 6= 0, then

∫ t

0

f(τ̂s(ω, l))ds = ln
|x(t)|

|x(0)|
. (9)

By the hypothesis concerning the existence of the limits defining the Lya-

punov exponents, and by (9), one has that the limit lim
t→∞

1

t

∫ t

0

f(τ̂s(b))ds exists

for each b ∈ B. Let us denote the limit by f∗(b). Since f∗ is the pointwise limit of

a sequence of continuous functions, it admits a residual set of continuity points

[6]. Let b∗ be a point of continuity of f∗. For each ε > 0, there is an open neigh-

borhood U = U(ε) ⊂ Ω×L of b∗ such that, if b ∈ U , then |f∗(b)− f∗(b∗)| < ε.
There is no loss of generality in assuming that U = U1 ×U2 where U1 ⊂ Ω and

U2 ⊂ L are open sets. There is also no loss of generality in assuming that U
does not intersect the {τ̂t}-invariant set B1 = {(ω, l) ∈ B | l ⊂ R

d−1 ⊂ R
d}.

For each ω ∈ Ω, there is a real number β∗(ω) such that the set of Lyapunov

exponents of equation (7ω) equals {α1, α2, . . . , αd−1, β∗(ω)}. Let βmax(ω) =

max{α1, . . . , αd−1, β∗(ω)} be the largest Lyapunov exponent of (7ω). Write
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the continuity point b∗ of f∗ in the form b∗ = (ω∗, l∗). It follows from the

continuity of f∗ at b∗ that f∗(b∗) equals βmax(ω∗). In fact, this is a con-

sequence of the observation that, if β̄(ω∗) is the maximum of the Lypunov

exponents of (7ω∗
) which are distinct from βmax(ω∗), then

{
x ∈ R

d | x = 0 or

lim
t→∞

1

t
ln |Φ(ω∗, t)x| ≤ β̄(ω∗)

}
is a proper vector subspace of R

d, so its comple-

ment in R
d is open and dense. This means that there is an open dense subset

W ⊂ L such that, if l ∈ W , then lim
t→∞

∫ t

0

f(τ̂s(ω∗, l)ds = βmax(ω∗).

Recall that we are working under the hypothesis that σΦ is a single interval

[a, b]. Using Theorem 2.4, we see that the numbers α1, . . . , αd−1 all lie in [a, b].
Suppose for the time being that b is greater than αd−1.

According to a result of [18], there is a {τt}-ergodic measure µ on Ω for which

b is a Lyapunov exponent of Φ, for µ-a.a. ω ∈ Ω. By Theorem 2.4, we have that

βmax(ω) = b for µ-a.a. ω ∈ Ω. Fix a point ω̄ ∈ Ω such that βmax(ω̄) = b. If

x ∈ R
d, we write x =

(
y
xd

)
where y ∈ R

d−1 and xd ∈ R. Let x be a vector such

that lim
t→∞

1

t
ln |Φ(ω̄, t)x| = b. Writing Φ(ω̄, t)x = Φ(ω̄, t)

(
y
xd

)
=

(
y(t)
xd(t)

)
, and

using the fact that b > αd−1 = max{αi | 1 ≤ i ≤ d−1}, we see that xd 6= 0, and

that lim
t→∞

1

t
ln |xd(t)| = b. (For later use, we note that b = lim

t→∞

1

t
ln |xd(t)| =

lim
t→∞

1

t

∫ t

0

add(τs(ω̄)ds.)

One checks that, if

(
y
xd

)
is any vector with xd 6= 0, then lim

t→∞

1

t
ln |Φ(ω̄, t)x| = b.

Return to the continuity point (ω∗, l∗) ∈ B of f∗ which was introduced

previously. Let ε > 0, and choose U(ε) = U = U1 ×U2 as before. Let ω̄ be the

point of the preceding two paragraphs. Since (Ω, {τt}) is minimal, the positive

semiorbit {τt(ω̄) | t ≥ 0} is dense in Ω, hence it enters U1. Using the fact that

U does not intersect B together with the result of the previous paragraph, we

can find a vector

(
y
xd

)
∈ R

d, whose projective image l lies in U2, such that

lim
t→∞

1

t
ln |Φ(ω∗, t)x| = b. This means that |f∗(ω∗, l∗) − b| ≤ ε. Since ε > 0 is

arbitrary, we have that f∗(ω∗, l∗) = b.

Next, let ε > 0, and let ω ∈ Ω be any point of Ω. Again the posi-

tive semiorbit {τt(ω) | t ≥ 0} enters U1. So there exists a vector x =(
y
xd

)
∈ R

d with xd 6= 0 such that

∣∣∣∣ limt→∞

1

t
ln |Φ(ω, t)x| − f∗(ω∗, l∗)

∣∣∣∣ ≤ ε. Hence
∣∣∣∣ limt→∞

1

t
ln |Φ(ω, t)x| − b

∣∣∣∣ ≤ ε. At this point choose 0 < ε <
1

2
(b − αd−1), and



REMARKS CONCERNING LYAPUNOV EXPONENTS 111

write Φ(ω, t)x =

(
y(t)
xd(t)

)
. It can be checked that the limit lim

t→∞

1

t
ln |xd(t)|

exists and is ≥ b − ε > αd−1 + ε.

Now, lim
t→∞

1

t
ln |xd(t)| = lim

t→∞

1

t

∫ t

0

add(τs(ω))ds. We are able to conclude

that the limit lim
t→∞

1

t

∫ t

0

add(τs(ω))ds exists for all ω ∈ Ω. The limit equals

b if ω = ω̄. By the oscillation result of [16],

∫

Ω

adddµ = b for all ergodic

measures µ on Ω. By using a Krylov-Bogoliubov argument, one proves that

lim
t→∞

1

t

∫ t

0

add(τs(ω))ds = b, and the limit is uniform in ω ∈ Ω.

Let αd−1 < λ < b. Let us show that λ /∈ σΦ. Using Theorem 2.3, we see that

it is sufficient to show that, if ω ∈ Ω and 0 6= x ∈ R
d, then eλtΦ(ω, t)x is not

bounded in −∞ < t < ∞. To do this, note first that, if x =

(
y
0

)
∈ R

d, then

|e−λtΦ(ω, t)x| → ∞ as t → −∞, because σ∗ = {α1, . . . , αd−1}. On the other

hand, if x =

(
y
xd

)
with xd 6= 0, and if xd(t) is defined by Φ(ω, t)x =

(
y(t)
xd(t)

)
,

then |xd(t)| → ∞ as t → ∞. So in fact λ /∈ σΦ.

However, σΦ is by hypothesis the interval [a, b], and we know that αd−1 ∈
σΦ. So we have arrived at a contradiction, and must conclude that b ≤ αd−1.

There remains to study the situation when b ≤ αd−1. For this, let us first

recall that, if 1 ≤ i ≤ d− 1, then

∫

Ω

aiidµ does not depend on the choice of the

ergodic measure µ on Ω. Second, we recall that, if µ is an ergodic measure on Ω,

then the corresponding Oseledets spectrum equals

{∫

Ω

a11dµ, . . . ,

∫

Ω

adddµ

}
.

By hypothesis, the Oseledets spectrum is simple for each {τt}-ergodic measure µ

on Ω. So

∫

Ω

adddµ < αd−1 for each such µ. Let us define ᾱ = sup
{∫

Ω

adddµ
∣∣∣ µ

is a {τt}-ergodic measure on Ω
}

. We claim that ᾱ < αd−1. Here is a sketch

of the proof. Since the set {ν} of {τt}-invariant measures on Ω is compact

and convex in the weak-∗ topology, and since µ is an extreme point of {ν} if

and only if µ is ergodic, we can use the Choquet theorem [35] to show that∫

Ω

adddν ≤ αd−1 for each {τt}-invariant measure ν on Ω. If ᾱ equals αd−1, then

the weak-∗ compactness of {ν} allows us to find an invariant measure ν on Ω

such that

∫

Ω

adddµ = αd−1. Using the Choquet theorem again, we determine

an ergodic measure µ on Ω such that

∫

Ω

adddµ = αd−1. This is not possible,
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so indeed ᾱ < αd−1.

We can now use a Krylov-Bogoliubov argument to prove the following state-

ment: Let ε > 0; then there exists T > 0 such that, if t ≤ −T and ω ∈ Ω, then

1

t

∫ t

0

add(τs(ω))ds ≤ ᾱ + ε.

Next choose λ ∈ (ᾱ, αd−1) such that λ > αd−2. We claim that λ is not in the

spectrum σΦ of Φ. As before, it is sufficient to show that, if ω ∈ Ω and 0 6= x ∈

R
d, then e−λtΦ(ω, t)x is unbounded on −∞ < t < ∞. So let x =

(
y
0

)
where

y ∈ R
d−1. Then e−λtΦ(ω, t)x is unbounded because λ /∈ σ∗ = {α1, . . . , αd−1}.

On the other hand, if x =

(
y
xd

)
with xd 6= 0, then e−λtΦ(ω, t)x is unbounded

as t → −∞.

We conclude as before that σΦ cannot be an interval, which contradicts the

assumption that σΦ = [a, b]. This completes the proof of Theorem 4.2 in the

case T = R.

There remains to prove Theorem 4.2 in the case when T = Z. One can do

this by following the steps of the above proof for T = R. The proof when T = Z

is actually somewhat simpler, since one need not effect a cohomology which

transforms the cocycle Φ into the cocycle defined by a family of differential

systems (1ω). We omit the details.

We finish the paper with a discussion of the case d = 2. We are able to

strengthen Theorem 4.2 in the sense that we do not need the hypothesis of

simple Oseledets spectrum. On the other hand, we need the convergence of the

time averages which define the Lyapunov exponents at t = −∞.

Theorem 4.4. Let T = R or Z, and let (Ω, {τt}) be a minimal flow. Let Φ be a

T -cocycle over (Ω, {τt}) with values in GL(R2). Suppose that, for each ω ∈ Ω

and 0 6= x ∈ R
2, the limits

lim
t→∞

1

t
ln |Φ(ω, t)x|, lim

t→−∞

1

t
ln |Φ(ω, t)x|

both exist (they may or may not be equal). Then Φ has discrete spectrum.

Proof. We consider the case T = R. There is no loss of generality in assuming

that Hypotheses 4.3 (a), (b) and (c) are satisfied. In particular the spectrum

σΦ consists of a single interval; σΦ = [a, b] with a ≤ b.

Let us write equations (7ω) in the form

x′ =




a11(τs(ω)) a12(τs(ω))

0 a22(τs(ω))


x,
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where x ∈ R
2. It follows from the hypothesis concerning the existence of the

limits that, for each ω ∈ Ω, the limit lim
t→∞

1

t

∫ t

0

a11(τs(ω))ds exists. By [16],

there is a real number ā1 such that lim
t→±∞

1

t

∫ t

0

a11(τs(ω))ds = ā1, where the

limits are uniform in ω ∈ Ω.

It follows that ā1 =

∫

Ω

a11dµ for each {τt}-ergodic measure on Ω. Now,

by [18] there is an ergodic measure µa on Ω such that a is an element of the

µa-Oseledets spectrum. Similarly, there is an ergodic measure µb on Ω such

that b is an element of the µb-Oseledets spectrum. Therefore ā1 ∈ {a, b}.
Suppose first that ā1 = a, and assume for contradiction that b > a. Then

we can argue as in the proof of Theorem 4.2 to show that

∫

Ω

a22dµ = b for

every ergodic measure µ on Ω and so
1

t

∫ t

0

a22(τs(ω))ds = b uniformly in ω ∈ Ω.

Again, arguing as in the proof of Theorem 4.2, one shows that, if λ ∈ (a, b),
then λ is not in σΦ. This is a contradiction, so b = a and in fact Φ has discrete

spectrum.

If ā1 = b, then we use the hypothesis that lim
t→−∞

1

t
ln |Φ(ω, t)x| exists for

all ω ∈ Ω and all 0 6= x ∈ R
2. One assumes for contradiction that a <

b, then repeats the steps of the proof of Theorem 4.2, using the negative-

time Lyapunov exponents lim
t→−∞

1

t
ln |Φ(ω, t)x| in place of the positive-time

exponents lim
t→∞

1

t
ln |Φ(ω, t)x|. The end result is that, if a < λ < b. then

λ /∈ σΦ. So one again concludes that σΦ is discrete.
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half-line for superlinear differential

equations with changing sign weight
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Abstract. The existence of positive solutions x for a superlinear dif-

ferential equation with p-Laplacian is here studied, satisfying the bound-

ary conditions x(0) = x(∞) = 0. Under the assumption that the weight

changes its sign from nonpositive to nonnegative, necessary and suffi-

cient conditions for the existence are derived by combining Kneser-type

properties for solutions of an associated boundary value problem on a

compact set, a-priori bounds for solutions of suitable boundary value

problems on noncompact intervals, and continuity arguments.

Keywords: differential equation with p-Laplacian, positive solutions, decaying solutions
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1. Introduction

In this paper we study the existence of solutions for the second order nonlinear

differential equation with p-Laplacian

(
r(t)Φ(x′)

)′
= q(t)f(x), (1)

satisfying the boundary conditions

x(0) = 0, lim
t→∞

x(t) = 0, x(t) > 0 for t > 0. (2)

We will assume the following conditions:

H1. Φ(u) = |u|p sgnu, for u ∈ R and p > 0;

1Both authors are supported by the Research Project PRIN09-Area 01 “Equazioni dif-

ferenziali ordinarie e applicazioni” of the Italian Ministry of Education.
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H2. f is a continuous function on R such that uf(u) > 0 for u 6= 0, and

(a) lim
u→0+

f(u)

Φ(u)
= 0, (b) lim

u→∞

f(u)

Φ(u)
= ∞; (3)

H3. r, q are continuous functions for t ≥ 0, r(t) > 0 for t ≥ 0, and q satisfies

the sign condition

q(t) ≤ 0, q(t) 6≡ 0, for t ∈ [0, 1],

q(t) ≥ 0 for t > 1, q(t) 6≡ 0 for large t.

Boundary values problems (BVPs) associated to (1) on infinite intervals

have been considered in many papers. For instance, in [14, 18, 20] some

asymptotic problems for second-order equations with the Sturm-Liouville op-

erator, possibly singular, are studied and BVPs, concerning equations with

p-Laplacian, are considered, e.g., in [9, 11, 17]. For other contributions we

refer to the monograph [1] and references therein.

As usual, by a solution of (1), we mean a continuously differentiable func-

tion x such that r(t)Φ(x′) has a continuous derivative satisfying (1). For any

solution x of (1), denote its quasiderivative as

x[1](t) = r(t)Φ(x′).

Let

R(t) =

∫ t

0

r−
1
p (s) ds.

The limit limt→∞ R(t) will be denoted by R(∞); both the cases R(∞) < ∞
and R(∞) = ∞ will be considered. If R(∞) < ∞, we put

ρ(t) =

∫
∞

t

r−
1
p (s) ds.

The sign condition on q is motivated by the following. When q has con-

stant sign on the whole half-line, and q 6≡ 0, we can distinguish three cases: i1)
q(t) ≥ 0 for t ≥ 0, i2) q(t) ≤ 0 for t ≥ 0 and R(∞) = ∞, i3) q(t) ≤ 0 for t ≥ 0

and R(∞) < ∞. In cases i1) or i2), the problem (1)-(2) is not solvable. To see

this, if i1) holds, consider the function G(t) = r(t)Φ(x′)x, where x is a solution

of (1)-(2). Since G′(t) = q(t)f(x)x + r(t)|x′|p+1, then G is nondecreasing, and,

as G(0) = 0, we obtain G(t) ≥ 0 for t > 0. Thus, the positivity of x yields

the existence of a point t0 > 0 such that G(t0) > 0. Since G is nondecreasing,

x′ is eventually positive, which contradicts the asymptotic condition in (2). In

case i2), for any solution x of (1)-(2) the quasiderivative x[1] is nonincreas-

ing. If limt→∞ x[1](t) = k ≥ 0, we immediately get a contradiction with the
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boundary conditions (2), since x should be eventually nondecreasing. Therefore

limt→∞ x[1](t) = −k < 0, which implies x[1](t) < −k/2 for large t. Integrating

the inequality x′(t) < −r(t)−1/p(k/2)1/p on [T, t], with T sufficiently large, we

get

x(t) − x(T ) < −

(
k

2

) 1
p
∫ t

T

r−
1
p (s)ds,

which contradicts as t → ∞ the positivity of x.

Finally, if the case i3) holds, the change of variable

τ(t) = R(t)

transforms (1) into
d

dτ

(
Φ(

·

x)
)

= q(t(τ))f(x(t(τ))),

where ˙ = d/dτ , and t(τ) is the inverse function of τ(t). Since τ is an increasing

bounded function, the problem (1)-(2) is transformed into a boundary value

problem, possibly singular, on a bounded interval, and a very wide literature

is devoted to this kinds of problems.

Therefore, the most interesting case for the solvability of (1)-(2) is that the

function q changes its sign at least once.

Let

J =: lim
T→∞

∫ T

1

(
r−1(t)

∫ T

t

q(s) ds

)1/p

dt.

The main result of this paper is the following.

Theorem 1.1. Assume either R(∞) = ∞ and J = ∞, or R(∞) < ∞. Then

the BVP (1)-(2) has a solution. Further, in the remaining case J < ∞ and

R(∞) = ∞, the BVP (1)-(2) has no solution.

The tools used for proving Theorem 1.1 are a combination of a shooting

method in a compact interval, following some ideas by Gaudenzi, Habets and

Zanolin [12], a study of some topological properties of positive solutions of (1)

in the half-line [1,∞), and some arguments in the phase space.

More in detail, we will consider two auxiliary BVPs, the first one on the com-

pact interval [0, 1], where q is nonpositive, and the second one on the half-line

[1,∞), where q is nonnegative. The existence of solutions for (1), emanating

from zero, positive in the interval (0, 1), and satisfying additional assumptions

at t = 1, is considered in the first problem, namely




(
r(t)Φ(x′)

)′
= q(t)f(x), t ∈ [0, 1],

x(0) = 0, x(t) > 0 for t ∈ (0, 1),

γx(1) + δx′(1) = 0,

(4)
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where γ + δ > 0, δγ = 0. The boundary conditions in (4) are a particular

case of the well known Sturm-Liouville conditions. A wide literature has been

devoted to the existence and the multiplicity of solutions of second order lin-

ear and nonlinear equations with Sturm-Liouville boundary conditions, see for

instance [2, 15, 16] and the references therein. On the half-line [1,∞), we ana-

lyze the existence of positive decreasing solutions for (1), starting from a given

positive value, and approaching zero as t → ∞, namely the BVP

{(
r(t)Φ(x′)

)′
= q(t)f(x), t ∈ [1,∞)

x(1) = x0, lim
t→∞

x(t) = 0, x(t) > 0, x′(t) < 0.
(5)

The existence of a solution of (1)-(2) is obtained, roughly speaking, as the

intersection of two connected sets in the space R
2, the first set representing the

final values of the solutions (x, x′) of (4), and the other set representing the

initial values of solutions for (5).

Our method is based on a Kneser type property, concerning solutions em-

anating from a continuum set of initial data; moreover, principal solutions of

suitable associated half-linear equations play a crucial role for obtaining suit-

able upper and lower bounds.

The paper is organized as follows. In Section 2 we recall the notion of

principal solutions in the half-linear case and some properties which will be

used in the following. In Section 3 the BVPs (4) and (5) are solved and some

additional properties of solutions are proved. The proof of Theorem 1.1 is given

in Section 4. Finally, some comments and suggestions for future researches

complete the paper.

2. Preliminary results

As claimed, a key role will be played by the so-called principal solutions of

some half-linear equations associated to (1).

The notion of principal solution, introduced by Leighton and Morse for

second-order linear nonoscillatory differential equations, see, e.g., [13, Ch. 11],

has been extended to the half-linear equation

(
r(t)Φ(x′)

)′
= q(t)Φ(x) (t ≥ 1) (6)

in [10] (see also [19, Ch. 4.15]) by using the Riccati equation approach, and

reads as follows.

Definition 2.1. A nontrivial solution z of (6) is said to be principal solution

of (6) if for every nontrivial solution x of (6), such that x 6= λz, λ ∈ R, it holds

z′(t)

z(t)
<

x′(t)

x(t)
as t → ∞. (7)
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Observe that, in view of the sign assumptions on q, the equation (6) is

nonoscillatory. The set of principal solutions of (6) is nonempty ([10, 19]) and

for any µ 6= 0 there exists a unique principal solution z such that z(1) = µ, i.e.

principal solutions are determined up to a constant factor.

The characteristic properties of principal solutions for (6), when q is positive

for t ≥ 1, are investigated in [4]. In particular, it is shown that, roughly

speaking, principal solutions of (6) are the smallest solutions in a neighborhood

of infinity. Here we summarize further properties which will be useful in the

sequel. Observe that these properties continue to hold also when q(t) ≥ 0 for

t > 1, q(t) 6≡ 0 for large t.

Proposition 2.2 ([4, Theorem 3.1, Corollary 1]). Assume either R(∞) = ∞
and J = ∞ or R(∞) < ∞. Then any principal solution z of (6) satisfies

z(t)z′(t) < 0 on [1,∞) and limt→∞ z(t) = 0.

A comparison between principal solutions of a suitable half-linear equation,

and the solutions of (5) is needed for proving our main result, and is given in

the following. The argument is similar to the one given in [3, Theorem 5].

Lemma 2.3. Let c > 0 be a fixed constant, and assume that M > 0 (depending

on c) exists, such that

f(u) ≤ Mup on [0, c]. (8)

Further, assume either R(∞) = ∞ and J = ∞, or R(∞) < ∞. Let zγ be the

principal solution of the half-linear equation

(
r(t)Φ(z′)

)′
= Mq(t)Φ(z)

with zγ(1) = γ, 0 < γ ≤ c. Then for any solution x of (5) with x0 = c we have

x(t) ≥ zγ(t), t ≥ 1, (9)

x′(1) ≥
c

γ
z′γ(1). (10)

Moreover, if R(∞) < ∞, then

x(t) ≤
c

ρ(1)
ρ(t). (11)

Proof. Set g(t) = x(t) − zγ(t). Since g(1) ≥ 0, and, in view of Proposition 2.3,

it holds limt→∞ g(t) = 0, for proving (9) it is sufficient to show that g does

not have negative minima. By contradiction, let T > 1 be a point of negative

minimum for g. Hence g(T ) < 0, g′(T ) = 0. Moreover, there exists t0 > T
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such that g′(t0) > 0 and g(t) < 0 on [T, t0]. Thus

r(t0)
(
Φ(x′(t0)) − Φ(z′γ(t0))

)
=

∫ t0

T

q(s) (f(x(s)) − MΦ(zγ(s))) ds

≤ M

∫ t0

T

q(s) (Φ(x(s)) − Φ(zγ(s))) ds.

Since g(t) < 0 on [T, t0], we obtain Φ(x′(t0))−Φ(z′γ(t0)) ≤ 0, which contradicts

g′(t0) > 0.
Now let us show that (10) holds. Consider gc(t) = x(t) − zc(t). Using the

same argument as above, since gc(1) = 0, we obtain x′(1) ≥ z′c(1). Since

principal solutions of a half-linear equation are uniquely determined up to a

constant factor, and being zc and zγ two principal solutions of the same half-

linear equation, we have for any t ≥ 1

zc(t) =
c

γ
zγ(t),

from which (10) follows.

Finally, considering the function

h(t) = x(t) −
c

ρ(1)
ρ(t),

the inequality (11) follows by observing that h(1) = 0 = limt→∞ h(t) and

observing that the function cρ(t)/ρ(1) is the principal solution of (r(t)Φ(z′))′ =

0, z(1) = c.

We close this section with a result which describes a general asymptotic

property of solutions for (1), depending on the behavior of the nonlinear term

f in a neighborhood of zero.

Lemma 2.4. Assume that f satisfies

lim sup
u→0+

f(u)

Φ(u)
< ∞. (12)

Then any nontrivial solution x of (1), defined on [1,∞), satisfies

sup
t∈[τ,∞)

|x(t)| > 0 for any τ ≥ 1,

that is, x is not eventually zero.

Proof. The assertion follows, from instance, from [19, Theorem 1.2 and Re-

mark 1.1] with minor changes. For sake of completeness, we give here another

simple alternative proof. By contradiction, let x(t) = 0 for t ≥ T > 1. Since
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the function G(t) = r(t)Φ(x′(t))x(t) is not decreasing and G(T ) = 0, we have

x(t)x′(t) ≤ 0 on [1, T ]. Without loss of generality, suppose x(1) = x0 > 0. In

view of (12), there exists M > 0 such that

f(u) ≤ Mup on [0, x0]. (13)

By integration of (1), taking into account (13) and that x is positive nonin-

creasing on [1, T ), we get

x(t) =

∫ T

t

(
1

r(s)

∫ T

s

q(σ)f(x(σ)) dσ

) 1
p

ds

≤ M
1
p x(t)

∫ T

t

(
1

r(s)

∫ T

s

q(σ) dσ

) 1
p

ds,

that is

1 − M
1
p

∫ T

t

(
1

r(s)

∫ T

s

q(σ) dσ

) 1
p

ds ≤ 0

for all t ∈ [1, T ), which is a contradiction as t → T .

Remark 2.5. The assumption (12) plays a crucial role in Lemma 2.4. Indeed,

if the estimation (13) does not hold, then (1) can have solutions x such that

x(t) ≡ 0 for large t, the so-called singular solutions, see, e.g., [6].

3. Some Auxiliary Boundary Value Problems

In this section we study the existence of positive solutions for the problems (4)

and (5).

The existence of solutions for (4) follows from a classical result by Wang [22],

which makes use of the Krasnoselskii fixed point theorem on cone compressions

or expansions. Here, by means of a change of variable, we show how it is possible

to apply that result, overcoming the problems due to the lack of concavity of

the positive solutions of (1), due to the presence of the coefficient r.

Theorem 3.1. If f satisfies (3), then the BVP (4) has at least one positive

solution.

Proof. Let

τ(t) =
R(t)

R(1)
.

Since r is a positive continuous function on [0, 1], it follows that τ is a positive

C1-function, with τ ′ > 0 on the whole interval, and τ(0) = 0, τ(1) = 1. It
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therefore defines a change of the independent variable τ = τ(t). Consider the

function y(τ) = x(t(τ)), where t = t(τ) is the inverse function of τ . Simple

calculations show that x is a solution of (4) if and only if y is a solution of the

problem 



d

dτ

(
Φ(ẏ)

)
= q̂(τ)f(y), τ ∈ [0, 1],

y(0) = 0, y(τ) > 0 for τ ∈ (0, 1),

γy(1) + δ̂y′(1) = 0,

(14)

where ˙ = d/dτ , q̂(τ) = (R(1))
p+1

(r(t(τ)))
1/p

q(t(τ)), and δ̂ = δ (r(1))
−1/p

(R(1))−1. Clearly, q̂(τ) ≤ 0, q̂(τ) 6≡ 0 in [0, 1], and γ + δ̂ > 0, γδ̂ = 0.

Problem (14) is a particular case of the BVPs studied in [22]. The assump-

tion

0 <

∫ 1/2

0

(∫ 1/2

s

q(t) dt

) 1
p

ds +

∫ 1

1/2

(∫ s

1/2

q(t) dt

) 1
p

ds < ∞,

which plays a key role in [22], is satisfied in our setting, since here q̂ is continuous

in [0, 1], and at least an interval (τ1, τ2) ⊆ (0, 1) exists, such that q̂(τ) < 0 for

τ ∈ (τ1, τ2). Therefore Theorem 3 in [22] can be applied to (14), leading to the

existence of at least a solution ȳ. Then x̄(t) = ȳ(τ(t)) is a solution of (4).

Now, we study the properties of the solutions of the BVP on the half-line (5).

The solvability of (5) is proved in the subsequent theorem, which easily follows

from a well-known result of Chanturia.

Theorem 3.2. Assume (3)-(a). Then (5) is solvable for any x0 > 0 if either

R(∞) = ∞ and J = ∞, or R(∞) < ∞.

Proof. Using [7, Theorem 1], we obtain the existence of a solution x of (1) on

[1,∞) such that

x(1) = x0, x(t) ≥ 0, x′(t) ≤ 0, (15)

for any x0 > 0. The positivity of x follows from Lemma 2.4. Let us show that

limt→∞ x(t) = 0. We consider separately the case R(∞) = ∞ and R(∞) < ∞.

Case I). Assume R(∞) = ∞, J = ∞. Since x[1] is nondecreasing and

x[1](t) ≤ 0, the limit limt→∞ x[1](t) is finite. If limt→∞ x[1](t) = x[1](∞) < 0,
from x[1](t) ≤ x[1](∞) we obtain

x(t) ≤ x(1) + Φ∗

(
x[1](∞)

)∫ t

1

r−1/p(s)ds,

where Φ∗ is the inverse function of Φ. Letting t → ∞, we get a contradiction

with the positivity of x. Thus limt→∞ x[1](t) = 0. Now suppose limt→∞ x(t) =
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x(∞) > 0 and set k = minx(∞)≤u≤x0
f(u). Hence k > 0. Integrating (1) we

have

x(t) ≤ x(1) − k1/p

∫ t

1

(
r−1(s)

∫
∞

s

q(σ)dσ

)1/p

ds,

which gives again a contradiction as t → ∞.

Case II). Assume R(∞) < ∞. The assertion follows reasoning as in the

proof of [9, Theorem 1.1], with minor changes.

Finally, let us prove that x′(t) < 0 on [1,∞). Assume, by contradiction,

that t̄ ≥ 1 exists, such that x′(t̄) = 0. Let G(t) = r(t)Φ(x′)x. Since G′(t) =

q(t)f(x) + r(t)|x′|p+1 ≥ 0, then G is nondecreasing, with G(t̄) = 0. Assuming

that G(t) = 0 for every t ≥ t̄, we immediately get a contradiction, since the

positivity of r yields x′ ≡ 0 on [t̄,∞), i.e. x is eventually constant and positive.

Then t1 > t̄ exists, such that G(t) > 0 for every t > t1. Thus, x′(t) > 0 for

every t > t1, which is again a contradiction.

Remark 3.3. When R(∞) = ∞, condition J = ∞ is necessary for the exis-

tence of solutions of the BVP (5). Indeed, if J < ∞, then any bounded solution

x of (1) satisfies limt→∞ |x(t)| = |x(∞)| > 0, see, e.g., [3, Th. 6] with minor

changes. When R(∞) < ∞ and J < ∞, this fact does not occur, because in

this case (1) can have positive (bounded) solutions both approaching zero and

a non-zero limit when t tends to infinity, as the Emden-Fowler equation

(r(t)Φ(x′))′ = q(t)|x|βsgnx, p < β,

illustrates, see, e.g. [5, Theorem 3].

Remark 3.4. If (3)-(a) holds and f is increasing for u > 0, then (5) is uniquely

solvable for any x0 > 0. This property is a consequence of the fact that, in this

case, two positive solutions of (1) defined for t ≥ 1, can cross at most in one

point, including t = ∞. We refer the reader to a classical result by Mambriani

(see, e.g., [21, Cap. XII, Section 5]), in which the same property is proved for

a generalized Thomas-Fermi equation.

Finally, the following “continuity” result holds for solutions of (5).

Theorem 3.5. Assume (3)-(a) and either R(∞) = ∞ and J = ∞, or R(∞) <
∞. Then the set

S =
{

(x(1), x[1](1))
}

,

where x is a solution of (5) for some x0 > 0, contains a connected subset S1

such that P (S1) = (0,∞), where P is the projection P (u, v) = u. Moreover, if

(cn, dn) ∈ S1 and limn cn = 0, then limn dn = 0, and S1 is contained in the set

π = {(u, v) : u > 0, v < 0}.
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Proof. Let c > 0 be fixed. In virtue of Theorem 3.2, the boundary value

problem 



(
r(t)Φ(x′)

)′
= q(t)f(x), t ∈ [1,∞)

x(1) = c − n−1, lim
t→∞

x(t) = 0,

x(t) > 0, x′(t) < 0,

(16)

is solvable for any positive integer n. Let {xn} be a solution of (16). Fixed

γ < c, choose n large so that γ ≤ c−n−1. In view of (3)-(a), the inequality (8)

holds, and so, from Lemma 2.3, taking into account that xn is nonincreasing,

we obtain for t ≥ 1

zγ(t) ≤ xn(t) ≤ c,

i.e. {xn} is equibounded on C[1,∞). Moreover, in view of Proposition 2.2,

z′γ(1) < 0, and again from Lemma 2.3 we have

x′

n(1) ≥
c − n−1

γ
z′γ(1) ≥

c

γ
z′γ(1),

and so 0 ≥ x
[1]
n (1) ≥ cz

[1]
γ (1)/γ, i.e.

{
x

[1]
n (1)

}
is bounded on R. Integrating (1),

we get

x[1]
n (t) = x[1]

n (1) +

∫ t

1

q(s)f(xn(s))ds. (17)

Thus, since {xn} is equibounded and
{

x
[1]
n (1)

}
is bounded in R, also

{
x

[1]
n

}

is equibounded on C[1,∞), i.e. {xn} is compact on C[1, T ] for every T > 1.
Fixed T > 1, without loss of generality, suppose limn xn(t) = x(t) for t ∈ [0, T ]

and limn x
[1]
n (1) = d. Thus, from (17) the sequence

{
x

[1]
n

}
uniformly converges

on [1, T ] and

lim
n

x[1]
n (t) = x[1](t).

Hence from

xn(t) =

(
c −

1

n

)
+

∫ t

1

(
1

a(s)

(
x[1]

n (1) +

∫ s

1

q(σ)f(xn(σ))dσ

))1/p

ds =

=

(
c −

1

n

)
+

∫ t

1

(
x

[1]
n (s)

a(s)

)1/p

ds,

we obtain for t ∈ [1, T ]

x(t) = c +

∫ t

1

(
x[1](s)

a(s)

)1/p

ds,
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that is x is solution of (1).

Now, let us prove that limt→∞ x(t) = 0. If R(∞) = ∞, J = ∞, since x is

bounded, this property can be proved using the same argument to that given

in the proof of Theorem 3.2, case I). If R(∞) < ∞, being xn a solution of (16),

from Lemma 2.3 we get

xn(t) ≤
c − n−1

ρ(1)
ρ(t) ≤

c

ρ(1)
ρ(t).

Since the sequence {xn} uniformly converges to x on every compact interval

in [1,∞) and it is dominated by a zero-convergent function, again we have

limt→∞ x(t) = 0. Clearly x′(t) ≤ 0. The argument for proving that x′(t) < 0 is

analogous to the one in the final part of the proof of Theorem 3.2. Thus, there

exists at most a solution x of (5) such that

lim
n

x[1]
n (1) = x[1](1).

This means that S contains a connected subset S1, contained in π, and, in view

of the arbitrariness of c, P (S1) = (0,∞).

Finally, let (cn, dn) ∈ S1, with cn → 0, and let xn be the solution of (5)

with initial data (cn, dn). Then, from Lemma 2.3, we obtain 0 > x′

n(1) = dn ≥
z′cn

(1) = cnz′1(1), and letting n → ∞ we get the assertion.

Remark 3.6. Theorem 3.5 can be view also as a ”selection” theorem and ex-

tends to (5) a property of principal solutions of linear equations stated by Hart-

man and Wintner, see [13, Corollary 6.6]. Indeed, from the proof of Theo-

rem 3.5, if {cn} is a real positive sequence converging to c > 0, the sequence

{xn} of solutions of (5) starting at x0 = cn admits a subsequence which uni-

formly converges, on every closed interval of [1,∞), to a solution of (5) starting

at x0 = c. Observe that the selection is unnecessary if (5) has a unique solution,

see Remark 3.4.

4. Proof of Theorem 1.

The following generalization of the well known Kneser’s theorem, see for in-

stance [8, Section 1.3], plays a key role in the proof of Theorem 1.1.

Proposition 4.1 ([8]). Consider the system

z′ = F (t, z), (t, z) ∈ [a, b] × R
n

where F is continuous, and let K0 be a continuum (i.e., compact and connected)

subset of {(t, z) : t = a} and Z(K0) the family of all the solutions emanating

from K0. If any solution z ∈ Z(K0) is defined on the interval [a, b], then the

cross-section Z(b; K0) = {z(b) : z ∈ Z(K0)} is a continuum in R
n.
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Proof of Theorem 1.1. Consider the Cauchy problem

{(
r(t)Φ(x′)

)′
= q(t)f(x+), t ∈ [0, 1]

x(0) = 0, x′(0) = A > 0
, (18)

where x+ = max{x, 0}. Clearly, every nonnegative solution of (18) is also

solution of (1) in [0, 1]. Vice versa, if x is a solution of (1), with x(0) = 0,

and x > 0 in (0, 1), then x is also solution of (18). Indeed, since r(t)Φ(x′) is

nonincreasing, assuming by contradiction x′(0) = 0, it follows that x′(t) ≤ 0

for t ∈ [0, 1], which, together with the condition x(0) = 0, contradicts the

positivity of x in (0, 1).

Now, we show that all solutions of (18) are persistent, i.e., are defined for

all t ∈ [0, 1]. To see this, first of all notice that all the solutions of (18) have an

upper bound, since from x[1](t) ≤ x[1](0) we get

x(t) ≤ A r
1
p (0) R(t).

Moreover, if x is a solution of (18) such that x(t) > 0 in (0, t1) and x(t1) = 0,

0 < t1 ≤ 1, then x′(t1) < 0. Indeed, integrating the equation in (18) over [0, t1]
we obtain

0 = x(t1) − x(0) =

∫ t1

0

(
1

r(s)

) 1
p

Φ∗

(
x[1](0) +

∫ s

0

q(r)f(x(r)) dr

)
ds.

Since x[1] is nonincreasing, x[1](0) > 0, and q(t) ≤ 0 in [0, 1], the quasiderivative

x[1](t) = x[1](0) +

∫ t

0

q(r)f(x(r)) dr

has to assume a negative value for s = t1, and so x′(t1) < 0. Hence, if t1 < 1,

x is negative in a right neighborhood (t1, t2) of t1, and satisfies (x[1](t))′ = 0

in (t1, t2), i.e., x[1](t) = x[1](t1) < 0, which yields x(t) < 0 on (t1, 1]. By

integration we obtain for t > t1:

x(t) = x[1](t1)

∫ t

t1

(
1

r(s)

) 1
p

ds,

that is, x is also bounded from below.

Notice that, by the above argument, we get the following property, that will

be used several times in the remaining part of the proof.

(P) If x is a solution of (18), with x(t0) ≤ 0, 0 < t0 ≤ 1, then x′(t0) < 0.

By Theorem 3.1, equation (1) have solutions y and w, which are positive

in (0, 1) and satisfy y(0) = 0, y′(1) = 0 and w(0) = w(1) = 0, respectively. Let
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A1 = y′(0), A2 = w′(0). Then, from the first part of the proof, A1, A2 > 0 and

y, w are also solutions of (18) for A = A1 and A = A2, respectively. Assume,

without restriction, A2 < A1 and let

T = {(x(1), x′(1)) : x sol. of (18) s.t. x′(0) = A ∈ [A2, A1]}

Since all the solutions of (18) are defined on [0, 1], Proposition 4.1 assures that

T is a continuum in R
2, containing the points (y(1), 0) and (0, w′(1)). Notice

that, from property (P), it results y(1) > 0 and w′(1) < 0. Further, T does not

contain any point (0, c) with c ≥ 0. It follows that a continuum T1 ⊆ T exists,

such that T1 is contained in π = {(u, v) : u ≥ 0, v ≤ 0}, (0, 0) /∈ T1, and there

exist R,M > 0 such that (R, 0) ∈ T1, (0,−M) ∈ T1, see Figure 1.

Now consider equation (1) for t ≥ 1. By Theorem 3.2, for every x0 > 0,

there exists a positive solution x of (1) which is defined on [1,∞), satisfies

x(1) = x0, is decreasing and tends to zero as t → ∞. Further, from Theo-

rem 3.5, the set S of the initial values of solutions of (5), contains a connected

set S1 ⊆ π = {(u, v) : u > 0, v < 0}, whose projection on the first component

is the half-line (0,∞). Therefore it holds

T1 ∩ S1 6= ∅.

Figure 1: The connected sets T1 and S1.

Let us show that to any point (c0, c1) ∈ T1 ∩ S1 corresponds a solution of

the BVP (1)-(2). Let (c0, c1) ∈ T1 ∩ S1. Then c0 > 0, c1 < 0. Moreover, there

exists a solution u of (18), for a suitable A > 0, such that u(1) = c0 > 0 and
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u′(1) = c1 < 0. The condition u(1) > 0 implies that u is positive on (0, 1],

because every solution of (18), which is negative at some point T ∈ (0, 1), is

negative also for t ∈ [T, 1], see property (P). Therefore u is solution of (1) in

[0, 1], with u(0) = 0, u(t) > 0 for t ∈ (0, 1]. Further, as (c0, c1) ∈ S1, a solution

v of (5) exists, such that v(1) = c0, v′(1) = c1. Then v is a positive solution of

(1) on [1,∞), and satisfies limt→∞ v(t) = 0. Hence the function

x(t) =

{
u(t), t ∈ [0, 1],

v(t), t > 1.

is clearly a solution of the BVP (1)-(2).

Finally, if J < ∞ and R(∞) = ∞, the BVP (1)-(2) has no solution, since,

in this case, any bounded solution of (1) has a nonzero limit at infinity, see

Remark 3.3. 2

5. Concluding remarks

1). If the function f satisfies

lim
u→0+

f(u)

Φ(u)
= l > 0, lim

u→∞

f(u)

Φ(u)
= L > 0,

i.e. (1) is, roughly speaking, close to an half-linear equation near zero

and infinity, then all our results concerning the solvability of the second

BVP (5) continue to hold. Nevertheless, the solvability of (4) is a more

“delicate” problem, and the existence of positive solutions with suitable

boundary conditions has been studied by different approaches. A wide

literature has been devoted to this topic and we refer to [2, 15, 16] for

more details.

If f is sublinear, that is

lim
u→0+

f(u)

Φ(u)
= ∞, lim

u→∞

f(u)

Φ(u)
= 0,

then the opposite situation occurs. The BVP (4) on [0, 1] is now solvable,

see [22], but the BVP on the half-line (5) can be not solvable, because

in this case the solutions x of (1), obtained via the Chanturia result [7,

Theorem 1] and satisfying on [1,∞) the boundary conditions (15), can

be zero for any large t, see [6]. Moreover, under additional assumptions

on r and q, the BVP (5) is solvable ([5, Theorem 2]), but not for any

small |x0| and this fact makes inapplicable the crossing method used in

the proof of Theorem 1.1.
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2). Using an approach similar to that in the proof of Theorem 1.1, we can

treat also the existence of solutions x of (1) satisfying any of the following

boundary conditions

x(0) = 0, lim
t→∞

x(t) = ℓx, 0 < ℓx < ∞, x(t) > 0 for t > 0,

x(0) = 0, lim
t→∞

x[1](t) = 0, x(t) > 0 for t > 0,

x(0) = 0, lim
t→∞

x[1](t) = −dx, 0 < dx < ∞, x(t) > 0 for t > 0.

In these cases, their solvability on the half-line [1,∞) requires a differ-

ent approach, because for obtaining suitable upper and lower bounds,

some nontrivial asymptotic properties of nonprincipal solutions of suit-

able associated half-linear equations are needed. This will be done in a

forthcoming paper.
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nonoscillation of second order nonlinear differential equations, Nonlinear Anal.
64 (2006), 278–1289.

[6] T.A. Chanturia, On singular solutions of nonlinear systems of ordinary dif-

ferential equations, Colloq. Math. Soc. János Bolyai 15 (1976), 107–119.
[7] T.A Chanturia, On monotonic solutions of systems of nonlinear differential

equations, Ann. Polon. Math. 37 (1980), 59–70 (Russian).
[8] W.A. Coppel, Stability and Asymptotic Behavior of Differential Equations,

D.C. Heath and Co., Boston, 1965.
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Abstract. The large-time behaviour of the solution of a hyperbolic-

parabolic problem in an isolated domain, which models the diffusion of

n species of radiative isotopes of the same element, is studied, assuming

general hypotheses on the initial data.

Depending on the radiative law and on the distribution of the initial

concentration, either a uniform distribution for the concentration of

each isotope or the presence of oscillations may be possible when t → ∞.
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1. Introduction

Let us consider the following problem in Ω = (−L, L):





cit =

(
ci

c
cx

)

x

+

n∑

j=1

Λijcj , x ∈ Ω, t > 0,

ci(x, 0) = ci0(x) ≥ 0, x ∈ Ω,

ci

cx

c
(−L, t) = ci

cx

c
(L, t) = 0, t > 0,

i = 1, ..., n, c =
∑n

k=1 ck.

(1)

The problem comes from a model for the diffusion of n species of isotopes of

the same element in a medium, in the assumption that the flux of the i − th
species, whose concentration is ci, is

Ji = −
ci

c
cx, i = 1, ..., n, x ∈ Ω,
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where c =
∑n

i=1 ci is the total concentration.

This assumption means that any component varies with the total gradient of

the element in a relative percentage
ci

c
(see [7, 20]).

Actually the above law for the flux is an approximation of a more complete

model where the flux is Ji = −(D̃icix + Di
ci

c
cx). If one assumes Di = 0 then

the problem becomes a classical parabolic problem whose solution does not

quite agree with the experimental data (see [20]). On the other hand there are

physical situations, such as self-diffusion, in which it is sensible to try the model

with D̃i = 0, thus obtaining solutions more in agreement with experimental

data, at least qualitatively.

Moreover, it would be reasonable, for solutes, that the coefficients Di are

practically the same for all isotopic molecules of the element, as they have the

same partial molar volume and the same electronic configuration, especially for

the heavier chemical elements. Although it would be interesting from a math-

ematical point of view to study the model in the general hypothesis that the

diffusion coefficients are different (see [7]), numerical simulations evidentiate no

significant difference in the qualitative behaviour of the solution in dependence

on the diffusion coefficients Di, here assumed to be all equal to 1 after rescaling

(see [6]). For more details on the physical motivations of the model see [5].

The coefficients Λij are the elements of a constant n × n matrix Λ which

expresses the ”radiative decay law” in the case of radiative isotopes. In the

physically relevant hypothesis that C = (c1, ..., cn) is regular and satisfies

ci0(x) ≥ 0, c0 =

n∑

i=1

ci0(x) > 0, (2)

there exists a unique classical non negative solution (see Section 2 for the

precise assumptions, [7] for the complete model and [5] in the present case).

We remark that it has been proved that the total concentration c satisfies a

parabolic equation with data cx(±L) = 0 and it is regular and strictly positive

for any t ≥ 0. Once c is given, the concentrations ci for the single isotopes are

solutions of linear hyperbolic first order equations and they can be derived by

means of the method of the characteristics, defined by the total concentration.

In this case, denoted by X(t; x0) the characteristic starting in x0 at time 0, we

have:

dX(t; x0)

dt
= −

cx

c

∣∣∣∣
x=X(t;x0)

, X(0; x0) = x0. (3)

Let us remark that if the initial total concentration c0(x) has zeroes, there

can be effects of “loss of regularity”. Actually it can happen that, also if

the data are regular, ci has discontinuities for positive time. Although from

a physical point of view it is more sensible to consider c0 small rather than
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c0 ≡ 0, a mathematical approach to the hyperbolic problem was performed

in [5], defining, also if the data are regular, a weak solution as in [2]. Let us

stress that, since the total concentration satisfies a uniform parabolic equation,

it will be strictly positive for any positive time also if it is initially zero on

subintervals. The problem is that this initial ”holes” may possibly cause the

ci to be discontinuous for positive time (for details see [5]). Since we wish to

understand first the asymptotic behaviour for physically relevant initial data,

possibly strongly oscillating but smooth, we need to assume c0 > 0. In this

assumption, one can use the results of [4] and show that the solution constructed

along the characteristics is the “viscosity solution” obtained as the limit of the

complete physical model, with D̃i = D̃ 6= 0, Di = D = 1 as D̃ → 0. Numerical

simulations confirm this result, also for the complete physical model, in very

general situations, and they have been performed using a program for solving

parabolic equations, with initial data possibly zero ([6]); however the proof of

existence and uniqueness of the solution of the complete parabolic problem and

its convergence to the hyperbolic problem in the possible presence of zeroes in

the initial total concentration is still an open problem.

We remark that the asymptotic behaviour of the solutions for t → ∞
strongly depends on the decay law, that is on Λ, and on the first significa-

tive term of the asymptotic expansion for t → ∞ of the solutions of the ODE

{
Ċ = ΛC, C = (c1, ..., cn),

C(0) = C0.
(4)

These results are evidentiated in [8], under strong assumptions on the positivity

of the initial data in the whole Ω. However there are physically relevant initial

data that do not satisfy such assumptions in the whole Ω but still the corre-

sponding solution should have a similar asymptotic behaviour. In the present

paper we will study the problem assuming the most general hypotheses.

2. Statement of the problem

Existence and uniqueness of a classical non negative solution of Problem (1)

have been obtained in [5] under the following assumptions:

H1) ci0 ∈ H2+l(Ω), l > 0, i = 1, ..., n, 0 ≤ ci0 ≤ K, c0 =
∑n

i=1 ci0 > 0,

H2) positivity property for the ODE (4):

if ci0 ≥ 0, then ci(t) ≥ 0, i = 1, ..., n,

Since we want to consider a set of isotopes which either decay or are stable,

it is natural to assume that all the eigenvalues of the matrix Λ are real non

positive, actually we can assume:
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H3) all the eigenvalues of Λ are real.

Due to the structure of Problem (1) it is convenient to consider instead of

C, C̃ = (c1, ...cn−1, c), c =
∑n

i=1 ci, then (4) is transformed in the following:

{
˙̃
C = Λ̃C̃,

C̃(0) = C̃0, C̃0 = (c10, ..., c(n−1)0, c0).
(5)

where Λ̃, for which H3 holds too, is given by

Λ̃ =




Λ11 − Λ1n . . . Λ1n

Λ21 − Λ2n . . . Λ2n

...
. . .

...∑n

m=1(Λm1 − Λmn) . . .
∑n

m=1 Λmn




.

Assuming that Λ̃ has s ≤ n distinct eigenvalues λs < ... < λ1, for i = 1, ..., s,
let us denote by (see [1, 12])

µ(λi) = algebraic multiplicity of λi,

ν(λi) = geometric multiplicity of λi,

E(λi) = generalized autospace of λi,

h(λi) = the least integer k s.t. Ker (Λ̃ − λiI)k+1 = Ker (Λ̃ − λiI)k,

so that E(λi) = Ker (Λ̃ − λiI)h(λi), with I = Id matrix n × n.

Any solution is a linear combination of the product of exponential functions

time polynomials. Quite precisely:

C̃(t) =

s∑

i=1




h(λi)−1∑

k=0

(Λ̃ − λiI)k tk

k!


 eλitC̃0,i, (6)

with C̃0 =
∑s

i=1 C̃0,i, C̃0,i ∈ E(λi).

Therefore, since λ1 is the highest eigenvalue, we have:

lim
t→+∞

t−(h(λ1)−1)e−λ1tC̃(t; C̃0)

=
1

(h(λ1) − 1)!
(Λ̃ − λ1I)h(λ1)−1C̃0,1 = B̂C̃0.

(7)

Here B̂ is a constant n × n matrix, determined by the E(λi) (see [8]).
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Given C̃0(x), x ∈ Ω, let us define:

F(x) = B̂C̃0(x), F (x) = (B̂C̃0(x))n. (8)

Let us remark that the positivity hypothesis H2 together with H1 guarantees

F (x) ≥ 0, moreover, if for some x0 F (x0) = 0, then F(x0) = 0.

We proved in [8, Theorem 3.1], that, assuming H1, H2, H3, for any initial

datum C̃0 such that

H4) F (x) ≥ δ > 0 in Ω,

we have

lim
t→+∞

t−(h(λ1)−1)e−λ1tm(x, t) =
x + L

2L
M∞, (9)

uniformly in Ω, where

m(x, t) =

∫ x

−L

c(ξ, t) dξ, M∞ =

∫ L

−L

F (ξ) dξ. (10)

Then the first asymptotic term for the total concentration c is given by

th(λ1)−1eλ1t M∞

2L
, that is a uniform distribution of the total concentration, and

this is in agreement with the physics of the problem.

Moreover, once the characteristics have been defined as in (3), it is possible

to get their asymptotic behaviour, and precisely (see [8, Corollary 3.1]):

lim
t→+∞

X(t; x0) = X∞(x0) =
2L

M∞

∫ x0

−L

F (ξ) dξ − L. (11)

The hypothesis H4 ensures that the function X∞(x0) is monotone increasing,

and consequently it is possible to obtain the information on the ratioes ri =

ci

c
, i = 1, ...n − 1,

cn

c
= 1 −

n−1∑

i=1

ri, precisely:

lim
t→+∞

ri(x, t) =
Fi(X

−1
∞

(x))

F (X−1
∞ (x))

, i = 1, ..., n − 1 (12)

uniformly in Ω (see [8, Corollary 3.2]).

Of course, if M∞ = 0, that is F ≡ 0, the first significative term of the

asymptotic expansion of m and c changes, but it is natural to investigate what

happens if F 6≡ 0 but e.g. it is null in a subset of Ω.

In order to better understand the question, let us consider the couple of

isotopes (U238, U234) whose decay law is:

{
ċ1 = −γ1c1

ċ2 = γ1c1 − γ2c2, 0 < γ1 < γ2,
(13)
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that is the isotope 1, U238, decays into the isotope 2, U234, and the second

one decays out of the element. In this example one can see that F (x) =
γ2 − γ1

γ2
c10(x). If the isotope 1 is not present initially (i.e. c10 ≡ 0), then the

solution is c1 ≡ 0 and c2 ≡ c = e−γ2tw(x, t), with w(x, t) solution of





wt = wxx(x), x ∈ Ω, t > 0,

w(x, 0) = c0(x), x ∈ Ω,

wx(±L, t) = 0, t > 0,

that is, for large time,

m(x, t) ≃ e−γ2t x + L

2L

∫ L

−L

c0(ξ) dξ, and r ≡ 0.

If on the contrary assumption H4 holds, that is the isotope 1 is initially

present everywhere in Ω, then from (9)-(12):





m(x, t) ≃ e−γ1t x + L

2L

(
1 −

γ1

γ2

) ∫ L

−L

c10(ξ) dξ,

r(x, t) ≃ rE = 1 −
γ1

γ2
,

uniformly in Ω, with 0 < rE < 1. We have in this case the so called ”secular

equilibrium” of the two isotopes, that are both present in Ω for t > 0 and tend,

for t → ∞, respectively to rE , 1 − rE . The question is what happens if the

isotope 1 is absent only in a subset of Ω but M∞ > 0. We will prove in the

sequel that the asymptotic behaviour of m is still given by (9).

Other significant examples will be analyzed in Section 4.

3. Main result

Aim of this Section is to prove that the same result (9) holds if instead of H4

we assume the following hypothesis:

H5) F (x) = (B̂C̃0(x))n ≥ 0, F (x) 6≡ 0 inΩ.
We have the following:

Theorem 3.1. In the assumptions H1, H2, H3, H5, then

lim
t→+∞

t−(h(λ1)−1)e−λ1tm(x, t) =
x + L

2L
M∞, (14)

uniformly in Ω, with m and M∞ defined in (10).
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Proof. Taking as an unknown C̃ = (c1, ..., cn−1, c), c =
∑n

i=1 ci, the original

problem (1) becomes:





cit =

(
ci

c
cx

)

x

+ (Λ̃C̃)i, i = 1, ..., n − 1, x ∈ Ω, t > 0,

ct = cxx + (Λ̃C̃)n, x ∈ Ω, t > 0,

cx(−L, t) = cx(L, t) = 0, t > 0,

C̃(x, 0) = C̃0(x) = (c10(x), ..., c(n−1)0(x), c0(x)),

c0(x) =
∑n

i=1 ci0(x), x ∈ Ω.

(15)

As in other problems of this kind, see [2, 5, 13, 14, 18], it is more convenient

to consider, instead of (15), the problem for

ri =
ci

c
, i = 1, ..., n − 1:





rit =
cx

c
rix + Pi(r), i = 1, ..., n − 1, x ∈ Ω, t > 0,

ct = cxx + b(r1, ..., rn−1)c, x ∈ Ω, t > 0,

cx(−L, t) = cx(L, t) = 0, t > 0,

c(x, 0) = c0(x), x ∈ Ω,

ri(x, 0) =
ci0(x)

c0(x)
, i = 1, ..., n − 1, x ∈ Ω,

(16)

where Pi are polynomial expressions of degree ≤ 2 in r = (r1, ..., rn−1), the

coefficients depending on Λ, and b is defined by

b = (Λ̃r̃)n, r̃ = (r1, ..., rn−1, 1). (17)

Let us remark that under hypotheses H1 and H2 we have proved in [5] the

existence of a unique classical solution of problem (16).

Moreover, c(x, t) is always positive, satisfying a linear parabolic equation

with zero flux on the boundary and positive initial datum.

Once c is known, the characteristics depend only on c, see (3), but the ri evolve

along each characteristic, independently of c, like the solutions of the spatially

omogeneous problem. Then, fixed x0 and C̃0(x0), the ri are given explicitely

on the characteristic X(t; x0) by the ratioes ci/c, with ci, c given in (6) with

initial datum C̃0(x0).

Moreover, we proved in [5] that the ”masses” between two characteristics

X(t; x1), X(t; x2) starting respectively in x1, x2, with −L ≤ x1 < x2 ≤ L,

defined by

M̃(t) =

∫ X(t;x2)

X(t;x1)

C̃(ξ, t) dξ, (18)
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are solutions of the ODE system:

˙̃
M = Λ̃M̃, M̃(0) =

∫
x2

x1

C̃0(ξ)dξ = M̃0, (19)

and hence are given explicitly by (6) with initial datum M̃0 instead of C̃0.

This means that, since x = −L is the characteristic starting in x0 = −L,

we know the evolution in time of m(x, t) on any characteristic x = X(t; x0)

and in particular for x = X(t; L) ≡ L.

Then v(x, t), defined by

v(x, t) = (1 + t)−(h(λ1)−1)e−λ1tm(x, t), (20)

is solution of:





vt = vxx + f(x, t), x ∈ Ω, t > 0,

v(x, 0) =
∫ x

−L
c0(ξ) dξ, x ∈ Ω,

v(−L, t) = 0, t > 0,

v(L, t) = H(t), t > 0.

(21)

with

f(x, t) =
∫ x

−L
b̃ u dξ,

u = (1 + t)−(h(λ1)−1)e−λ1tc,

b̃ = b − λ1 −
h(λ1) − 1

1 + t
, b = (Λ̃r̃)n,

H(t) = (1 + t)−(h(λ1)−1)e−λ1t×

×
∑s

i=1

{[∑h(λi)−1
k=0 (Λ̃ − λiI)k tk

k!

]
eλit

∫ L

−L

C̃0,i(ξ) dξ

}

n

.

(22)

The expression of H(t) comes from (19), recalling that x ≡ ±L are the charac-

teristics starting at x0 = ±L, since there cx = 0. Then, see (21), v is solution

of a Dirichlet problem for the heat equation with source f(x, t) and known

boundary data.

Under the hypothesis H5, from (7) and the definition (8) of F , we have

lim
t→+∞

H(t) =

∫ L

−L

F (ξ) dξ = M∞. (23)

Using a classical result ([11, Theorem 1, Chapter V]) the proof of Theorem 3.1

follows, provided that

lim
t→+∞

f(x, t) = 0 (24)
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uniformly in Ω.

In order to prove (24), fixed an arbitrary σ > 0, let us divide the interval

Ω = (−L, L) into the two subsets:

Ω− = {x ∈ Ω : F (x) < σ},

Ω+ = {x ∈ Ω : F (x) ≥ σ}.
(25)

Let us remark that, for any σ sufficiently small, Ω+ is not empty and, if

F (x0) = 0, there exists a neighborhood of x0 where F < σ and Ω− is not

empty.

For any fixed t > 0, let us divide Ω into

Ω−(t) = {x ∈ Ω : x = X(t; x0), x0 ∈ Ω−},

Ω+(t) = {x ∈ Ω : x = X(t; x0), x0 ∈ Ω+},
(26)

that is Ω−(t), Ω+(t) are the set of the characteristics at time t starting from

Ω−, Ω+ respectively.

Then

f(x, t) =
∫
[−L,x]∩Ω−(t)

b̃u dξ +
∫
[−L,x]∩Ω+(t)

b̃u dξ =

= f−(x, t) + f+(x, t).
(27)

Let us consider first f+. In [8, Lemma 3.1], we proved that if for some

x0 F (x0) ≥ σ > 0, on the characteristic X(t; x0) starting in x0, the following

estimate on b̃ depending on σ holds:

|b̃| ≤
k1

σ

[
h(λ1) − 1

t2
+ (s − 1)e

λ2−λ1
2

t

]
=

k1

σ
g(t), (28)

for x = X(t; x0) and t ≥ 1, where k1 is a constant depending on Λ and on

maxΩ ||C̃0(x)||.

Then, being u > 0, recalling (21)-(23), we have:

|f+(x, t)| ≤
k1

σ
g(t)

∫

[−L,x]∩Ω+(t)

u(ξ, t) dξ

≤
k1

σ
g(t)

∫ L

−L

u(ξ, t) dξ

≤
k1

σ
g(t)H(t) ≤ 2

k1M∞

σ
g(t), t ≥ T1.

(29)

Let us consider now f−. Notice that for any x ∈ Ω, t > 0, b̃ is uniformly

bounded because the ri are bounded between 0 and 1 (see (22)), that is |b̃| ≤ k2.

Since u > 0 we have:

|f−(x, t)| ≤ k2

∫
[−L,x]∩Ω−(t)

u(ξ, t) dξ

≤ k2

∫
Ω−(t)

u(ξ, t) dξ.
(30)
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From (18), (19), (6), (8), the last term in (30) can be written in the form

∫
Ω−(t)

u(ξ, t) dξ = (1 + t)−(h(λ1)−1)e−λ1t×

×
∑s

i=1

{[∑h(λi)−1
k=0 (Λ̃ − λiI)k tk

k!

]
eλit

∫

Ω−

C̃0,i(ξ) dξ

}

n

=
(
B̂

∫
Ω−

C̃0,1(ξ) dξ
)

n
+ z̃ =

∫
Ω−

F (ξ) dξ + z̃,

(31)

with z̃ bounded for any x ∈ Ω, t ≥ 1 by:

|z̃| ≤ k3

(
(h(λ1) − 1)

t
+ (s − 1)e

λ2−λ1
2

t

)
= k3g1(t), (32)

with k3 depending on Λ and on maxΩ ||C̃0||.
Recalling that F < σ in Ω−, from (31), (32) it follows

|f−| ≤ k4(σ + g1(t)), x ∈ Ω, t ≥ 1. (33)

From the estimates (29), (33) on f+, f− we have, for any x ∈ Ω, t ≥ max(1, T1):

|f | ≤ k5

(
σ +

g(t)

σ
+ g1(t)

)
. (34)

Then, fixed an arbitrary ǫ > 0, e.g. σ =
ǫ

3
, recalling that g(t) and g1(t) tend

to zero as t → ∞, from (34) we have that there exists a time T (ǫ) such that

|f | ≤ ǫ, ∀x ∈ Ω, t > T (ǫ),

that gives the proof of the theorem. 2

From Theorem 3.1, as in [8], it is possible to obtain the asymptotic be-

haviour of the characteristics, precisely we have:

Corollary 3.2. In the hypotheses of Theorem 3.1 we have that

lim
t→+∞

X(t; x0) = X∞(x0) =
2L

M∞

∫ x0

−L

F (ξ) dξ − L, (35)

uniformly in Ω.

Proof. The proof is the same as the one of [8, Corollary 3.1], let us mention here

that the idea of the proof is that we know the evolution in time of m(X(t; x0), t),
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since m is solution of the ODE (19). Therefore we have that, by the definition

of X∞(x0) in (35) and by (6)-(8):

t−(h(λ1)−1)e−λ1tm(X(t; x0), t)

=

∫ x0

−L

F (ξ) dξ + ẑ(x0, t) =
X∞(x0) + L

2L
M∞ + ẑ,

where

|ẑ(x0, t)| ≤ k6g1(t),

with k6 constant depending on Λ and on maxΩ ||C̃0||, and g1(t) defined in (32).

On the other hand, Theorem 3.1 implies that, for t sufficiently large and

for any x0 in Ω, t−(h(λ1)−1)e−λ1tm on the characteristic X(t;x0) is close to
X(t;x0)+L

2L
M∞. 2

Concerning the asymptotic behaviour of the ri =
ci

c
, i = 1, ..., n − 1, as in

[8] we have:

Corollary 3.3. In the hypotheses of Theorem 3.1, and assuming that F (x) ≥
δ > 0 in [x1, x2],⊂ Ω, we have:

lim
t→+∞

ri(x, t) =
Fi(X

−1
∞

(x))

F (X−1
∞ (x))

, (36)

uniformly in [X∞(x1), X∞(x2)], and

∣∣∣∣ri

(
X(t; X−1

∞
(x)), t

)
−

Fi(X
−1
∞

(x))

F (X−1
∞ (x))

∣∣∣∣ ≤ k(δ)g1(t), (37)

for t > T (δ) = g−1
1

(
δ

2

)
, g1 defined in (32).

Proof. From the hypothesis F (x) ≥ δ > 0, x ∈ [x1, x2], it follows that the

function X∞(x) is monotone increasing in [x1, x2], consequently the inverse

function is monotone increasing in [X∞(x1), X∞(x2)].

Moreover the characteristics are ordered so that ∀t̄ > 0 and ∀x̄ ∈ [X(t; x1),
X(t; x2)] there exists a unique x̂ ∈ [x1, x2] such that x̄ = X(t; x̂) and F (x̂) ≥
δ > 0. Then we can repeat the arguments of [8, Corollary 3.2]. The estimate

(37) on ri comes from the explicit expression of C̃(t) in (6). 2

From the explicit expression of X∞(x), see (35), we have the following
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Remark 3.4. i) If F (x) ≡ 0 for x ∈ [x1, x2] ⊂ Ω, then X∞(x1) = X∞(x2).

That is, if F is identically zero in a subinterval of Ω, all the subinterval

asymptotically reduces to the point

X∗ = X∞(x1) =
2L

M∞

∫ x1

−L

F (ξ) − L.

ii) If 0 ≤ F (x) ≤ β, β > 0 for x ∈ [x1, x2] ⊂ Ω, then

X∞(x2) − X∞(x1) =
2L

M∞

∫ x2

x1

F (ξ) dξ ≤
2L

M∞

(x2 − x1)β.

That is the asymptotic measure of the subinterval is of the order β.

In the next Section we will consider some examples in order to make clearer the

above observations concerning the asymptotic behaviour of r = (r1, ..., rn−1).

4. Examples and comments

Let us consider the example described in Section 2, for the couple (U238, U234),

where the matrix Λ is given by (13). If we assume in this example that F (x) =
γ2 − γ1

γ2
c10(x) is null in a subinterval [x1, x2] ⊂ Ω and positive out of this

interval, then (see Remark 3.4), the whole interval [x1, x2] reduces, for t → ∞
to the unique point

X∗ = X∞(x1) =
2L

M∞

∫ x1

−L

F (ξ) − L.

In this case there does not exist the limx→X∗, t→∞ r(x, t), because in any neigh-

borhood of X∗ there are characteristics on which r ≡ 0 (precisely X(t; x0),

∀x0 ∈ [x1, x2]) and characteristics on which

r → rE =
γ2 − γ1

γ2
, 0 < rE < 1,

precisely the ones starting at a point out of [x1, x2].

However, fixed a neighborhood of X∗, out of it r tends uniformly to rE for

t → ∞, because of Corollary 3.3. From a physical point of view in this case

(0 < γ1 < γ2) there is not a uniform asymptotic distribution for c1, c2 and, in

particular, oscillations may be present near X∗ also asymptotically. However

varying order of the parameters γ1, γ2 one can observe that:

i) if γ1 > γ2 > 0 then F (x) = c0(x) +
γ2

γ1 − γ2
c10(x) ≥ c0(x) > 0.

Then H1 implies that assumption H4 is satisfied and r → 0 uniformly

for t → ∞, that is only the isotope 2 is present asymptotically.
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ii) if γ1 = γ2 = γ > 0 then F (x) = γc10(x).

Then in assumption H5 we have that M∞ =
∫ L

−L
F > 0 depends only on

the isotope 1 and the asymptotic expansion of m(x, t) is

te−γt x + L

2L
M∞.

However for any initial data satisfying H1 we have r ≤
1

γt

for t > 1 and x ∈ Ω, so that r → 0 uniformly for t → ∞, that is there

exists a uniform asymptotic distribution of r in Ω, independently of the

possible vanishing of F in a subset of Ω.

Let us remark that if assumption H5 does not hold, that is if F ≡ 0 in

Ω, the isotope 1 is initially absent in the explicit solution and the first

asymptotic term of m is

e−γt x + L

2L

∫ L

−L

c0(ξ) dξ, c0 ≡ c20.

This example shows that depending on the form of the matrix Λ there can

be three different asymptotic behaviours:

case I for any initial data satisfying H1, F (x) is always strictly positive, and

hence hypothesis H4 holds. Then r = (r1, ..., rn−1) has an asymptotic

distribution in the whole Ω (see [8] and (12));

case II assuming hypothesis H5, there exists an asymptotic distribution of r

in the whole Ω;

case III assuming hypothesis H5, there does not exists in general an asymp-

totic distribution of r in the whole Ω.

These three possible behaviours are present in the general case of n species

with different evolutive laws. We will present some of them, interesting from a

physical point of view.

case I

example Ia) The matrix Λ is a multiple of the identical matrix, defined by:

ċi = −γci, i = 1, ..., n, γ ≥ 0. (38)

This example describes both sets of stable isotopes, i.e. with γ = 0, e.g.

of the couple (Cl37, Cl35), and of radiative isotopes that decade out of
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the element with the same coefficients of decay (γ > 0), e.g. the couple

(U235, U238).

In this case we have that F (x) = c0(x) > 0 because of hypothesis H1.

Let us remark that in this case the asymptotic distribution of r strongly

depends on the initial conditions, since it is given explicitely by:

lim
t→∞

ri(x, t) =
ci0(X

−1
∞

(x))

c0(X
−1
∞ (x))

, i = 1, ..., n. (39)

example Ib) The matrix Λ is defined by





ċ1 = −γ1c1,

ċi = γi−1ci−1 − γici, i = 2, ..., n − 1,

ċn = γn−1cn−1,

(40)

with γi > 0, i = 1, ..., n − 1.

This case describes the evolution of a chain of n isotopes such that the

ith one decades into the (i + 1)th one, for i = 1, ..., n − 1, while the nth

one is stable.

It is shown in [8] that also in this example F (x) = c0(x), however in this

case

lim
t→∞

ri(x, t) = 0 i = 1, ..., n − 1, (41)

uniformly in Ω, then the unique isotope asymptotically present is the nth

one, that is the unique stable isotope.

example Ic) The matrix Λ is defined by

{
ċ1 = −γ1c1,

ċi = γi−1ci−1 − γici, i = 2, ..., n.
(42)

with γi > 0, i = 1, ..., n and γn = min γi, µ(−γn) = 1.

This is a generalization of the couple (U238, U234): we have a chain of

n isotopes of which the ith one decades into the (i + 1)th one, for i =

1, ..., n− 1, and the nth one decays out of the element. In [8, Example 2,

Section 4] we have shown that

F = F (x)vn, vn = (0, ..., 0, 1), F (x) ≥ c0(x).
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Then, again, for any datum satisfying H1, F (x) is strictly positive and

lim
t→∞

ri(x, t) = 0 i = 1, ..., n − 1, (43)

uniformly in Ω, and the unique isotope asymptotically present is the nth

one.

Let us remark that the estimate on F (x) can be derived directly, without

a detailed analysis of the eigenvalues-eigenvectors of Λ.

In fact in this case the ODE system
˙̃
C = Λ̃C̃ is given by





ċ1 = −γ1c1,

ċi = γi−1ci−1 − γici, i = 2, ..., n

ċ = −γnc + γn

∑n−1
i=1 ci(t).

(44)

Then the ci(t), i = 1, ..., n − 1, can be obtained from the first n − 1

equations and depend only on ci0(t), i = 1, ..., n − 1, and the total con-

centration consequently is given by

ceγnt = c0 + γn

∫ t

0

eγnτ

n−1∑

i=1

ci(τ) dτ. (45)

The hypotheses γn = min γi, µ(−γn) = 1 ensure that the integral in (45)

is bounded for t → ∞, since ci, i = 1, ..., n − 1, behave at most like

e−γitQ(t), with Q(t) polynomial in t of degree less or equal to n − 1

(equal if the γi, i = 1, ..., n − 1, are all identical).

Since ci ≥ 0, we have limt→∞ ceγnt = F (x) ≥ c0,

in particular F (x) = c0 if ci0 = 0, i = 1, ..., n − 1, that is if initially the

unique isotope present is the nth one.

Let us remark that if γn = min γi, but µ(−γn) > 1 then in general F
is not positive everywhere. Indeed even in the case n = 2 we have seen

that F = γ1c10, and in general, for n > 2 we have, from (45) and since

µ(−γn) = h(−γn) > 1:

F = lim
t→∞

t−(h(−γn)−1)eγntc = lim
t→∞

γnt−(h(−γn)−1)

∫ t

0

eγnτ

n−1∑

i=1

ci(τ) dτ.

If ci0 = 0, i = 1, ..., n − 1 and cn0 > 0, then the initial data satisfy H1

but F = 0.
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case II

This case occurs when H1 does not imply that F (x) is positive in Ω, but

r has a unique asymptotic limit for all data satisfying H1, as solution of an

ODE. In this class we can find the example with Λ given by (42) with γi = γ >
0, i = 1, ..., n. Under hypothesis H1, in this case we have that, ∀x ∈ Ω and for

t > 1:

Fi(x) =
γn−1

(n − 1)!
c10(x)δn

i , i = 1, ..., n,

0 ≤ ri ≤
i

γt
, i = 1, ..., n − 1,

(46)

where δn
i is the Kronecker symbol.

Then for any initial datum satisfying hypothesis H1, we have that

lim
t→∞

r = 0,

uniformly in Ω, that is asimptotically the unique isotope present is the nth one,

however M∞ depends only on the 1st isotope (see Theorem 3.1).

To prove (46) we remark that Λ is multiple of a Jordan normal form and

the solution can be explicitly written as follows:





eγtci =
∑i

j=1 cj0
(γt)i−j

(i − j)!
, i = 1, ..., n − 1,

eγtc =
∑n−1

i=1 ci0

∑n−i

j=1

(γt)j

(j)!
+ c0.

(47)

Then, recalling that h(−γn) = n and limt→∞ t−(h(−γn)−1)eγtC̃ = F, (46) fol-

lows.

Let us remark that for any initial data such that c10 > 0 we have for t → ∞:

ri ≃
(n − 1)!

(i − 1)!
(γt)−(n−i), i = 1, ..., n − 1,

that is the estimate (46) is almost sharp.

case III

This case occurs when H1 does not imply that F (x) is positive, and r, as

solution of an ODE, does not have a unique asymptotic limit, for all the data

satisfying H1.

example IIIa) The matrix Λ is diagonal, with eigenvalues not all equal.

This is the case of a set of isotopes which decade out of the element with

coefficients of decay not all equal.
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Assuming the isotopes to be ordered with γ1 ≤ γ2 ≤ ... ≤ γn, γ1 <
γn, from the explicit solution one can directly observe that, denoting

µ(−γ1) = j < n:

F (x) =

j∑

i=1

ci0(x),

and if F (x0) > 0 then r(X(t; x0), t) tends asymptotically to a limit which

can depend on the initial data, if j > 1, but it is such that
∑j

i=1 ri tends

to 1 and ri tends to 0 for i > j, as t → ∞.

On the other hand, we have that if c10(x0) = ... = c(n−1)0(x0) = 0,
cn0(x0) > 0 then F (x0) = 0 and r(X(t; x0), t) ≡ 0, that is a different

limit from the previous one.

Then in general there does not exist a limit for r in the whole Ω.

example IIIb) Let us consider the example (42) assuming now that the γi

are not all equal and that −γn is not the maximum eigenvalue. Then if

we choose the initial data ci0 = 0, i = 1, ..., n − 1, cn0 > 0, satisfying

hypothesis H1, we have the solution:

C̃ = c0e
−γntvn, vn = (0, ..., 0, 1).

Denoted by λ1 = −mini=1,...,n γi the maximum eigenvalue, say −γk, k 6=
n, then, for this initial condition we have:

F = lim
t→∞

t−(h(λ1)−1)e−λ1tC̃ = lim
t→∞

t−(h(λ1)−1)e−(γn−γk)tc0v
n = 0.

Moreover, on any characteristic X(t; x0) with x0 such that ci0 = 0, i =

1, ..., n − 1, cn0 > 0, we have r = 0.

On the other hand we can show, see [8, Example 2], that in this case

F(x) = β(x)vk, where vk is given by:

vk,i = 0, i = 1, ...k − 1, if k > 1,

vk,i =
∏n−1

j=i

γj+1 − γk

γj

, i = k, ..., n − 1,

vk,n = 1 +
∑n−1

i=1

∏n−1
j=i

γj+1 − γk

γj

.

(48)

Then if F (x0) is positive on the characteristic starting in x0 we have

lim
t→∞

r = rE 6= 0, rE,i =
vk,i

vk,n
, i = 1, ...n − 1,
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that is in general a limit for r does not exist in the whole Ω.

In particular if k = 1, all the components of rE are positive and
∑n−1

i=1 rE,i

< 1, that is, from a physical point of view, we have the so called secular

equilibrium of all the n isotopes.
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and isochrones

of planar differential systems
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Abstract. In the first section we collect some unpublished results

presented in [17], related to linearizations and normalizations of planar

centers. In the second section we consider both the problem of finding

isochrones of isochronous systems (centers or not) and its inverse, i.e.

given a family of curves filling an open set, how to construct a system

having such curves as isochrones. In particular, we show that for every

family of curves y = mx + d(x), m ∈ IR, there exists a Liénard system

having such curves as isochrones.

Keywords: planar systems, period function

MS Classification 2010: 34C25

1. Introduction

Let Ω be an open connected subset of the real plane. Let us consider a differ-

ential system

z′ = V (z), z ≡ (x, y) ∈ Ω, (1)

V (z) = (v1(z), v2(z)) ∈ C∞(Ω, IR2). We denote by φV (t, z), the local flow

defined by (1). A connected subset P ⊂ Ω covered with concentric non-trivial

cycles is said to be a period annulus. If O is an isolated critical point of (1), we

say that O is a center if it has a punctured neighbourhood which is a period

annulus of Ω. The largest neighbourhood NO of O such that NO \ {O} is a

period annulus of Ω is said to be the its central region. On every period annulus

one can define the period function τ(z), defined as the minimum positive period

of the cycle starting at z. It can be proved that τ has the same regularity as the

1This paper was partially supported by the PRIN project Equazioni differenziali ordi-

narie: sistemi dinamici, metodi topologici e applicazioni. Symbolic and numeric computa-
tions were performed using MapleTM 11.
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system. A period annulus is said to be isochronous if τ is constant. The study

of τ , and in particular isochronicity, is related to boundary value problems

and stability theory. In [1] several methods and results related to isochronicity

theory were reviewed. One of the oldest ones is the linearization one, dating

back to Poincaré. It consist in looking for a transformation that takes (1) into a

linear system. Since every linear center is isochronous, if such a map exists, (1)

has an isochronous center. Poincaré proved that if (1) is analytical and O is a

non-degenerate critical point, then it admits a local linearization at O if and

only if O is isochronous. Such a result is purely existential, giving no hints

about how such a linearization could be obtained, in order to prove O actually

to be isochronous. Linearizations of special classes of isochronous centers were

found later by applying different techniques, as in [13].

A different method to prove isochronicity was introduced in [16, 21], based

on the use of Lie brackets. Let us consider a second differential system

z′ = W (z), z ≡ (x, y) ∈ Ω, (2)

W (z) = (w1(z), w2(z)) ∈ C∞(Ω, IR2), φW (s, z) the local flow defined by (2).

We say that (1) and (2) commute, or that V and W are commutators, if their

Lie brackets [V, W ] vanish identically on Ω. A center is isochronous if and only

if V it has a non-trivial (transversal at non-critical points) commutator W [16].

In several cases looking for a commutator turns out to be easier than looking

for a linearization [1]. Also, as shown in [8], isochronicity is equivalent to the

existence of a vector field W normalized by V , i.e. of a vector field W and a

function µ such that [V, W ] = µW . Every commutator is a normalizer, but

the converse is not true, since the normalizing condition is expressed by one

equality, the commutation condition by two.

Poincaré linearization theorem implies that an isochronous analytical cen-

ter has a non-trivial commutator, since every linear center commutes with a

transversal (at non-critical points) linear system. Conversely, if an analytical

center has a non-trivial commutator, then it is isochronous, hence by Poincaré

theorem it has an analytical linearization. The extension of such a relationship

to non-analytical systems was studied in [22]. Procedures to get the lineariza-

tion, starting form a given commutator, were studied in [5, 6, 9, 15], for several

classes of analytical and non-analytical systems. In such papers it was always

assumed the commutator W to have a non-degenerate critical point at O, usu-

ally having a linear part of star-node type. In the first section of this paper

we present an approach, first presented in the unpublished preprint [17], where

such an assumption is not required. The absence of a non-degeneracy assump-

tion does not allow us to prove the existence of a linearizing diffeomorphism. In

fact, we only prove the existence of a bijective linearizing map which fails to be

a diffeomorphism at the critical point, where we lose the differentiability of the

inverse map. In this section we also consider the existence of normalizations,
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i.e. maps that take (1) into a system of the form

u̇ = v ϕ(u2 + v2), v̇ = −uϕ(u2 + v2).

Such a question was considered in [12].

In the second section we are concerned with the existence of isochrones,

or isochronous sections, i.e. curves met by the local flow of (1) at equal time

intervals. If O is an isochronous center, then every curve meeting its cycles

exactly at a single point, even if not transversal, is an isochrone. The existence

of isochrones becomes less obvious when dealing with cycles, isolated (limit

cycles) or not, or with rotation points, or boundaries of attraction regions [19].

The existence of isochrones in a neighbourhood Uγ of a cycle γ, in relation to

the existence of commutators or normalizers, was considered in [19, 20].

Following [2], we say that a point z∗ ∈ Uγ has asymptotic phase with respect

to γ if there exists a point z∗ ∈ γ such that limt→+∞ |φV (t, z∗)−φV (t, z∗)| = 0,

or limt→−∞ |φV (t, z∗)−φV (t, z∗)| = 0. In such a case, z∗ is said to be in phase

with z∗. In [2] a cycle is said to be isochronous if it has a neighbourhood

Uγ such that every point of Uγ is in phase with some point of γ. A cycle is

isochronous if and only if it has an isochrone, since the set of points in phase

with a given z∗ ∈ γ is an isochrone, and vice-versa. Every hyperbolic limit

cycle is isochronous, in such a sense [11]. Even non-hyperbolic limit cycles

can be isochronous, under some additional conditions on the first return time

map [2, 4]. The asymptotic phase approach cannot be extended to some other

situations, as attraction boundaries, since if the boundary of the attraction

region of an isochronous system is unbounded, then for every z in the boundary,

φV (t, z) does not exist for all t ∈ IR.

If a system has an isochrone, then it has infinitely many ones, obtained

from the given one by means of the local flow φV . If a cycle φV (t, z) is

isochronous, such curves cover a neighbourhood of φV (t, z). If a critical point

O is isochronous, then the system’s isochrones cover a punctured neighbour-

hood of O. If a boundary is isochronous, then the system’s isochrones cover a

one-sided neighbourhood of such a boundary.

Given a family of curves covering an open set, one can consider an in-

verse problem, consisting in finding a differential system having such curves as

isochrones. In the second section we describe an elementary approach to such

a problem, with special regard to Liénard systems.

2. Linearizations and normalizations

Let Ω be an open connected subset of the real plane. We assume systems (1)

and (2) to have the same, isolated critical points. We denote by φV (t, z),

φW (s, z) the local flows of (1) and (2). If I ∈ C∞(Ω, IR), we denote by ∂V I,

∂W I, the derivatives of I along the solutions of (1), (2), respectively. Similarly
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for ∂W I and for the derivative of a vector field along the solutions of (1) or (2).

We write [V, W ] = ∂V W − ∂W V , A = V ∧ W = v1w2 − v2w1. We say that W
is a non-trivial normalizer of V if A 6= 0 at regular points and V ∧ [V, W ] = 0.

In this case, we define the function µ as follows,

µ =
V ∧ [V, W ]

|V |2
.

If W is a normalizer of V , then the time-map φW (s, z) takes locally arcs of

V -orbits into arcs of V -orbits. When both vector fields are non-trivial nor-

malizers of each other we say that they are non-trivial commutators. By the

transversality of V and W , this occurs when [V, W ] = 0. In such a case, if

φV (t, φW (s, z)) and φW (s, φV (t, z)) are defined for all (s, t) ∈ Js × Jt, Js, Jt

intervals containing 0, then one has the following commutativity property

φV (t, φW (s, z)) = φW (s, φV (t, z)).

We say that a function I ∈ C∞(Ω, IR) is an first integral of (1), or V , if I is non-

constant on any open subset of Ω, and ∂V I = 0 in Ω. We say that a function

F ∈ C∞(Ω, IR) is an integrating factor of (1) if the divergence of the field FV
vanishes in Ω. In such a case the differential form ω = −Fv2dx + Fv1dy is

closed, and a potential exists on every simply connected subset of Ω. If FV
does not vanish identically on any open subset of Ω, then such a potential is a

first integral of (1). We say that a function G ∈ C∞(Ω, IR), G(z) 6= 0 for all

z ∈ Ω, is an inverse integrating factor of (1) if
1

G
is an integrating factor of (1).

If W is a normalizer of V , then A = V ∧W is an inverse integrating factor

of V [7]. Similarly, if V is a normalizer of W , then A = V ∧ W is an inverse

integrating factor of W , so that, if V and W commute, then A = V ∧ W is

an inverse integrating factor both of V and W . Let us denote by T the set of

points where V and W are transversal:

T = {z ∈ U : A(z) 6= 0}.

For every z ∈ T , we set B(z) =
1

A(z)
.

If W is a non-trivial normalizer of V , then for every point z ∈ T there exists

a disk Uz
w and a function Sz ∈ C∞(Uz

w, IR), determined up to an additive

constant κz
w, such that ∇Sz = B(−v2, v1). As a consequence, ∂V Sz = 0.

Similarly, if V is a non-trivial normalizer of W , then for every point z ∈ T
there exists a disk Uz

w and a function T z ∈ C∞(Uz
w, IR), determined up to an

additive constant κz
w, such that ∇T z = B(w2,−w1) and ∂W T z = 0.

If V and W commute, something more can be said, as in next lemma. We

say that a map rectifies a vector field V if it takes (1) into a non-zero constant

one. We say that a map linearizes a vector field V if it takes (1) into a linear
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one. We say that a map normalizes a vector field V if it takes (1) into a system

of the following form

u̇ = v ϕ(u2 + v2), v̇ = −uϕ(u2 + v2).

The orbits of such a system are contained in circles centered at O. If ϕ(u2 +

v2) 6= 0 on a given circle, then its minimal period is
1

ϕ(u2 + v2)
. As a conse-

quence, if such a system is defined in a neighbourhood of O, its period function

is bounded only if ϕ(u2 + v2) does not approach 0. In the following we shall

take into account also bijective C∞ maps which fail to be diffeomorphisms just

at a point.

For every point z ∈ Ω ∩ T , let us set Uz = Uz
v ∩ Uz

w. Then, for every point

z ∈ Ω ∩ T , we can define the map Γz = (Sz, T z) ∈ C∞(Uz, IR2).

Lemma 2.1. Let V and W be non-trivial commutators. Then, for every choice

of κz
v, κz

w, Γz is a local diffeomorphism that rectifies locally both (1) and (2).

Moreover, for every ζ ∈ Uz, ζ = φV (tζ , φW (sζ , z)) = φW (sζ , φV (tζ , z)), one

has:

φV (t, ζ) = (Γz)−1(t + tζ , sζ), φW (s, ζ) = (Γz)−1(tζ , s + sζ). (3)

Proof. The regularity of Γz comes from those of Sz, T z. The map Γz has

jacobian matrix:

JΓz =

(
−Bv2 Bv1

Bw2 −Bw1

)

whose determinant is −B, that does not vanish on T . Hence Γz is locally

invertible on all of T , that is at every regular point. As for the transformed

systems, we know from what above that ∂V Sz = 0, ∂W T z = 0. Moreover,

{
∂V T z = Bw2v1 − Bw1v2 = BA = 1

∂W Sz = −Bv2w1 + Bv1w2 = BA = 1.

This shows that Γ rectifies locally both systems.

We prove only the first equality in (3), the second one can be proved sim-

ilarly. We have: Γz(φV (t, ζ)) = Γz(φV (t, φV (tζ , φW (sζ , z)))) = Γz(φV (t +

tζ , φW (sζ , z)))) = (t + tζ , sζ). By the local invertibility of Γz we get φV (t, ζ) =

Γz−1(t + tζ , sζ).

Lemma 2.2. Let P is an open isochronous period annulus of (1). Then, for

every vector field W such that [V, W ] = 0 on P, there exists a map ΛW ∈
C∞(P, IR2) that linearizes both (1) and (2).
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Proof. Possibly multiplying V by
τ(z)

2π
, we may assume the cycles of V to have

minimal period 2π. Let us consider z0 ∈ P. The W -orbit φW (s, z0) meets

all the V -cycles in P exactly once. Let T z0 , Sz0 be the maps of Lemma 2.1,

defined in a suitable neighbourhood Uz0
of z0. Let us choose the integration

constants so that T (z0) = 0, S(z0) = 0. By Lemma 2.1, Sz0 and T z0 coincide,

respectively, with s and t of φW (s, z0), φV (t, z0). Hence Sz0 can be extended in

a unique way to all of P, by using the commutativity of the local flows φV and

φW . Let us denote again by Sz0 and T z0 the extended maps. The function T z0

is not continuous at some point of every cycle, since φV (2π, z0) = z0. Anyway,

the functions cosT z0 , sin T z0 are well-defined on all of P. Their regularity

comes from Lemma 2.1, since at every point they coincide, up to an additive

constant, with some cos T z, sin T z.

Let us define ΛW as follows,

ΛW (z) =
(
eSz0 (z) cos

(
T z0(z)

)
, eSz0 (z) sin

(
T z0(z)

))
= (u, v).

Then ΛW takes V-cycles into circles, and is one-to-one on cycles. This implies

that ΛW is one-to-one on all of P.

ΛW linearizes both (1) and (2). In fact, writing S and T for Sz0(z) and

T z0(z), one has

{
∂V u = eS ∂V S cos T − eS sin T ∂V T = −eS sin T = −v
∂V v = eS ∂V S sin T + eS cos T ∂V T = eS cos T = u,

{
∂W u = eS ∂W S cos T − eS sin T ∂W T = eS cos T = u
∂W v = eS ∂W S sin T + eS cos T ∂W T = eS sin T = v.

In next theorem we prove that starting from a commutator of (1) one can

find a linearization, even without the non-degeneracy assumption on the com-

mutator.

Theorem 2.3. Let O be an isochronous center of (1), with central region NO.

Then, for every vector field W such that [V, W ] = 0 on NO \ {O}, there exists

a map Λ0
W ∈ C∞(NO, R) that linearizes (1).

Proof. Let z0 be a point of P = NO \ O, and Λ be defined as in Lemma 2.2.

Possibily multiplying the vector field W by −1, in order to make its orbits tend

to O as s → −∞, we may assume O to be asymptotically stable for (2). Let

us define the map Λ∗

W as follows,

Λ∗

W (z) =

{
O if z = O,
ΛW (z) if z 6= O.
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Then Λ∗

W ∈ C0(NO, IR) ∩ C∞(P, IR). Working as in [14], thm 1.3, one can

prove the existence of a first integral I ∈ C∞(NO, IR), such that Λ0
W = IΛ∗

W ∈
C∞(NO, IR). By Lemma 2.2, the map w = ΛW (z) transforms (1) into the

linear system

u̇ = −v, v̇ = u.

Then, setting ε = Λ0
W (z) = I(z)Λ∗

W (z) = Iw, one has

ε̇ = ˙(Iw) = İw + Iẇ = IMw = M(Iw) = Mε,

hence Λ0
W linearizes (1).

The above theorem allows to prove the existence of a normalization for

every system with a center at O.

Corollary 2.4. Let O be a center of (1), with central region NO. Then there

exists a map Λ0 ∈ C∞(NO, R) that normalizes (1).

Proof. Let us consider the system

ż =
τ(z)

2π
V (z). (4)

Such a system is of class C∞ in P = NO \ {O}, since τ ∈ C∞(P, IR). P is an

isochronous annulus, with minimal period 2π. By Theorem 2.3, there exists a

map Λ0 ∈ C∞(NO, R) that linearizes (4), taking it into the system

u̇ = −v, v̇ = u.

As a consequence, system (1) is taken into the system

u̇ = −
2π

τ(Λ0(z))
v, v̇ =

2π

τ(Λ0(z))
u. (5)

The function τ(z) is a first integral of (4), hence τ(Λ0(z)) is a first integral

of (5). The orbits of (5) are circles centered at the origin, hence there exists a

function β ∈ C∞((0, +∞), IR) such that τ(Λ0(z)) = β(u2 + v2). Then, setting

ϕ(u2 + v2) = −
2π

β(u2 + v2)

satisfies the definition of normalized system.

We consider now the special case of hamiltonian systems

ẋ = Hy ẏ = −Hx, (6)
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where H ∈ C∞(Ω, IR). A map is said to be a canonical transformation if it

transforms every hamiltonian system into a hamiltonian system. A diffeomor-

phism is a canonical transformation if and only if its jacobian determinant is

a non-zero constant. The approach of Theorem 2.3 does not allow to get a

canonical linearization on all of NO, since the smoothing procedure affects the

value of the jacobian determinant. On the other hand, one can characterize

hamiltonian systems with commutators in terms of jacobian maps, i.e. maps

wih constant non-vanishing jacobian determinant [17].

Corollary 2.5. Let H ∈ C∞(Ω, R). Let z be a regular point of the hamil-

tonian system (6). Then (6) has a nontrivial commutator in a neighbourhood

Uz of z if and only if there exist P, Q ∈ C∞(Uz, IR) such that:

i) the map Λ(z) = (P (z), Q(z)) has jacobian determinant ≡ 1 in Uz;

ii) H = P 2+Q2

2 .

If (6) has an isochronous period annulus P, then Λ can be extended to all of

P, and is a canonical linearization of (6) on P. If (6) has a non-isochronous

period annulus P, then such a Λ is a canonical normalization of (6) on P.

Proof. Assume that H = P 2+Q2

2 , with PxQy−PyQx ≡ 1. Then the hamiltonian

system (6) has the form

{
ẋ = PPy + QQy

ẏ = −PPx − QQx.
(7)

and commutes with the system:

{
ẋ = −PQy + QPy

ẏ = PQx − QPx.
(8)

Conversely, assume (6) to commute with (2). Let z be a non-critical point

of (6). Then the function A = Hyw2 + Hxw1 is an inverse integrating factor

for both (6) and (2). Hence there exist a neighbourhood Uz of z, and functions

S and T , local first integrals of (6) and (2). In particular:

∇H = A∇S.

This implies that AxSy + ASyx = Hyx = Hxy = AySx + ASxy, so that AySx −
AxSy = 0. Hence the level sets of A and S coincide, so that A is a first integral

of (6), too. Since the gradient of S does not vanish, there exist two scalar

functions h, a such that H = h(S), A = a(S). We have:

h′(S)∇S = ∇H = a(S)∇S.
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that gives h′ = a. Now let us consider the map

Λ(ζ) = (P (ζ), Q(ζ)) = (
√

2h(S(ζ)) cos T (ζ),
√

2h(S(ζ)) sinT (ζ)).

The jacobian determinant of Λ is identically 1:

det Λ(ζ) =

∣∣∣∣∣∣

h′(S)Sx√
2h(S)

cos T −
√

2h(S)Tx sin T
h′(S)Sy√

2h(S)
cos T −

√
2h(S)Ty sin T

h′(S)Sx√
2h(S)

sin T +
√

2h(S)Tx cos T
h′(S)Sy√

2h(S)
sin T +

√
2h(S)Ty cos T

∣∣∣∣∣∣

= h′(S) [SxTy − SyTx] = h′(S)

[
Hx

A

w1

A
+

Hy

A

w2

A

]

= h′(S)
Hxw1 + Hyw2

a(S)2
= h′(S)

a(S)

a(S)2
= 1.

Moreover P 2 + Q2 = 2h(S) = 2H, as required.

Now, let P be an isochronous period annulus. Without loss of generality,

we may assume the period to be 2π. Working as in Lemma 2.2, one proves

that Λ can be extended to all of P, and that it linearizes (2).

If P is a non-isochronous period annulus, then working as in Corollary 2.4

one obtains a new system

ẋ =
τHy

2π
, ẋ = −

τHx

2π
, (9)

which is itself a hamiltonian system, since
τ(z)

2π
is a first integral of (6). P is an

isochronous period annulus of (9), hence there exists a canonical map Λ that

linearizes (9) on P. As in Corollary 2.4, such a linearization is a canonical

normalization of (6) on P.

A different, and more satisfactory approach to canonical linearizations for

hamiltonian systems can be found in [12].

3. Isochrones

When dealing with centers the natural definition of isochronicity is given by

requiring T to be constant. This is no longer possible when dealing with systems

having non-periodic oscillations, as systems with foci. In such a case one can

extend the isochronicity definition by considering isochrones, or isochronous

sections, i.e. curves δ such that φV (T, δ) ⊂ δ for a fixed T , not necessarily

positive. This in turn implies φV (nT, δ) ⊂ δ, for every positive integer n.

Usually such isochrones are taken transversal to V , but this is not necessary,

in order to identify the existence of isochronous oscillations. Isochrones can
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exist in a neighbourhood of a rotation point, or a cycle, or a boundary (of a

central or attraction region). In a neighbourhood of a semi-stable cycle one can

consider φV (T, δ) ⊂ δ for T > 0 on one side of the cycle, φV (−T, δ) ⊂ δ on the

opposite side. If a system (1) admits a linearization Λ, then the half-lines lθ
originating at O are isochrones of the linear system, hence the curves Λ−1(lθ)
are isochrones of (1). The linearization method can be adapted to deal with

non-periodic solutions, as in the case of foci [5]. On the other hand, it cannot

be applied to the study of a limit cycle’s isochrones, since linear systems do

not have limit cycles. The same happens for attraction boundaries, since if a

linear system has an asymptotically stable point, then it is globally attractive.

A different approach can be based on normalizers, since if V is a normalizer of

W , then the orbits of W are isochrones of V [8]. Looking for a normalizer is

an effective way both to prove a system’s isochronicity, and for attacking the

inverse problem, i.e. to construct an isochronous system with a given family of

curves as isochrones. In fact, one can consider two problems naturally related

to isochrones:

• given a system with isochronous oscillations, find a family of isochrones

covering a (punctured) neighbourhood, or a one-sided neighbourhood, of

a point, or cycle, or boundary;

• given a family of curves covering an open set, find a system admitting

such curves as isochrones.

A related question is that of constructing an isochronous system with some

prescribed dynamic properties, as centers, foci, or limit cycles. All such prob-

lems are strictly related. We first show a simple procedure to construct new

isochronous systems starting from a given one.

Lemma 3.1. If V normalizes W on an open set U , then for every function

J ∈ C∞(U, IR), and for every first integral of (2) IW ∈ C∞(U, IR), the vector

field IW V + JW normalizes W .

Proof. Assume [V, W ] = µW on U . Then one has

[IW V + JW, W ] =
(
IW µ − ∂W J

)
W.

If (2) is isochronous, passing from V to IW V + JW we can modify V ’s

dynamics getting a new isochronous system with different properties. For in-

stance we can pass form a center to a system with a focus and one or more

limit cycles. In order to construct smooth vector fields, one has to consider only

constant first integrals IW . In fact, a non-constant first integral of (2) is not

continuous at the critical point, since it assumes different values on different
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orbits. This is not an issue if one looks for an isochronous perturbation in a

neighbourhood of a cycle, neglecting the effects of such a perturbation at the

critical point located inside the cycle.

One can construct several examples, starting form any couple of commuting

vector fields [1]. In order to get the desired dynamics, one has to choose the

proper function J , which determines the attractive or repulsive effect of JW .

Starting with a jacobian map Λ(x, y) = (P (x, y), Q(x, y)), we consider the

hamiltonian systems (7) and (8) of the previous section. Then we perturb (7)

choosing J as a function of H, so that the limit cycles of the new system,

corresponding to the zeroes of J , are cycles of (7). For example, if H assumes

the value 1 in the period annulus, we can take J(x, y) = H(x, y)2−1, obtaining

the system

{
ẋ = PPy + QQy + (H2 − 1)(−PQy + QPy)

ẏ = −PPx − QQx + (H2 − 1)(PQx − QPx),
(10)

with a limit cycle coinciding with the level set H = 1.

If the jacobian map is Λ(x, y) = (x, y − x2), then system (10) has the form





ẋ = x + y − x2 − xy4

4 − x3y2

2 − x5

4 + x3y3 + x5y − 3y2x5

2 − x7

2 + x7y − x9

4

ẏ = −x + y + x2 + 2xy − 2x3 − x2y3

2 − y5

4 + 3x2y4

4 − x4y
4 + x4y2

2 − x4y3

2 +

+x4y2

2 − x4y3

2 − x6

4 + x6y
2 − x6y2

2 − x8y
2 x8 + 3x8y

4 − x10

4 .
(11)

Its isochrones are the curves ax + b(y − x2) = 0, for a, b ∈ IR. In next figure

we have plotted in continuous line some orbits of (11), and in dotted line the

isochrones contained in the curves y = −2x + x2, y = x2, y = 2x + x2. The

system has a limit cycle contained in the level set x2 + (y − x2)2 = 1.

Figure 1: The system (11)
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By Poincaré’s theorem, system (11) is linearizable at O, but its linearization

is no longer Λ, which linearizes (7), but transforms (11) into the system





u̇ = v + u
(
1 − H2(Λ−1(u, v))

)

v̇ = −u + v
(
1 − H2(Λ−1(u, v))

)
,

A normalizer can be also produced by means of a different procedure. In next

statement we characterize normalizers in terms of first integrals. We do not

know whether such a statement already appeared elsewhere.

Theorem 3.2. Let K be a first integral of (2) on an open set A. Assume W and

∇K not to vanish on A. Then V is a non-trivial normalizer of W if and only

if for all z∗ ∈ A there exists a neighbourhood U∗ and a function ν∗ : U∗ → IR,

ν∗ 6= 0 such that

∂V K = ν∗(K).

Proof. Let V be a non-trivial normalizer of W . Let us choose arbitrarily a

W -orbit γ∗ and a point z∗ ∈ γ∗. Every point z in a neighbourhood U∗ of z∗

can be written as z = φW (s, φV (t, z∗)). V is a normalizer, hence the parameter

t depends only on the orbit to which z belongs. Hence the function that

associates to a point z ∈ U∗ the value t(z) of the parameter such that z =

φV (t(z), φW (s, z∗)) is a first integral of (2). By construction, one has

∂V t(z) = 1.

The above formula also implies that ∇t does not vanish on A. Hence there

exists a scalar function χ such that K(z) = χ(t(z)), with χ′(t) 6= 0 because

both ∇t and ∇K do not vanish. Then

∂V K(z) = χ′(t(z))∂V t(z) = χ′(t(z)) = χ′(χ−1(K(z))).

Then it is sufficient to set ν∗(K) = χ′(χ−1(K)).

Conversely, let us assume that there exists a scalar function ν∗ such that

∂V K = ν∗(K). Since ∇K does not vanish on A, locally K does not has

the same value on different orbits, so that every arc of orbit in U∗ can be

identified as K−1(l) ∩ U∗, for some l ∈ IR. This establishes a one-to-one

correspondence between the W -orbits of in U∗ and the values of K. The

relationship ∂V K = ν∗(K) implies that K(φV (t, z)) depends only on the initial

value of K (in particular, it does not depend on the initial point z), hence the

local flow φV (t, ·) takes arcs of orbits of (2) into arcs of orbits of (2), that is,

V is a normalizer of W .

Theorem 3.2 allows to construct systems with prescribed isochrones without

referring to any smooth linearization. In fact, the system we consider now do

not necessarily admit linearizations, since they are not regular enough.
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Corollary 3.3. Assume that for every non-critical point z of (2) there exist

a neighbourhood Uz ⊂ Ω and functions K ∈ C∞(Uz, IR), ξ ∈ C0(Uz, IR), ν ∈
C0(IR, IR), such that in Uz one has |∇K| 6= 0 and

W =

(
Kx

|∇K|2
ν(K) + ξKy,

Ky

|∇K|2
ν(K) − ξKx

)
. (12)

Then (2) is an isochronous system, whose isochrones are locally defined by the

level curves of K.

Proof. On every Uz, one has K̇ = ν(K), hence by Lemma 3.2, system (12)

normalizes the hamiltonian system having K as hamiltonian function. Hence

its isochrones are the orbits of such a hamiltonian system, i.e. K’s level sets.

Corollary 3.3 provides a tool for constructing systems with pre-assigned

isochrones. In this case the system’s attractors depend on the function ξ. We

give some examples generating rational vector fields. Let us consider a one-

to-one-map Λ ∈ C∞(Ω, IR2), such that Λ(0, 0) = (0, 0). Setting Λ(x, y) =

(P (x, y), Q(x, y)), we may consider polar coordinates (ρ, θ) in the (P, Q)-plane.

Let us consider a strictly increasing function η, and K locally defined as follows,

K(x, y) = η(θ(P (x, y), Q(x, y))).

Such a function is defined only locally, since θ(P (x, y), Q(x, y)) is not a single-

valued function, but the corresponding system (12), for an arbitrary choice of

ν and ξ, is well defined on all of Ω\O. It can be extended to all of Ω by adding

the origin as a stationary point. The new vector field can be discontinuous

at O, but the dynamics at regular points do not change. Adapting the usual

terminology, we say that O is a center if it surrounded by non-trivial cycles,

or a focus if every orbit in a neighbourhood of O spirals towards O or away

from O. If it has a section, then it is isochronous. The isochrones are locally

contained in K’s level curves, which coincide with those of θ(P (x, y), Q(x, y)),

i.e. half-lines starting at the origin in the (P, Q)-plane, as for system (10):

aP (x, y) + bQ(x, y) = 0, a, b ∈ IR.

If Λ(x, y) = (x, y − x2), η(t) = t, ν(t) = 1, ξ(x, y) = 0, then O is a center

of (12), since its orbits are symmetric with respect to the y-axis:

ẋ = −
(y + x2)(x4 − 2yx2 + y2 + x2)

x2 + y2 + 2yx2 + x4
, ẏ =

x(x4 − 2yx2 + y2 + x2)

x2 + y2 + 2yx2 + x4

Its isochrones are the parabolas ax + b(y − x2) = 0. In Figure 2 we show three

cycles and six isochrones contained in y = −2x + x2, y = x2, y = 2x + x2. If
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Figure 2: Λ(x, y) = (x, y − x2), η(t) = t, ν(t) = 1, ξ(x, y) = 0.

Λ(x, y) = (x, y − x3), η(t) = t, ν(t) = 1, ξ(x, y) = x2+y2
−1

500 , then O is a focus

of (12):

ẋ = −
(y + x2)(x4 − 2yx2 + y2 + x2)

x2 + y2 + 2yx2 + x4
+

x(x2 + y2 − 1)

500(x2 + y2 − 2x3y + x6)
,

ẏ =
x(x4 − 2yx2 + y2 + x2)

x2 + y2 + 2yx2 + x4
+

(2x3 + y)(x2 + y2 − 1)

500(x2 + y2 − 2x3y + x6)
,

Its isochrones are the cubics ax+b(y−x3) = 0. In Figure 3 we show a spiralling

orbit and the isochrones contained in y = −2x + x3, y = x3, y = 2x + x3. The

Figure 3: Λ(x, y) = (x, y − x3), η(t) = t, ν(t) = 1, ξ(x, y) = x2+y2
−1

500 .
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last two examples are constructed starting with globally invertible maps. This

is not the case with next one, where we use the map Λ(x, y) = (x+xy, y +xy),

η(t) = t, ν(t) = 1, ξ(x, y) = 0. Λ is only locally invertible at O, where we find

a family of local isochrones defined by a(x + xy) + b(y + xy) = 0, a, b ∈ IR.

Moreover, there exist other isochrones defined by the same equation, passing

through the point (−1,−1), where the system has another center.

ẋ = −
y(1 + y)(x2 + y2 + 2xy2 + 2x2y + 2x2y2)

x2 + y2 + 2x3 + 2y3 + x4 + y4
,

ẏ =
x(1 + x)(x2 + y2 + 2xy2 + 2x2y + 2x2y2)

x2 + y2 + 2x3 + 2y3 + x4 + y4
,

In Figure 4 we show both centers and the isochrones contained in the curves

x − y = 0, (x + xy) + 2(y + xy) = 0, −3(x + xy) + (y + xy) = 0.

Figure 4: Λ(x, y) = (x + xy, y + xy), η(t) = t, ν(t) = 1, ξ(x, y) = 0.

The above procedure may not be the most efficient way to find a system

with a given family of isochrones, in particular if one is looking for systems of

a special form. In [18] some sufficient conditions for isochronicity of Liénard

systems were given. In particular, it was proved that if

σ(x) = 2x2f(x)

∫ x

0

sf(s)ds − 4

(∫ x

0

sf(s)ds

)2

+ x3gn(x) − x4g′n(x) (13)

vanishes identically, then all the oscillations around the origin of the Liénard

system

ẋ = y − F (x), ẏ = −g(x), (14)
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where F ′(x) = f(x), are isochronous. The paper [18] was concerned with

centers, but its conclusions are valid for more general systems, since they are

based on the properties a differential system equivalent to (14),

ẋ = y − xb(x), ẏ = −c(x) − yb(x), (15)

under some additional conditions. The equivalence conditions of (14) and (15)

are the following ones,

b(x) =

∫ x

0
sf(s)ds

x2
=

I(x)

x2
, c(x) = g(x) − xb(x)2.

Without loss of generality we may assume g(x) = x + h. o. t.. In this case

the isochronicity condition (13) is equivalent to c(x) = x, so that (15) has the

following form

ẋ = y − xb(x), ẏ = −x − yb(x). (16)

Such a system has constant angular speed. If b(x) is an odd function, then O
is a center, hence an isochronous one. If b(x) is not odd, the system can have a

focus at O, with attraction (repulsion) region possibly bounded by a limit cycle

or an unbounded orbit. Also, it is possible that several concentric limit cycles

surround O. In all such cases, the half-lines starting at the origin are isochrones

of (16). These allows to find isochrones for system (14), when (13) holds, since

the transformation (x, y) 7→ (x, y + F (x) − xb(x)) takes (15) into (14). Such a

transformation is canonical, and its inverse is a canonical normalization of (14).

In next theorem, we consider the converse statement. For a special class of

curves filling an open region, we find a Liénard system having such curves as

isochrones.

Theorem 3.4. For every function d ∈ C∞(I, IR), I open interval containing

0, the Liénard system

ẋ = y − (xd(x))′, ẏ = −x(1 + d′(x)2), (17)

has the curves

y = mx + d(x), m ∈ IR,

as isochrones.

Proof. The isochrones ax + by = 0 of (16) are taken into the curves ax + b(y −
F (x) + xb(x)) = 0, so that the graphs of the functions

y = mx + F (x) − xb(x)

are isochrones of (14), under the condition (13). Imposing the equality F (x)−
xb(x) = d(x) leads to

d(x) = F (x) − xb(x) = F (x) −

∫ x

0
sf(s)ds

x
.
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Multiplying the first and last terms by x and differentiating, one has

F (x) = (xd(x))′ = d(x) + xd′(x).

Substituting this expression into d(x) = F (x)−xb(x) one obtains b(x) = d′(x).

In order to find an isochronous system having the curves y = mx + d(x) as

isochrones, we have to find g(x) such that (13) holds. From [18] one has the

isochronicity condition that relates g(x) to f(x). If g′(0) = 1, one has

g(x) = x +
1

x3

(∫ x

0

sf(s)ds

)2

= x +
I(x)2

x3
.

Since, from what above, I(x) = x(F (x) − d(x)), one has

I(x)2

x3
=

x2(F (x) − d(x))2

x3
=

(xd′(x))2

x
= xd′(x)2,

that gives

g(x) = x + xd′(x)2.

System (17) is equivalent to the Liénard equation

ẍ + (xd(x))′′ẋ + x(1 + d′(x)2) = 0.

The function d(x) determines the above system’s dynamics. If d(x) is even,

then F (x) = (xd(x))′ is even, hence the origin is a center. If d(x) is not even,

then the origin is a focus.

In Figure 1 we have chosen d(x) =
sin x

2
, and plotted the orbits of (14) as

continuous lines. The dotted lines are the isochrones contained in y=−x+
sinx

2
,

y =
sin x

2
, y = x +

sin x

2
. The figure shows three limit cycles and six isochrones.

Presumably the system has infinitely many limit cycles all meeting such iso-

chrones.

After finding the explicit form of system (17), one can check that it normal-

izes a transversal system. By Lemma 3.2, it is sufficient to find two functions K
and ν such that K̇ = ν(K). This implies that the hamiltonian system having

K as hamiltonian is normalized by (17). Since the isochrones can be seen

as the level sets of the function H(x, y) =
y − d(x)

x
, for x 6= 0, one can take

K(x, y) = arctan

(
y − d(x)

x

)
. The derivative of H(x, y) along the solutions

of (17) is

Ḣ = −
(y − d(x))2 + x2

x2
= −H2 − 1,
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Figure 5: d(x) = sin x
2 .

hence one has

K̇ = −1.

The hamiltonian system having K as hamiltonian function is

ẋ =
x

x2 + (y − d(x))2
, ẏ =

y − d(x) + xd′(x)

x2 + (y − d(x))2
.

Its orbits are the system’s isochrones.
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1. Introduction

We are concerned with a second order ODE of the form

−u′′ + q(x)u = λu + g(x, u)u, λ ∈ R, x ∈ (0, 1], (1)

where q ∈ C((0, 1]) satisfies

lim
x→0+

q(x)

l/xα
= 1 , (2)

for some l > 0 and α ∈ (0, 5/4), and g ∈ C([0, 1] × R) is such that

lim
u→0

g(x, u) = 0, uniformly in x ∈ (0, 1]. (3)

The constant 5/4 arises in a rather straightforward manner in the study of the

differential operator in the left-hand side of (1) (cf. [17, p. 287-288]); details

are given in Remark 2.3 below.

1Under the auspices of GNAMPA-I.N.d.A.M., Italy. The work has been performed in
the frame of the M.I.U.R. Projects ‘Topological and Variational Methods in the Study of
Nonlinear Phenomena’ and ‘Nonlinear Control: Geometrical Methods and Applications’.
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We will look for solutions u of (1) such that u ∈ H2
0 (0, 1).

When the x-variable belongs to a compact interval, problems of the form (1)

have been very widely studied. A more limited number of contributions is

available in the literature when the x-variable belongs to a (semi)-open interval,

as it is the case in the present paper, or to an unbounded interval [7, 8].

We treat (1) in the framework of bifurcation theory. For this reason, we

first discuss in Section 2 the eigenvalue problem

−u′′ + q(x)u = λu, x ∈ (0, 1], λ ∈ R. (4)

For such singular problems, the well-known embedding of (4) (by an elemen-

tary application of the integration by parts rule, together with the boundary

condition u(0) = 0 = u(1)) in the setting of eigenvalue problems for compact

self-adjoint operators cannot be performed. Thus, the questions of the existence

of eigenvalues and of the nodal properties of the associated eigenfunctions have

various delicate features. For a comprehensive account on the spectral proper-

ties of the Schrödinger operator we refer to the books [12] and [10]; for more

specific results on singular problems in (0, 1) we refer, among many others,

to [5, 14].

However, the linear spectral theory for singular problems is well-established

and can be found, among others, in the classical book by Coddington and

Levinson [4] and in the (relatively) more recent text by Weidmann [17]. The

former monograph focuses on a generalization of the so-called “expansion the-

orem” valid for functions in L2([0, 1]) and, by doing this, a sort of “generalized

shooting method” is performed. On the other hand, in [17] the singular prob-

lem is tackled from an abstract point of view; more precisely, it is considered

the general question of the existence of a self-adjoint realization of the formal

differential expression τu = −u′′ + q(x)u and the important Weyl alternative

theorem [17, Theorem 5.6] is used. It is interesting to observe that the approach

in [4] (based on more elementary ODE techniques) and the abstract one in [17]

lead in different ways to the important concepts of “limit point case” and “limit

circle case”. The knowledge of one (or the other) case is ensured by suitable

assumptions on q and leads to information on the boundary conditions to be

added to (4) in order to have a self-adjoint realization of τ .

In the setting of the present paper, the operator τ is regular at x = 1;

this implies that it is in the limit circle case. Moreover, under assumption (2),

from [17, Theorem 6.4] it follows that τ is in the limit circle case also in x = 0.

Thus, the differential operator A : u 7→ τu with

D(A) = {u ∈ L2(0, 1) : u, u′ ∈ AC(0, 1), τu ∈ L2(0, 1),

lim
x→0+

(xu′(x) − u(x)) = 0 = u(1)}
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is a self-adjoint realization of τ ([17, p. 287-288]). We prove in Proposition 2.2

that in fact D(A) = H2
0 (0, 1); to do this, we need some knowledge of the

behaviour of the solutions of (4) near zero. These estimates are developed in

Proposition 2.1 by means of the classical Levinson theorem [6, Theorem 1.8.1].

Finally, at the end of Section 2 we focus on the nodal properties of a solution

to (4); more precisely, in Proposition 2.4 we prove that (4) is non-oscillatory

and conclude in Proposition 2.5 that the spectrum of A is purely discrete and

that, for every n ∈ N, the eigenfunction associated to the eigenvalue λn has

(n − 1) simple zeros in (0, 1).

Section 3 contains a global bifurcation result (Theorem 3.2) which follows in

a rather straightforward manner as an application of the celebrated Rabinowitz

theorem in [11].

In order to exclude alternative (2) in Theorem 3.2, we use a technique that

we already applied for Hamiltonian systems in R
2N in [2] and for planar Dirac-

type systems in [3]. More precisely, we introduce a continuous integer-valued

functional defined on the set of solutions to (1). Due to the singularity at x = 0,

some care is necessary in order to prove its continuity; this is the content of

Proposition 3.4. We can then state and prove our main result (Theorem 3.5).

In what follows, for a given function p we write p(x) ∼
m

xa
, x → 0+, when

lim
x→0+

p(x)

m/xa
= 1 (5)

for some m, a ∈ R
+.

Finally, we write

H2
0 (0, 1) = {u ∈ H2(0, 1) : u(0) = 0 = u(1)},

equipped with the norm defined by

||u||2 = ||u||2L2(0,1) + ||u′′||2L2(0,1), ∀ u ∈ H2
0 (0, 1).

2. The linear equation

In this section we study a linear second order equation of the form

−u′′ + q(x)u = λu, x ∈ (0, 1], λ ∈ R. (6)

We will assume that q ∈ C((0, 1]) and that

q(x) ∼
l

xα
, x → 0+, (7)
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for some l > 0 and α ∈ (0, 5/4). Without loss of generality we may suppose

that

q(x) > 0, ∀ x ∈ (0, 1]. (8)

For every u : (0, 1] → R we denote by τu the formal expression

τu = −u′′ + q(x)u;

First of all, we study the asymptotic behaviour of solutions of (6) when

x → 0+; to this aim, let us introduce the change of variables t = − log x and

let

w(t) = u(e−t), ∀ t > 0.

From the relations

w′(t) = −e−tu′(e−t)

w′′(t) = e−tu′(e−t) + e−2tu′′(e−t),
(9)

we deduce that u is a solution of (6) on (0, 1) if and only if w is a solution of

−w′′ − w′ + e−2tq(e−t)w = λe−2tw (10)

on (0, +∞). Equation (10) can be written in the form

Y ′ = (C + R(t))Y, (11)

where Y = (w, z)T and

C =




0 1

0 −1


 , R(t) =




0 0

e−2tq(e−t) − λe−2t 0


 , ∀ t > 0. (12)

Now, let us observe that C has eigenvalues λ1 = 0, λ2 = −1 and corresponding

eigenvectors u1 = (1, 0), u2 = (1,−1) and that R ∈ L1(0, +∞); therefore, an

application of [6, Theorem 1.8.1] implies that (11) has two linearly independent

solutions Y1, Y2 such that

Y1(t) = u1 + o(1), t → +∞,

Y2(t) = (u2 + o(1))e−t, t → +∞.
(13)

As a consequence, we obtain the following result:
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Proposition 2.1. For every λ ∈ R the equation (6) has two linearly indepen-

dent solutions u1,λ, u2,λ such that

u1,λ(x) = 1 + o(1), u′

1,λ(x) = o

(
1

x

)
x → 0+,

u2,λ(x) = x + o(x), u′

2,λ(x) = 1 + o(1), x → 0+,

(14)

and u2,λ ∈ H2(0, 1).

For every f ∈ L2(0, 1) the solutions of τu = f are given by

u(x) = c1u1,0(x) + c2u2,0(x) + uf (x), ∀ x ∈ (0, 1), c1, c2 ∈ R, (15)

where

uf (x) =
∫ x

0
G(x, t)f(t) dt, ∀ x ∈ (0, 1),

G(x, t) = u1,0(t)u2,0(x) − u2,0(t)u1,0(x), ∀ x ∈ (0, 1), t ∈ (0, 1)

(16)

fulfill G ∈ L∞((0, 1)2), uf (0) = 0 = u′

f (0) and uf ∈ H2(0, 1).

Proof. The estimates in (14) follow from (9) and (13), while (16) is the usual

variation of constants formula. Moreover, from (14) we obtain that u2,λ, u′

2,λ ∈

L2(0, 1). On the other hand we have

q(x)u2,λ(x) ∼ x1−α, x → 0+, (17)

which implies that qu2,λ ∈ L2(0, 1), since α < 5/4 (cf. Remark 2.3 for com-

ments on this restriction); using the fact that τu2,λ = λu2,λ, we deduce that

u′′

2,λ = λu2,λ − qu2,λ ∈ L2(0, 1).

From now on, we will indicate ui = ui,0, i = 1, 2. The fact that the function

G defined in (16) belongs to the space L∞((0, 1)2) is a consequence of the

asymptotic estimates (14). Moreover, from (16) we also deduce that uf (0) = 0

and that

u′

f (x) =

∫ x

0

(u1(t)u
′

2(x) − u2(t)u
′

1(x))f(t) dt, ∀ x ∈ (0, 1), (18)

which implies u′

f (0) = 0.

Finally, the condition uf (0) = 0 = u′

f (0) guarantees that uf , u′

f ∈ L2(0, 1);

as far as the second derivative of uf is concerned, let us observe that we have

τuf = f

and so

u′′

f = f − quf . (19)

Using the fact that uf (0) = 0 = u′

f (0) and (7), it follows that quf ∈ L2(0, 1);

hence uf ∈ H2(0, 1).
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In what follows, we study the spectral properties of suitable self-adjoint

realizations of τ ; to this aim, let us first observe that the differential operator

τ is regular at x = 1. As a consequence, it is in the limit circle case at x = 1;

moreover, from (7), according to [17, Theorem 6.4], τ is in the limit circle case

also in x = 0.

The differential operator A defined by

D(A) = {u ∈ L2(0, 1) :u, u′ ∈ AC(0, 1), τu ∈ L2(0, 1),

lim
x→0+

(xu′(x) − u(x)) = 0 = u(1)}

Au = τu, ∀ u ∈ D(A),

is then a self-adjoint realization of τ ([17, p. 287-288]). We can show the

validity of the following Proposition:

Proposition 2.2. The relation

D(A) = H2
0 (0, 1)

holds true. Moreover, A has a bounded inverse A−1 : L2(0, 1) → H2
0 (0, 1).

Proof. 1. Let us start proving that H2
0 (0, 1) ⊂ D(A). It is well known that

H2
0 (0, 1) ⊂ C1(0, 1); hence, for every u ∈ H2

0 (0, 1) we have u, u′ ∈ AC(0, 1).

Moreover, using the fact that u(0) = 0 we deduce that

u(x) = u′(0)x + o(x), x → 0+

and

q(x)u(x) = u′(0)x1−α + o(x1−α), x → 0+;

the condition α < 5/4 guarantees again that qu ∈ L2(0, 1) and therefore τu =

−u′′ + qu ∈ L2(0, 1). Finally, the regularity of u and u′ imply that

lim
x→0+

(xu′(x) − u(x)) = 0

and so also the boundary condition in the definition of D(A) is satisfied.

Now, let us prove that D(A) ⊂ H2
0 (0, 1); for every u ∈ D(A) let f = τu ∈

L2(0, 1). From (15) we deduce that u can be written as

u = c1u1 + c2u2 + uf , (20)

for some c1, c2 ∈ R; it is easy to see that the function u1 does not satisfy the

boundary condition given in x = 0 in the definition of D(A), while u2 and uf

do. Hence u ∈ D(A) if and only if c1 = 0; the last statement of Proposition 2.1

implies then that u ∈ H2(0, 1). As in the first part of the proof, the regularity
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of u allows to conclude that the boundary condition in x = 0 given in D(A)

reduces to u(0) = 0.

2. Let us study the invertibility of A; the existence of a bounded inverse of

A is equivalent to the fact that 0 ∈ ρA, being ρA the resolvent of A. Since

A is self-adjoint on H2
0 (0, 1), this follows from the surjectivity of A (cf. [16,

Theorem 5.24]); hence, it is sufficient to prove that A is surjective.

To this aim, let us first observe that condition (8) guarantees that 0 cannot

be an eigenvalue of A. Now, let us fix f ∈ L2(0, 1) and let us prove that there

exists u ∈ H2
0 (0, 1) such that Au = f , i.e. τu = f ; by applying Proposition 2.1

we deduce again that (20) holds true and the same argument of the first part

of the proof implies that c1 = 0.

Hence we obtain u = c2u2 + uf ; from Proposition 2.1 we deduce that this

function belongs to H2(0, 1) and satisfies the boundary condition u(0) = 0. In

order to prove that the missing condition u(1) = 0 is fulfilled for every f ∈
L2(0, 1), let us observe that u2(1) 6= 0, otherwise u2 would be an eigenfunction

of A associated to the zero eigenvalue. Therefore, u(1) = 0 is satisfied if

c2 = −
uf (1)

u2(1)
,

for every f ∈ L2(0, 1).

Remark 2.3. As for the restriction α < 5/4, we observe that for the proofs

of Proposition 2.1 and Proposition 2.2 it is sufficient to require the milder

condition α < 3/2. The fact that α < 5/4 is used (cf. [17, p. 287-288]) in

order to obtain that D(A) is the one described above. Finally, we observe that in

the particular case when α < 1 the problem is regular (cf., among others, [9]).

The spectral properties of A are related to the oscillatory behaviour of

solutions of (6). We first recall the following definition:

Definition 2.4. The differential equation (6) is oscillatory if every solution u
has infinitely many zeros in (0, 1). It is non-oscillatory when it is not oscilla-

tory.

We observe that the regularity assumptions on q imply that solutions of (6)

have a finite number of zeros in any interval of the form [a, 1), for every 0 < a <
1. Moreover, from (7) we infer that for every λ ∈ R there exists c(λ) ∈ (0, 1]

such that

λ − q(x) < 0, ∀ x ∈ (0, c(λ)).

An application of the Sturm comparison theorem proves that every solution

of (6) has at most one zero in (0, c(λ)); as a consequence, we obtain the following

result:
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Proposition 2.5. For every λ ∈ R the differential equation (6) is non-oscilla-

tory.

Once Proposition 2.5 is obtained, we can provide in a straightforward way

some useful information on the spectral properties of A; more precisely, denot-

ing by σess the essential spectrum of a given operator, we have:

Proposition 2.6. ([17, Theorem 14.3, Theorem 14.6 and Theorem 14.9], [12,

Theorem XIII.1]) The differential operator A is bounded-below and satisfies

σess(A) = ∅.

Moreover, there exists a sequence {λn}n∈N of simple eigenvalues of A such that

lim
n→+∞

λn = +∞

and for every n ∈ N the eigenfunction un of A associated to the eigenvalue λn

has (n − 1) simple zeros in (0, 1).

Remark 2.7. According to [17], operators of the form τ (defined on functions

whose domain is (0, +∞)) arise when the time independent Schrödinger equa-

tion with spherically symmetric potential

−∆u(x) + V (|x|)u(x) = λu(x), u ∈ L2(Rm) (21)

is reduced to an infinite system of eigenvalue problems associated to the ordinary

differential operators in L2(0, +∞)

τi = −
d2

dr2
+

1

r2

[
i(i + m − 2) +

1

4
(m − 1)(m − 3)

]
+ V (r)

(i ∈ N). In Appendix 17.F of [17] it is treated the case of a potential V satisfying

assumptions (which enable to consider Coulomb potentials) that lead to (7).

More precisely, it is shown that for m = 3, i = 0 the operator is in the limit

circle case at zero and self-adjoint extensions of τ0 are described.

3. The main result

In this section we are interested in proving a global bifurcation result for a

nonlinear eigenvalue problem of the form

−u′′ + q(x)u = λu + g(x, u)u, λ ∈ R, x ∈ (0, 1], (22)

where q ∈ C((0, 1]) satisfies (7) and g ∈ C([0, 1] × R) is such that

lim
u→0

g(x, u) = 0, uniformly in x ∈ [0, 1]. (23)
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We will look for solutions u of (22) such that u ∈ H2
0 (0, 1). To this aim,

let Σ denote the set of nontrivial solutions of (22) in H2
0 (0, 1) × R and let

Σ′ = Σ ∪ {(0, λ) ∈ H2
0 (0, 1) × R : λ is an eigenvalue of A}, where A is as in

Section 2.

Let M denote the Nemitskii operator associated to g, given by

M(u)(x) = g(x, u(x))u(x), ∀ x ∈ [0, 1],

for every u ∈ H2
0 (0, 1). We can show the validity of the following:

Proposition 3.1. Assume g ∈ C([0, 1]×R) and (23). Then M : H2
0 (0, 1) −→

L2(0, 1) is a continuous map and satisfies

M(u) = o(||u||), u → 0. (24)

Proof. 1. We first show that Mu ∈ L2(0, 1) when u ∈ H2
0 (0, 1). When this

condition holds, u ∈ L∞(0, 1) and the continuity of g implies that there exists

Cu > 0 such that

|g(x, u(x))u(x)| ≤ Cu, ∀ x ∈ [0, 1].

As a consequence we obtain Mu ∈ L∞(0, 1) ⊂ L2(0, 1).

2. Let us prove that M is continuous. Let us fix u0 ∈ X and let un ∈ X such

that un → u0 when n → +∞; the continuous embedding

H2
0 (0, 1) ⊂ L∞(0, 1)

and the uniform continuity of g on compact subsets of [0, 1] × R ensure that

g(x, un(x)) → g(x, u0(x)) in L∞(0, 1). (25)

This is sufficient to conclude that Mun → Mu0 in L∞(0, 1) and hence Mun →
Mu0 in L2(0, 1).

3. Finally, let us prove (24): using again the fact that H2
0 (0, 1) ⊂ L∞(0, 1), we

have

||Mu||L2(0,1) ≤ ||g(x, u(x))||L∞(0,1)||u||L2(0,1) ≤ ||g(x, u(x))||L∞(0,1)||u||,

for all u ∈ H2
0 (0, 1); hence, we deduce that

||Mu||L2(0,1)

||u||
≤ ||g(x, u(x))||L∞(0,1), ∀ u ∈ H2

0 (0, 1), u 6= 0.

Therefore the result follows from (23) and (25).
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Now, let us observe that the search of solutions u ∈ H2
0 (0, 1) of (22) is

equivalent to the search of solutions of the abstract equation

Au = λu + M(u), (u, λ) ∈ H2
0 (0, 1) × R; (26)

on the other hand, (26) can be written in the form

w = λRw + M(Rw), (w, λ) ∈ L2(0, 1) × R, (27)

where R : L2(0, 1) → H2
0 (0, 1) is the inverse of A (cf. Proposition 2.2).

Now, from [17, Theorem 7.10] we deduce that R is compact; this fact and

the continuity of M guarantee that the operator MR : L2(0, 1) → H2
0 (0, 1) is

compact. Moreover, the condition

M(Rw) = o(||w||L2(0,1)), w → 0, (28)

is a consequence of (24). From an application of the global bifurcation result

of Rabinowitz (cfr. [11]) to (27) we then obtain the following result:

Theorem 3.2. Assume (7) and (23). Then, for every eigenvalue λn of A there

exists a continuum Cn of nontrivial solutions of (22) in H2
0 (0, 1)×R bifurcating

from (0, λn) and such that one of the following conditions holds true:

(1) Cn is unbounded in H2
0 (0, 1) × R;

(2) Cn contains (0, λn′) ∈ Σ′, with n′ 6= n.

Now, let us observe that a more precise description of the bifurcating

branch, eventually leading to exclude condition (2), can be obtained when

there exists a continuous functional j : Σ′ → N (cf. [2, Pr. 2.1]). In order to

define such a functional, we will use the fact that nontrivial solutions of (22)

have a finite number of zeros in (0, 1); this will be a consequence of our next

result.

For every λ ∈ R and for every nontrivial solution u ∈ H2
0 (0, 1) of (22) let us

define qu,λ : (0, 1] → R by qu,λ(x) = q(x) − λ − g(x, u(x)), for every x ∈ (0, 1].

The following Lemma holds true:

Lemma 3.3. For every λ ∈ R and for every nontrivial solution u ∈ H2
0 (0, 1)

of (22) there exists a neighborhood U ⊂ H2
0 (0, 1)×R of (u, λ) and xu,λ ∈ (0, 1)

such that

qv,µ(x) > 0, ∀ (v, µ) ∈ U, x ∈ (0, xu,λ]. (29)

Proof. Let (u, λ) ∈ H2
0 (0, 1)×R, u 6≡ 0, be fixed and let U be the neighborhood

of radius 1 of (u, λ) in H2
0 (0, 1)×R; from the continuous embedding L∞(0, 1) ⊂

H2
0 (0, 1) we deduce that if (w, µ) ∈ Σ ∩ U1 then

||w||L∞(0,1) ≤ 1 + ||u||L∞(0,1), |µ| ≤ 1 + |λ|
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and

q(x) − µ − g(x, w(x)) ≥ q(x) − |λ| − 1 − max
x∈[0,1],

|s|≤1+||u||L∞(0,1)

|g(x, s)|, ∀ x ∈ (0, 1).

From (7) we then deduce that there exists x(u,λ) ∈ (0, 1), depending only on

(u, λ), such that

q(x) − µ − g(x, w(x)) > 0, ∀ x ∈ (0, x(u,λ)].

Now, let us observe that for every λ ∈ R and for every nontrivial solution

u ∈ H2
0 (0, 1) of (22) the function u is a nontrivial solution of the linear equation

−w′′ + (q(x) − g(x, u(x)) − λ)w = 0. (30)

From Lemma 3.3, with an argument similar to the one which led to Proposi-

tion 2.5, we deduce that all the nontrivial solutions of (30) (in particular u)

have a finite number of zeros in (0, 1). We denote by n(u) this number.

We are then allowed to define the functional j by setting

j(u, λ) =





n(u) if u 6≡ 0

n − 1 if u ≡ 0 and λ = λn,

(31)

for every (u, λ) ∈ Σ′. Let us observe that the definition j(0, λn) = n − 1 is

suggested by Proposition 2.6.

Proposition 3.4. The function j : Σ′ → N is continuous.

Proof. 1. As for the continuity of j in every point of the form (0, λn), n ∈ N,

we refer to [15, Lemma 2.5].

2. Let us now fix (u0, λ0) ∈ Σ and let (u, λ) ∈ U , with U as in Lemma 3.3; this

Lemma guarantees that both u and u0 have no zeros in (0, xu0,λ0
).

On the other hand, in the interval [xu0,λ0
, 1] a standard continuous depen-

dence argument (cf. also [11]) ensures that u and u0 have the same numbers

of zeros if (u, λ) is in a sufficiently small neighborhood of (u0, λ0). As a conse-

quence, we obtain that there exists a neighborhood U0 of (u0, λ0) such that

j(u, λ) = j(u0, λ0), ∀ (u, λ) ∈ U0.

As a consequence, from Theorem 3.2 and Proposition 3.4 we deduce the

final result:
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Theorem 3.5. Assume (7) and (23). Then, for every eigenvalue λn of A there

exists a continuum Cn of nontrivial solutions of (22) in H2
0 (0, 1)×R bifurcating

from (0, λn) and such that condition (1) of Theorem 3.2 holds true and

j(u, λ) = n − 1, ∀ (u, λ) ∈ Cn. (32)

Remark 3.6. Theorem 3.2 can be proved as an application of Stuart’s result

[15, Theorem 1.2] as well. However, since in the situation considered in this

paper the singularity at zero does not affect the compactness of the operator

R defined after (27), we chose to apply Rabinowitz theorem [11]. We finally

mention the interesting paper [1], where global branches of solutions, with pre-

scribed nodal properties, are obtained for a second order degenerate problem in

(0, 1).
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Abstract. In this paper we prove the existence and uniqueness of a

periodic solution for the Liénard equation

ẍ + f (x) ẋ + x = 0.

The classical Massera’s monotonicity assumptions, which are required

in the whole line, are relaxed to the interval (α, δ), where α and δ can be

easily determined. In the final part of the paper a simple perturbation

criterion of uniqueness is presented.

Keywords: Liénard equation, limit cycle

MS Classification 2010: 34C25

1. Preliminaries and well-known results

The problem of existence and uniqueness of a periodic solution for the Liénard

equation,

ẍ + f (x) ẋ + x = 0, (1)

has been widely investigated in the literature. Among the uniqueness results,

the most interesting and intriguing one is, without any doubt, the classical

Massera’s Theorem. This is due to the geometrical ideas and the fact that this

result, despite several efforts, is in most cases no more valid for the generalized

Liénard equation

ẍ + f (x) ẋ + g(x) = 0. (2)
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For related results still valid for equation (2), we refer to [1], and to [3] for the

equation

ẍ + f(x, ẋ)ẋ + x = 0.

Throughout this paper we assume that

(A) f is continuous and there exist a < 0 < b such that f(x) is negative for

a < x < b, positive outside this interval. Moreover xF (x) > 0 for |x|
large.

It is well-known (see, for instance, [14, Theorem 1]), that such condition guar-

antees the existence of at least a stable limit cycle.

Equation (1) is equivalent to the phase-plane system

{
ẋ = y
ẏ = −f(x)y − x.

(3)

We just notice that assumption (A) guarantees the property of uniqueness for

the solutions to the Cauchy problem associated to system (3) and therefore the

trajectories of such a system cannot intersect.

The phase-plane system is equivalent to the Liénard system

{
ẋ = y − F (x)

ẏ = −x
, where F (x) =

∫ x

0

f(t) dt. (4)

For equation (2) system (3) becomes

{
ẋ = y
ẏ = −f(x)y − g(x),

(5)

while system (4) becomes

{
ẋ = y − F (x)

ẏ = −g(x)
, where F (x) =

∫ x

0

f(t) dt. (6)

It is well-known that the nonlinear transformation (x, y + F (x)) takes points

of system (3) in points of system (4). Such a transformation preserves the

x-coordinate and this will be crucial for the proof of the main result.

Now we define the property (B)

(B) F (x) has three zeros at α < 0, 0, β > 0. Moreover xF (x) is negative

for α < x < β and positive outside this interval, while F is monotone

increasing for x < α and x > β (see Figure 1).

We observe that property (A) implies property (B) and that property (B)

can be assumed even if f(x) changes sign several times in the interval (α, β),



PERIODIC SOLUTIONS OF THE LIÉNARD EQUATION 189

Figure 1:

which is not our case. Finally we notice that it is trivial to show that in

system (4) and in system (6) the distance from the origin is increasing when

xF (x) < 0, while is decreasing when xF (x) > 0.

We present the classical Massera Theorem which is a milestone among the

results of limit cycles uniqueness for system (3).

Theorem 1.1 (Massera [8]). The system (3) has at most one limit cycle which

is stable, and hence equation (1) has at most one non trivial periodic solution

which is stable, provided that f is continuous and

1. f(x) is monotone decreasing for x < 0,

2. f(x) is monotone increasing for x > 0.

The Theorem of Massera improved a previous result due to Sansone [12] in

which there was the additional assumption |f(x)| < 2. This assumption comes

from the fact that Sansone was using the polar coordinates. Such strong re-

striction on f is clearly not satisfied in the polynomial case and hence the

Massera’s result is much more powerful. We recall the recent paper [11] in

which a discussion concerning these two results, as well as related results, may

be found.

We must observe that in his paper, Massera was proving the uniqueness of

limit cycles regardless the existence because only the monotonicity properties

and the continuity were required. It is easy to prove that, in order to fulfill

the necessary conditions for the existence of limit cycles, the only cases to be

considered are

1. f(x) has two zeros a < 0 < b. In this case property (A) is fulfilled and

hence the existence of limit cycles is granted,
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2. f(x) remains negative for x < 0, (or for x > 0), while intersects the x
axis once in x > 0 ( or for x < 0).

In this case the existence of limit cycles is not granted. It is possible to produce

examples in which, actually, there exists a unique limit cycle but, as far as

we know, there is no existence result which can be applied in this situation.

Moreover this case does not cover the crucial polynomial case, which is still the

most important and it is related with the Lins-De Melo-Pugh conjecture [7],

concerning the upper bound of limit cycles for equation (1) when f(x) is a

polynomial of degree n.

Now we recall another interesting result, which is due to Levinson-Smith

for system (6) and to Sansone for system (4).

Theorem 1.2 (Levinson-Smith [5] and Sansone [13], see also [15]). If F has the

property (B), at most a limit cycle intersects both the lines x = α and x = β

This is a very nice result, but it is abstract, because, in general, if there are no

symmetry properties on f and g, such a situation is not easy to be verified. For

system (6) there are sufficient conditions which guarantee that in the Liénard

plane this situation actually occurs (see [2, 15] and, for more general cases,

[1, 10, 17]). In the case of system (4) a sufficient condition is |α| = β.

The aim of this paper is to relax the monotonicity assumptions, required

by Massera, to a fixed interval given by the function f .

This will be achieved working both in the phase plane and in the Liénard

plane and using property (B) and Theorem 1.2, together with Massera’s The-

orem.

Proofs are based on elementary phase plane analysis, but as far as we know,

the result is original and this shows how still this classical problem deserves to

be investigated.

In the final part of the paper, an existence and uniqueness result will be

presented for the equation, depending on a parameter λ,

ẍ + λf(x)ẋ + x = 0.

2. The main result

We now present our result which improves the classical Massera Theorem when

property (A) holds.

Theorem 2.1 (Massera “revisited”). Under the assumptions (A), the Liénard

system (4) has exactly one limit cycle, which is stable, provided that

1. |α| > β,

f(x) is monotone decreasing for α < x < 0,
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f(x) is monotone increasing for 0 < x < δ;

2. |α| < β,

f(x) is monotone decreasing for δ1 < x < 0,

f(x) is monotone increasing for 0 < x < β,

with

δ =

√(
1 + F (a) +

α2

2

)2

+ β2 , δ1 = −

√(
−F (b) + 1 +

β2

2

)2

+ α2,

where a and b are the zeros of f(x) and α, β are the non trivial zeros of

F (x).

Proof. We preliminarly observe that, if |α| = β, we can apply directly Theo-

rem 1.2 and no monotonicity assumptions are required.

For sake of simplicity we are proving the theorem in several steps.

Step 1 We now consider the case |α| > β.

Under the assumption (A), if f(x) is monotone decreasing for α < x < 0,

and monotone increasing for x > 0, the Liénard system (4) has exactly a limit

cycle, which is stable.

In the Liénard plane any trajectory which intersects the line x = α in y > 0,

also intersects the line x = β because, as already mentioned, the distance from

the origin is increasing in the strip α < 0 < β.

If we keep the monotonicity properties of Massera’s Theorem for x > α, we

know that, in the half plane x > α, lies at most a stable limit cycle. This result

is proved in the phase plane, but it also holds in the Liénard plane in virtue

of the above mentioned property which preserves the x-coordinate, when one

switches from one plane to the other. Hence in the Liénard plane there are

only two possible configurations:

1. No limit cycle lies in the half plane x > α. Hence all limit cycles must

intersect both lines x = α and x = β and, from Theorem 1.2, the limit

cycle is unique.

2. We have a stable limit cycle in the half plane x > α. Using again Theo-

rem 1.2 we can have, at most, a second limit cycle intersecting both lines

x = α and x = β. The sign conditions on f shows that such limit cycle

must be semistable from his exterior. Using a perturbation argument,

which may be found in [7] and [16], one can see that, with a suitable

small perturbation of f near α and for x < α, still keeping f positive

and hence keeping the monotonicity properties of F required for prop-

erty (B), the semistable limit cycle bifurcates in two limit cycles, one
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stable and one unstable, which is a contradiction because both limit cy-

cles must intersect both the lines x = α and x = β. For the bifurcation

from a semistable limit cycle in rotated vector fields, we refer also to the

classical works of Duff [4] and Perko [9].

If |α| < β we easily get a dual result, namely:

Step 2 Under the assumption (A), if f(x) is monotone decreasing for x < 0

and monotone increasing for 0 < x < β, the Liénard system (4) has exactly a

limit cycle, which is stable.

In order to complete our proof, it is necessary to produce a fixed upper

bound for the monotonicity assumptions for positive values of x.

Step 3 We consider, at first, the case |α| > β.

Under assumption (A), a positive semitrajectory of the Liénard system (4),

which starts at a point P (α, F (a) + 1), intersects the vertical isocline y =

F (x) in the half plane x > 0, at a point S(x, F (x)), with x < δ, where δ =√(
1 + F (a) + α2

2

)2
+ β2.

In the Liénard plane (4), the slôpe of a trajectory is given by

y′(x, y) =
−x

y − F (x)
.

At first, we observe that a positive semitrajectory, which starts at a point

P (α, F (a) + 1), must intersect the y-axis at a point Q (0, ȳ), because the slôpe

is positive, and the line x = β at a point R (β, ŷ), due to the fact that, in the

strip α < x < β, the distance from the origin is increasing and |α| > β (see

Figure 2).

y(Q) − y(P ) =

∫ 0

α

y′(x, y) dx =

∫ 0

α

−x

y − F (x)
dx.

In the strip α < x < 0, F (x) ≤ F (a), the slôpe is positive and, clearly,

y − F (x) ≥ y − F (a) > 1 and therefore

y(Q) − y(P ) <

∫ 0

α

−x dx =
α2

2
,

that is

y(Q) = ȳ < 1 + F (a) +
α2

2
.

In the strip 0 < x < β, the slôpe is negative; for this reason the positive semi-

trajectory intersects the β-line at a point R (β, ŷ), with ŷ < ȳ < 1 + F (a) + α2

2 .

For x > β, the distance from the origin is now decreasing. The positive semi-

trajectory intersects the vertical isocline y = F (x) at a point S (x, F (x)), with

x <

√(
1 + F (a) +

α2

2

)2

+ β2 = δ,
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and this proves Step 3.

Figure 2:

From Step 3, we get that any negative semitrajectory intersecting the vertical

isocline at x > δ intersects the line x = α.

Now we require the monotonicity property of Massera Theorem just in the

strip α < x < δ and we can argue as in Step 1.

Again if |α| < β, we can get the dual result:

Step 4 Under assumption (A), a positive semitrajectory of the Liénard

system (4), which starts at a point P (β, F (b)−1), intersects the vertical isocline

y = F (x) in the half plane x < 0, at a point S(x, F (x)), with x > δ1, where

δ1 = −

√(
−F (b) + 1 + β2

2

)2

+ α2.

This completes the proof of the Theorem.

Remark 2.1. Observe that it is easy to see that, actually, the value δ (δ1)

can be improved by δ̂ = F−1
(√

δ2 − x2
)

(δ̂1 = F−1
(√

δ2
1 − x2

)
). However,

we prefer to keep the values δ and δ1 becuse they explicitly contain the values

a, b, α, β and this enlights the crucial role played by the zeros of f and F .

Remark 2.2. Notice that such result can also be viewed as a perturbation of

the classical Massera Theorem, namely that we can perturb the function f(x)

outside the interval [α, δ] ([δ1, β]), keeping only the sign conditions, and still

having existence and uniqueness of a stable limit cycle.

Remark 2.3. Finally, as a side remark, we recall that outside the interval [α, δ]
the only restriction on f(x) is the positivity. In the case of f tending, at 0+,

at infinity and F having a finite limit at infinity, still the above mentioned
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sufficient conditions for the existence of limit cycles are fulfilled [14] and the

monotonicity assumptions on [α, δ] give the uniqueness.

We already noticed that the values F (a), F (b) play a crucial role in order

to guarantee that the trajectories of system (3) intersect both lines x = α and

x = β.

In the light of a result in [2], proved for equation (2), which now is more

powerful due to the fact that g(x) = x, we prove the following simple pertur-

bation result:

Theorem 2.2. Under the assumption (A) the equation

ẍ + λf (x) ẋ + x = 0

has a unique non trivial periodic solution for every λ ≥ λ̂, where λ̂ =

√
α2 − β2

F 2(b)
, if |α| > β,

√
β2 − α2

F 2(a)
, if |α| < β,

any real number if α = β.

Proof. We consider only the first case, being the second one treated in the same

way and the result well-known if |α| = β.

As usual we consider the Liénard system

{
ẋ = y − λF (x)

ẏ = −x.

We just notice that the parameter λ does not influence the values a, b, α, β.

Assumption (A) gives the existence of at least a limit cycle. Any positive

semitrajectory which intersects the line x = β in y < 0, intersects the line

x = b at a point P (b, y), with y < λF (b). Recalling again the fact that, in the

strip α < x < β, the distance from the origin is increasing, it is straightforward

to observe that if √
λ2F 2(b) + b2 ≥ |α|,

such trajectory intersects the line x = α. Hence all limit cycles must intersect

both lines x = α and x = β and we can use Theorem 1.2 again.
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1. Introduction

The aim of this paper is to extend in a slightly more general and unified set up

two important steps of the proof of the asymptotic stability of solitary waves

for the Nonlinear Schrödinger equation [2, 8, 10] and the particular case of

Nonlinear Dirac system treated in [4]. In both cases there is a localization at

the solitary wave and a representation of the system in terms of coordinates

arising from the linearization at a solitary wave. The operators Hp introduced

later play this role. In general Hp has both continuous spectrum and non

zero eigenvalues. The latter give rise to discrete modes which in the nonlinear

problem could produce chaotic Lissaius like motions. It turns out that in [2, 3,

4, 8, 9, 10] discrete modes relax to 0 because of a mechanism of slow leaking of

energy away from the discrete modes into the continuous modes, where energy

disperses by linear dispersion. The idea was initiated in special situations

in [5, 12, 13]. We refer to [8] for more comments and references.

The aim of this paper consists in simplifying two key steps in the proofs

in [4, 8, 10]. The first step consists in searching Darboux coordinates. This

allows to decrease the number of coordinates in the system and to reduce to

the study of the system at an equilibrium point.

The second step consists in the implementation of the Birkhoff normal

forms, to produce a simple effective Hamiltonian. After this, [4, 8, 10] prove
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the energy leaking away from the discrete modes. In particular the key step

is the proof that certain coefficients of the discrete modes equations are sec-

ond powers, the Nonlinear Fermi Golden Rule (FGR), which generically are

positive and yield discrete mode energy dissipation.

We do not discuss the FGR in this paper limiting ourselves to the search of

Darboux coordinates and to the Birkhoff normal forms argument.

In this paper we avail ourselves with some ideas and notation drawn from

early versions of [2] to improve the presentation in [10].

[2, 10] represent two attempts to extend the result proved in [8] for standing

ground states of the NLS, to the case of moving ground states. A further goal

in [2] is to develop the theory in a more abstract set up. Early versions of [2]

did not encompass a Birkhoff step extendable to [4]. [2] is confined (like us

here) to systems with Abelian group of symmetries.

The 1st version of the present proof was written before the 3rd version of [2]

was posted on the Arxiv site. The 2nd version of [2] contained an incorrect

effective Hamiltonian, see Remark 6.7 later. In the 3rd version of [2] this has

been corrected, but the discussion remains sketchy and has gaps. See below

at Remarks 2.10 and 6.6 and further below in this Introduction and at the

beginning of Section 3.3.

We nonetheless draw from [2] a number of ideas which we list now. First of

all, we draw from [2] a better choice of initial coordinates than [10]. Some of it

existed also in previous literature, cf. the discussion in [11, Section 6]. We also

borrow some notation, i.e. symbols Rk,m and Sk,m (which in [2] are defined

incorrectly). Finally, inspired by [2] we simplify the proof in the part of the

Darboux step contained in Lemma 3.6, which in [10] is more laborious.

Both here and in [10] we consider initial data in subsets of Σn for n ≫ 1

which are unbounded in Σn and invariant for the system. We require this sub-

stantial amount of regularity and spacial decay to 0 for the classes of solutions

of the system, in order to give a rigorous treatment of the flows and of the

pullbacks. [2] suggests that [10] should prove decay rates in time. We do not

understand the basis for this suggestion since, by the time invariance of the

subsets Σn considered, the problem considered in [10] is very similar in this

respect to the one with Σn replaced by H1. Indeed time decay corresponds

to bounds on norms containing time dependent weights. But if the problem

is invariant by translation in time, the only information that can be derived

must be invariant by translation in time, and bounds on time weighted norms

do not have this property. We therefore emphasize that [10] and the present

paper are very different from, say, [5, 13], which consider initial data in subsets

of Hk,s which are not invariant by the time evolution.

To find an effective Hamiltonian, we use the regularity properties of the

flows, which in turn depend on the fact that we work in Σn for n ≫ 1. See



DARBOUX AND BIRKHOFF STEPS 199

Theorem 6.5 where the regularity of the flows is used to prove that the coordi-

nate changes preserve the system. To prove for the NLS the same result in H1,

where the coordinate changes are continuous only, one needs to explain how

they preserve the structure needed to make sense of the NLS. A reasonable

approach to the H1 case for the NLS is to first prove the result in our set up,

then to prove the local well posedness in H1 of the NLS within the various

systems of coordinates used, and finally show that H1 solutions of the NLS

are invariant by coordinate changes, by means of a density argument and by

the continuity of the coordinate changes in H1. We do not prove here the last

fact, just because everything in Section 3.2 is formulated in terms of the spaces

Σn, but in fact for the NLS it follows by routine arguments. Since we do not

provide a proof, we make no claim about H1 solutions of the NLS, even though

it seems not a far off step from what we prove here. [2] claims the result in

H1 without spelling out the proof, see Remark 6.6 below.

We discuss in some detail a key formula on the differentiation of the pull-

back of a differential form along a flow, see (79), which is the basis of Moser’s

method to find Darboux coordinates. This formula is simple in classical set

ups, but in our case and in [2] its interpretation and proof are not obvious.

In [2] the formula is stated and used without discussion. We treat the issue

rigorously in Section 3.3, regularizing the flow, using (79) for the regularized

flow, and recovering the desired equality between differential forms, by a limit-

ing argument. Notice that we do not prove formula (79) for the non regularized

flow.

We end with few remarks on the proofs.

The proof of the Darboux Theorem is a simplification of that in [10] in the

part discussing the vector field. We give in Section 3.3 a detailed proof on the

fact that the resulting flow transforms the symplectic form as desired. See also

the introductory remarks in Section 3. Notice that parts of this discussion were

skipped in [10].

The portion of our paper on the Birkhoff normal forms covers from Section 4

on and is quite different from [4, 8, 10] mainly because the pullback of the terms

of the expansion of the Hamiltonian cannot be treated on a term by term basis,

see Remark 5.5. What is important is to get a general structure of the pullbacks

of the Hamiltonian. This is discussed in Section 4. It is likely that most of

the analysis in Lemmas 4.3, 4.4 and 5.4, is not necessary to the derivation

of the effective Hamiltonian, which is represented by H ′

2 and the null terms

in R0 and R1 of the expansion in Lemma 5.4, in the final Hamiltonian. On

the other hand, writing the Hamiltonian explicitly should make the arguments

transparent and more clearly applicable to the part on dispersion and Fermi

Golden rule.

In Section 5 we finally distinguish between discrete and continuous modes.
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The present paper treats only equations whose symmetry group is Abelian.

This limitation will have to be overcome to extend the theory to more general

systems such for example the Dirac system without the symmetry constraints

of [4].

2. Set up

• Given two vectors u, v ∈ R
2N we denote by u · v =

∑
ujvj their inner

product.

• We will consider also another quadratic form |u|21 = u ·1 u in R
2N .

• For any n ≥ 1 we consider the space Σn = Σn(R3,R2N ) defined by

‖u‖2
Σn

:=
∑

|α|≤n

(
‖xαu‖2

L2(R3,R2N ) + ‖∂α
x u‖

2
L2(R3,R2N )

)
<∞.

We set Σ0 = L2(R3,R2N ). Equivalently we can define Σr for r ∈ R by

the norm

‖u‖Σr
:=

∥∥∥(1 − ∆ + |x|2)
r
2 u

∥∥∥
L2
<∞.

For r ∈ N the two definitions are equivalent, see [8]. We will not use

another quite natural class of spaces denoted by Hk,s and defined by

‖u‖Hk,s :=
∥∥∥(1 + |x|2)

s
2 (1 − ∆)

k
2 u

∥∥∥
L2
<∞.

• S(R3,R2N ) = ∩n∈NΣn(R3,R2N ) is the space of Schwartz functions and

the space of tempered distributions is S ′(R3,R2N ) = ∪n∈NΣ−n(R3,R2N ).

• For X and Y two Banach space, we will denote by B(X,Y ) the Ba-

nach space of bounded linear operators from X to Y and by Bℓ(X,Y ) =

B(
∏ℓ

j=1X,Y ).

• We denote by 〈 , 〉 the natural inner product in L2(R3,R2N ).

• J is an invertible antisymmetric matrix in R
2N . We have also |Jy|1 =

|y|1 for any y ∈ R
2N . In L2(R3,R2N ) we consider the symplectic form

Ω = 〈J−1 , 〉.

• We consider in L2(R3,R2N ) a linear selfadjoint elliptic differential oper-

ator D such that D ∈ B(Σr,Σr−ordD) and D ∈ B(Hr, Hr−ordD) for all r
and for a fixed integer ordD ≥ 1.
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• We consider a Hamiltonian of the form

E(U) = EK(U) + EP (U)

EK(U) :=
1

2
〈DU,U〉 , EP (U) :=

∫

R3

B(|U |21)dx.
(1)

Here B ∈ C∞(R,R), B(0) = B′(0) = 0 and there exists a p ∈ (2, 6] such

that for every k ≥ 0 there is a fixed Ck with

∣∣∇k
ζ (B(|ζ|21))

∣∣ ≤ Ck|ζ|
p−k−1 if |ζ| ≥ 1 in R

2N . (2)

Notice that EP ∈ C5(H1(R3,R2N )),R). Consistently with [4, 8, 10], we focus

only on semilinear Hamiltonians. We consider the system

U̇ = J∇E(U) , U(0) = U0 (3)

where for a Frechét differentiable function F the gradient ∇F (U) is defined by

〈∇F (U), X〉 = dF (U)(X), with dF (U) the exterior differential calculated at

U . We assume that

(A1) there exists d0 such that for d > d0 system (3) is locally well posed in

Hd. Furthermore, the space Σd is invariant by this motion.

We recall the following definition.

Definition 2.1. Given a Frechét differentiable function F , the Hamiltonian

vectorfield of F with respect to a strong symplectic form ω, see [1, Chapter 9],

is the field XF such that ω(XF , Y ) = dF (Y ) for any given tangent vector Y.
For ω = Ω we have XF = J∇F .

For F,G two scalar Frechét differentiable functions, we consider the Poisson

bracket {F,G} := dF (XG).

If G has values in a given Banach space E and G is a scalar valued function,

then we set {G, G} := G′(XG), for G′ the Frechét derivative of G.

We assume some symmetries in system (3). Specifically we assume what

follows.

(A2) There are selfadjoint differential operators 3ℓ for ℓ = 1, ..., n0 in L2 such

that 3ℓ : Σn → Σn−dℓ
for ℓ = 1, ..., n0. We set d = supℓ dℓ.

(A3) We assume [3ℓ, J ] = 0 and [3ℓ,3k] = 0.

(A4) We assume {Πℓ, EK} = {Πℓ, EP } = 0 for all ℓ, where Πℓ := 1
2 〈3ℓ , 〉.
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(A5) Set 〈ǫ3〉2 := 1 +
∑

j ǫ
2
3

2
j . Then 〈ǫ3〉−2 ∈ B(Σn,Σn) with

‖〈ǫ3〉−2‖B(Σn,Σn) ≤ Cn <∞ for any |ǫ| ≤ 1 and n ∈ N. (4)

Furthermore, for any n ∈ Z we have

strong − lim
ǫ→0

〈ǫ3〉−2 = 1 in B(Σn,Σn)

lim
ǫ→0

‖〈ǫ3〉−2 − 1‖B(Σn,Σn′ ) = 0 for any n′ ∈ Z with n′ < n.
(5)

(A6) Consider the groups eJ〈ǫ3〉
−2

3·τ defined in L2. We assume that for any

n ∈ N these groups leave Σn invariant and that for any n ∈ N and c > 0

there a C s.t. ‖eJ〈ǫ3〉
−2

3·τ‖B(Σn,Σn) ≤ C for any |τ | ≤ c and any |ǫ| ≤ 1

.

We introduce now our solitary waves.

(B1) We assume that for O an open subset of R
n0 we have a function p →

Φp ∈ S(R3,R2N ) which is in C∞(O,S), with Πℓ(Φp) = pℓ, where the Φp

are constrained critical points of E with associated Lagrange multipliers

λℓ(p) so that

∇E(Φp) = λ(p) · 3Φp (6)

(B2) We will assume that the map p→ λ(p) is a diffeomorphism. In particular

this means that the following matrix has rank n0

rank

[
∂λi

∂pj

]

i↓ , j→

= n0. (7)

A function U(t) := eJ(tλ(p)+τ0)·3Φp is a solitary wave solution of (3) for any

fixed vector τ0.

2.1. The linearization

Set Hp := J(∇2E(Φp) − λ(p) · 3). Notice that E(eJτ ·3U) ≡ E(U) for any U
yields ∇E(eJτ ·3U) = eJτ ·3∇E(U) and ∇2E(eJτ ·3U) = eJτ ·3∇2E(U)e−Jτ ·3.
Then (6) implies ∇E(eJτ ·3Φp) = eJτ ·3λ(p) · 3Φp. So applying ∂τj

we obtain

(∇2E(Φp) − λ(p) · 3)J3jΦp = 0 and so

HpJ3jΦp = 0 (8)
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(C1) We will assume

kerHp = Span{J3jΦp : j = 1, ..., n0}. (9)

Applying ∂λj
to (6) yields (∇2E(Φp) − λ(p) · 3)∂λj

Φp = 3jΦp. This yields

Hp∂λj
Φp = J3jΦp (10)

We have

〈∂λj
Φp,3kΦp〉 =

1

2
∂λj

〈Φp,3kΦp〉 = ∂λj
pk. (11)

Necessarily, by (B2) there exists j such that ∂λj
pk 6= 0. This implies that the

generalized kernel is

Ng(Hp) = Span{J3jΦp, ∂λj
Φp : j = 1, ..., n0}. (12)

The map (p, τ) → eJτ0·3Φp is in C∞(O × R
n0 ,S).

(C2) We assume this map is a local embedding and that the image is a manifold

G.

At any given point eJτ ·3Φp the tangent space of G is given by

TeJτ·3Φp
G = Span{eJτ ·3∂pj

Φp, e
Jτ ·3

3jΦp : j = 1, ..., n0}.

We have Ω(eJτ ·3∂pj
Φp, e

Jτ ·3∂pk
Φp) = Ω(∂pj

Φp, ∂pk
Φp).

(C3) We assume that

Ω(∂pj
Φp, ∂pk

Φp) = 0 for all j and k (13)

Ω(∂pj
Φp,Φp) = 0 for all j. (14)

Notice that (14) is not required in [2] but in any case is true for the applications

in [2, 4, 8, 10]. Here we use it in Lemma 3.1.

We have the following beginning of Jordan block decomposition of Hp.

Lemma 2.2. Consider the operator Hp. We have

J−1Hp = −H∗

pJ
−1 , HpJ = −JH∗

p. (15)

Assume (B1)–(B2) and (C1). Then we have

L2 = Ng(Hp) ⊕N⊥

g (H∗

p) , (16)

Ng(H
∗

p) = Span{3jΦp, J
−1∂λj

Φp : j = 1, ..., n0}. (17)
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Proof. We have Hp = JA for a selfadjoint operator A and with J a bounded

antisymmetric operator. Then H∗

p = −AJ and (15) follows by direct inspection.

Recall that (B1)–(B2) and (C1) imply (12). Then (15) implies (17).

The map ψ → 〈 , ψ〉 establishes a map Ng(H
∗

p) → B(Ng(Hp),R). By (11),

formulas (12) and (17) imply that this map is an isomorphism. For any u ∈ L2

there is exactly one v ∈ Ng(Hp) such that 〈u, 〉 and 〈v, 〉 coincide as elements

in B(Ng(H
∗

p),R). Then u− v ∈ N⊥

g (H∗

p) and we get (16).

Obviously Lemma 2.2 holds true only because our J is very special. For

the KdV, where J = ∂
∂x

, (16)–(17) are not true.

Denote by PNg
(p) = PNg(Hp) the projection onto Ng(Hp) associated to (16)

and by P (p) := 1 − PNg
(p) the projection on N⊥

g (H∗

p). We have, summing on

repeated indexes,

PNg
(p)X = −J3jΦp 〈X, J−1∂pj

Φp〉 + ∂pj
Φp 〈X,3jΦp〉. (18)

Lemma 2.3. Assume (B1)–(B2) and (C1). Then:

(1) PNg
(p) ∈ B(S ′,S) for any p ∈ O and PNg

(p) ∈ C∞(O, B(Σ−k,Σk)) for

any k ∈ N.

(2) For any p0 ∈ O and k there exists an εk > 0 such that for |p− p0| < εk

P (p)P (p0) : N⊥

g (H∗

p0
) ∩ Σk → N⊥

g (H∗

p) ∩ Σk (19)

is an isomorphism.

(3) For h > k we have εh ≥ εk.

Proof. Claim (1) is elementary and we skip the proof.

Consider the map P (p)P (p0)P (p) = 1 + P (p)(PNg
(p) − PNg

(p0))P (p) from

N⊥

g (H∗

p) ∩ Σk into itself. By Claim (1) and by the Fredholm alternative, this

is an isomorphism for |p− p0| < εk with εk > 0 sufficiently small. This implies

that the P (p)P (p0) in (19) is onto. For the same reasons also P (p0)P (p)P (p0)

is an isomorphism from N⊥

g (H∗

p0
) ∩ Σk into itself. Then P (p)P (p0) in (19) is

one to one. This yields Claim (2).

For h > k we have the commutative diagram

N⊥

g (H∗

p0
) ∩ Σh

P (p)P (p0)
→ N⊥

g (H∗

p) ∩ Σh

↓ ↓

N⊥

g (H∗

p0
) ∩ Σk

P (p)P (p0)
→ N⊥

g (H∗

p) ∩ Σk

with the vertical maps two embedding. This implies that for |p− p0| < εk we

have kerP (p)P (p0) = 0 in N⊥

g (H∗

p0
)∩Σh. To complete the proof of Claim (3),
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we need to show that given u ∈ N⊥

g (H∗

p)∩Σh and the resulting v ∈ N⊥

g (H∗

p0
)∩

Σk with u = P (p)P (p0)v, we have v ∈ Σh. But this follows immediately from

v = u+ (PNg
(p) − PNg

(p0))v where u ∈ Σh and (PNg
(p) − PNg

(p0))v ∈ S.

We will denote the inverse of (19) by

(P (p)P (p0))
−1 : N⊥

g (H∗

p) ∩ Σk → N⊥

g (H∗

p0
) ∩ Σk. (20)

We have the following Modulation type lemma.

Lemma 2.4 (Modulation). Assume (A2), (B.1), (B.2), (C.1) and (C.3). Fix

n ∈ Z, n≥0 and fix Ψ0 = eJτ0·3Φp0
. Then ∃ a neighborhood U in Σ−n(R3,R2N)

of U0 and functions p ∈ C∞(U ,O) and τ ∈ C∞(U ,Rn0) s.t. p(Ψ0) = p0 and

τ(Ψ0) = τ0 and s.t. ∀U ∈ U

U = eJτ ·3(Φp +R) and R ∈ N⊥

g (H∗

p). (21)

Proof. Consider the following 2n0 functions:

Fj(U, p, τ) := Ω(U − eJτ ·3Φp, e
Jτ ·3∂pj

Φp)

Gj(U, p, τ) := Ω(U − eJτ ·3Φp, Je
Jτ ·3

3jΦp).
(22)

These functions belong to C∞(Σ−n ×O× R
n0 ,R). We introduce the notation

R = e−Jτ ·3U − Φp. Notice that R = 0 for U = Φp. Then

∂τk
Fj(U, p, τ) = Ω(eJτ ·3R, eJτ ·3J3k∂pj

Φp) − Ω(J3ke
Jτ ·3Φp, e

Jτ ·3∂pj
Φp)

=−〈R,3k∂pj
Φp〉 − 〈3kΦp, ∂pj

Φp〉

=−〈R,3k∂pj
Φp〉 −

1

2
∂pj

〈3kΦp,Φp〉

=−〈R,3k∂pj
Φp〉 − δjk.

By (13) we have

∂pk
Fj(U, p, τ) = Ω(eJτ ·3R, eJτ ·3∂pk

∂pj
Φp) − Ω(JeJτ ·3∂pk

Φp, e
Jτ ·3∂pj

Φp)

= Ω(R, ∂pk
∂pj

Φp).

By (A3) we have

∂τk
Gj = Ω(eJτ ·3R, eJτ ·3J2

3k3jΦp) − Ω(J3ke
Jτ ·3Φpe

Jτ ·3J3jΦp)

=−〈R, J3k3jΦp〉 − 〈J3kΦp,3jΦp〉

=−〈R, J3k3jΦp〉,
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We have

∂pk
Gj = Ω(eJτ ·3R, eJτ ·3J3j∂pk

Φp) − Ω(eJτ ·3∂pk
Φpe

Jτ ·3J3jΦp)

=−〈R,3j∂pk
Φp〉 + 〈∂pk

Φp,3jΦp〉

=−〈R,3j∂pk
Φp〉 + δjk.

At U = Ψ0, τ = τ0 and p = p0 we have Fj = Gj = 0. Since in this case R = 0

we get the desired result by the Implicit Function Theorem.

2.2. Spectral coordinates

Lemmas 2.2–2.4 lead to a natural decomposition of (3). To write it we need

further notation.

We are ready for the natural coordinates decomposition. Let Π(U0) = p0. We

consider for R ∈ N⊥

g (H∗

p0
) the map

(τ, p, R) → U = eJτ ·3(Φp + P (p)R). (23)

We have the following formulas,

∂

∂τj
= J3jU ,

∂

∂pj

= eJτ ·3(∂pj
Φp + ∂pj

P (p)R), (24)

with ∂
∂pj

∈ C∞(U ∩ Σk,Σk′) for any pair (k, k′) ∈ N
2, with U ⊂ Σ−n the

neighborhood of eJτ0·3Φp0
in Lemma 2.4. Similarly, ∂

∂τj
∈ C0(U ∩ Σk,Σk−dj

).

We have what follows.

Lemma 2.5. Consider the n ≥ 0 and U in Lemma 2.4 and fix an integer k ≥
−n. Then the map U → R(U) = R is C0(U ∩Σk,Σk). For k ≥ −n+d we have

R ∈ C1(U ∩ Σk,Σk−d). For U sufficiently small in Σ−n the Frechét derivative

R′(U) of R(U) is defined by the following formula, summing on the repeated

index j,

R′(U) = (P (p)P (p0))
−1P (p)

[
e−Jτ ·3 1l − J3jP (p)Rdτj − ∂pj

P (p)Rdpj

]
,

where (P (p)P (p0))
−1 : N⊥

g (H∗

p) ∩ Σk−d → N⊥

g (H∗

p0
) ∩ Σk−d is well defined by

Lemma 2.3.

Proof. The continuity of R(U) follows from R = e−Jτ ·3U − Φp and

R−R′ = e−Jτ ·3U − e−Jτ ′
·3U ′ + Φp′ − Φp

= Φp′ − Φp + (e−Jτ ·3 − e−Jτ ′
·3)U + e−Jτ ′

·3(U − U ′).

Then use p → Φp ∈ C∞(O,S), the fact that eJτ ·3 is strongly continuous

in Σk and locally uniformly bounded therein. The fact that R(U) has Frechét
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derivative follows by the chain rule. To get the formula forR′(U) notice that the

equalities R′ ∂
∂pj

= R′ ∂
∂τj

= 0 and R′eJτ ·3P (p)P (p0) = 1l|N⊥
g (H∗

p0
) characterize

R′. We claim we have

R′ = ajdτj + bjdpj + (P (p)P (p0))
−1P (p)e−Jτ ·3 (25)

for some aj and bj . First of all, by the independence of coordinates (τ, p) from

R ∈ N⊥

g (H∗

p0
),

dτj ◦ e
Jτ ·3P (p)P (p0) = dpj ◦ e

Jτ ·3P (p)P (p0) = 0.

Indeed for g ∈ N⊥

g (H∗

p0
) we have for instance

0 =
d

dt
τj(u(τ, p, R+ tg))|t=0 =

d

dt
τj(e

Jτ ·3(Φp + P (p)P (p0)(R+ tg)))|t=0

= dτj ◦ e
Jτ ·3P (p)P (p0)g.

Secondarily, by the definition of (P (p)P (p0))
−1,

(P (p)P (p0))
−1P (p)e−Jτ ·3 ◦ eJτ ·3P (p)P (p0) = 1lN⊥

g (H∗
p0

).

Hence we get the claimed equality (25).

To get aj and bj notice that by R′ ∂
∂τj

= 0 and P (p)J3jΦp = 0

aj =−(P (p)P (p0))
−1P (p)e−Jτ ·3 ∂

∂τj

=−(P (p)P (p0))
−1P (p)e−Jτ ·3eJτ ·3J3j(Φp + P (p)R)

=−(P (p)P (p0))
−1P (p)J3jP (p)R.

Similarly by R′ ∂
∂pj

= 0 and P (p)∂pj
Φp = 0

bj =−(P (p)P (p0))
−1P (p)e−Jτ ·3 ∂

∂pj

=−(P (p)P (p0))
−1P (p)(∂pj

Φp + ∂pj
P (p)R)

=−(P (p)P (p0))
−1P (p)∂pj

P (p)R.

A crucial point in the stability proofs in [3, 4, 8, 10], first realized and used

in [7], is the importance not to loose track of the Hamiltonian nature of (3), in

whichever coordinates the system is written. Thus we have what follows.



208 SCIPIO CUCCAGNA

Lemma 2.6. In the coordinate system (23), system (3) can be written as

ṗ = {p,E} , τ̇ = {τ, E} , Ṙ = {R,E}. (26)

Proof. The statement is not standard only for Ṙ = {R,E}. Notice that (3)

can be written as

U̇ = Jτ̇ · 3U + eJτ ·3ṗ · ∇p(Φp + P (p)R) + eJτ ·3P (p)Ṙ

=
∑

j

τ̇j
∂

∂τj
+ ṗj

∂

∂pj

+ eJτ ·3P (p)Ṙ = J∇E(U).
(27)

When we apply the derivative R′(U) to (27), all the terms in the lhs of the last

line cancel except for

R′(U)eJτ ·3P (p)Ṙ = R′(U)J∇E(U) = R′(U)XE(U) = {R,E},

from the definition of hamiltonian field and of Poisson bracket. Finally we use

R′(U)eJτ ·3P (p)Ṙ =
d

ds |s=0

R(U(τ, p, R+ sṘ)) =
d

ds |s=0

(R+ sṘ) = Ṙ.

2.3. Reduction of order of system (26)

The following Poisson bracket identities are useful.

Lemma 2.7. Consider the functions Πj. Then XΠj
= ∂

∂τj
. In particular

{Πj , τk} = −δjk , {Πj , pk} ≡ 0 , {R,Πj} = 0. (28)

Proof. (28) follows from the first claim, which is a consequence of (24):

XΠj
(U) = J∇Πj(U) = J3jU =

∂

∂τj
.

We introduce now a new Hamiltonian:

K(U) := E(U) − E (Φp0
) − λj(p(U)) (Πj(U) − Πj(U0)) . (29)

Notice that K(eJτ ·3U) ≡ K(U). Equivalently, ∂τj
K ≡ 0. We know that for

solutions of (3) we have Πj(U(t)) = Πj(U0) and

{pj ,K} = {pj , E} , {R,K} = {R,E} , {τj ,K} = {τj , E} + λj(p).
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By ∂τj
K ≡ 0, the evolution of the variables p,R is unchanged if we consider

the following new Hamiltonian system:

ṗj = {pj ,K} , τ̇j = {τj ,K} , Ṙ = {R,K}. (30)

It is elementary that the momenta Πj(U) are invariants of motion of (30).

Before exploiting the invariance of Πj(U) to reduce the order of the system,

we introduce appropriate notation. First of all we set

Pr := R
n0 × (Σr ∩N

⊥

g (Hp0
)) = {(τ,R)} ,

P̃r := R
n0 × Pr = {(Π, τ, R)}.

(31)

We set P = P0 and P̃ = P̃0.

Definition 2.8. We will say that F (t, ̺, R) ∈ CM (I×A,R) with I a neighbor-

hood of 0 in R and A a neighborhood of 0 in P−K is Ri,j
K,M and we will write

F = Ri,j
K,M , or more specifically F = Ri,j

K,M (t, ̺, R), if there exists a C > 0 and

a smaller neighborhood A′ of 0 s.t.

|F (t, ̺, R)| ≤ C‖R‖j
Σ−K

(‖R‖Σ−K
+ |̺|)i in I ×A′. (32)

We say F = Ri,j
K,∞ if F = Ri,j

K,m for all m ≥M . We say F = Ri,j
∞,M if for all

k ≥ K the above F is the restriction of an F (t, ̺, R) ∈ CM (I×Ak,R) with Ak

a neighborhood of 0 in P−k and which is F = Ri,j
k,M . Finally we say F = Ri,j

if F = Ri,j
k,∞ for all k.

Definition 2.9. We will say that an T (t, ̺, R) ∈ CM (I × A,ΣK(R3,R2N )),

with I×A like above, is S
i,j
K,M and we will write T = S

i,j
K,M or more specifically

T = S
i,j
K,M (t, ̺, R), if there exists a C > 0 and a smaller neighborhood A′ of 0

s.t.

‖T (t, ̺, R)‖ΣK
≤ C‖R‖j

Σ−K
(‖R‖Σ−K

+ |̺|)i in I ×A′. (33)

We use notation T = Si,j, T = S
i,j
K,∞ or T = S

i,j
∞,M as above.

These notions will be often used also for functions F = Ri,j
K,M (̺,R) and

T = S
i,j
K,M (̺,R) independent of t.

Remark 2.10. We will see later that the coefficients of the vector fields whose

flows are used to change coordinates are symbols as of Definitions 2.8 and 2.9.

The definitions of the symbols Ri,j and Si,j in [2, Definition 3.9 and 3.10] are

very restrictive, since they require for the symbols to be defined in I × B′ with

B′ a neighborhood of the origin in S ′. The proofs in [2] at most prove that the

coefficients of the vector fields in fact are symbols of the form Ri,j
K,M and S

i,j
K,M
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in our sense. As an example we refer to [2, Lemmas 3.26 and 5.5]. In [2,

Lemma 3.26] the fact that the bi and the 〈W l;Y 〉 are symbols of the form Rj,k

for some (j, k) in the sense of [2, Definition 3.10], requires preliminarily to

show at least that they are functions of (̺,R) for (̺,R) in some neighborhood

U of (0, 0) in R
n0 ×S ′. This is not addressed in [2] and is far from trivial, since

the coefficients of the linear system right above formula (3.60) are unbounded in

any such U . The justification that the coefficients Φµν(M) of χ in [2, Section 5]

are in S is similarly inconclusive. The key step should be that the homological

equation in Lemma 5.5 can be solved for all parameters k uniformly in the

variable M ∈ R
n, at least for |M | < a for a fixed a. But the homological

equations involve the perturbation of an operator and in [2] the perturbation

is not fully analyzed. For example there is no discussion of the norm ‖VM −
V0‖Wk→Wk as k grows and |M | < a. This norm should be expected to grow

and become large, possibly breaking down the proof of Φµν(M) ∈ S. In fact it

is plausible that Φµν(M) ∈ S only for M = 0.

From the above remarks we can see that no coordinate change in the Birkhoff

or in the Darboux steps in [2] is shown to be an almost smooth transformation

in the sense of [2, Definition 3.15]. Because also of the absence of a rigor-

ous discussion on pullbacks of differential forms, we see that the proofs of the

Birkhoff step, [2, Theorem 5.2], and of the Darboux step, [2, Theorem 3.21],

are both inconclusive.

We proceed now to a reduction of order in (30). Write

Πj(U) = Πj(e
Jτ ·3(Φp + P (p)R)) = Πj(Φp + P (p)R)

= 1
2 〈3j(Φp + P (p)R),Φp + P (p)R = pj + Πj(P (p)R)

= pj +Πj(R)+Πj((P (p)−P (p0))R)+〈R,3j(P (p)−P (p0))R〉.

(34)

We will move from variables (τ, p, R) to variables (τ,Π, R). Setting ̺j = Πj(R),

we have

pj = Πj − ̺j + Ψ̃j(p− p0, R) (35)

with Ψ̃j = R0,2(p− p0, R). The implicit function theorem yields:

Lemma 2.11. There are functions pj = pj(Π,Π(R), R) defined implicitly by

(34), or (35), such that pj = Πj−̺j+Ψj(Π, ̺, R) with Ψ(p0, ̺, R) = R0,2(̺,R).

We consider now (τ,Π, R) as a new coordinate system. By ∂
∂τk

Πj(U) ≡ 0 it

follows that the vectorfields ∂
∂τk

are the same for the two systems of coordinates.

In the new variables, system (30) reduces to the pair of systems

τ̇j = {τj ,K} , Π̇j = 0 , (36)

Ṙ = {R,K}. (37)
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System (37) is closed because of ∂τj
K = 0.

3. Darboux Theorem

In this section we present one of the two main results of this paper. We seek

to reproduce Moser’s proof of the Darboux theorem. Specifically we look for

a vector field X t that will produce a flow as in (79) below. The proof of the

existence and properties of X t is similar to [8], but influenced by the choice of

coordinates in [2]. We also add material to justify, once X t has been found,

the formal formula (79). Notice that for [4, 8] formula (79) does not require

justification because X t is a smooth vectorfield on a given manifold. But the

situation in [2, 10] is different since now X t is not a standard vectorfield on a

manifold and Ω is not a regular differential form on the same manifold, so Lie

derivative, pullbacks, push forwards and the related differentiation formulas,

require justification.

Notice that, to be useful in the asymptotic stability theory, the change of

variables has to be such that the new Hamiltonian equations is semilinear. This

is why even in [4, 8], where we could apply the standard Darboux theorem for

strong symplectic forms on Banach manifolds, see [1, Chapter 9], it is important

to select X t with an ad hoc process.

3.1. Search of a vectorfield

Recall that Ω = 〈J−1 , 〉 and consider

Ω0 := dτj ∧ dΠj + 〈J−1R′, R′〉. (38)

Lemma 3.1. At the points eJτ ·3Φp0
for all τ ∈ R

n0 we have Ω0 = Ω.
Consider the following forms:

B0 := τjdΠj +
1

2
〈J−1R,R′〉; B := B0 + α for (39)

α := −βj(p,R)dΠj + 〈Γ(p)R+ βj(p,R)P ∗(p)3jP (p)R,R′〉 ,

Γ(p) :=
1

2
J−1 (P (p) − P (p0)) ,

βj(p,R) :=
1

2

〈P ∗(p)J−1R, ∂pj
P (p)R〉

1 + 〈3jP (p)R, ∂pj
P (p)R〉

.

(40)

Then dB0 = Ω0 and dB = Ω.

Proof. dB0 = Ω0 follows from the definition of exterior differential. Set B̃ :=
1
2 〈J

−1U, 〉. Notice that dB̃ = Ω. By (23) we get:



212 SCIPIO CUCCAGNA

B̃(X) =
1

2
〈J−1eJτ ·3Φp, X〉 +

1

2
〈J−1P (p)R, e−Jτ ·3X〉. (41)

Set ψ(U) := 1
2 〈J

−1eJτ ·3Φp, U〉. Then we claim

dψ =
1

2
〈J−1eJτ ·3Φp, 〉 + pjdτj ,

where in this proof we will sum on repeated indexes. The last formula implies

B̃ = dψ − pjdτj +
1

2
〈J−1P (p)R, e−Jτ ·3 〉. (42)

The desired formula on dψ follows by

dψ =
1

2
〈J−1eJτ ·3Φp, 〉 +

1

2
〈eJτ ·3

3jΦp, U〉dτj +
1

2
〈eJτ ·3J−1∂pj

Φp, U〉dpj

=
1

2
〈J−1eJτ ·3Φp, 〉 +

1

2
〈3jΦp,Φp + P (p)R〉dτj

+
1

2
〈J−1∂pj

Φp,Φp + P (p)R〉dpj

by (17)
=

1

2
〈J−1eJτ ·3Φp, 〉 +

1

2
〈3jΦp,Φp〉

︸ ︷︷ ︸
pj

dτj +
1

2
〈J−1∂pj

Φp,Φp〉︸ ︷︷ ︸
0 by (14)

dpj .

By Lemma 2.5 and using P (p)∗J−1 = J−1P (p) we have

1

2
〈J−1P (p)R, e−Jτ ·3 〉=

1

2
〈J−1R,P (p)R′ 〉 +

1

2
〈J−1R,P (p)J3jP (p)R〉dτj

+
1

2
〈J−1R,P (p)∂pj

P (p)R〉dpj

=
1

2
〈J−1R,R′ 〉 +

1

2
〈J−1R, (P (p) − P (p0))R

′ 〉

−Πj(P (p)R)dτj +
1

2
〈J−1R,P (p)∂pj

P (p)R〉dpj .

So by (42) and using P (p)J = JP ∗(p) we get

B̃ − dψ =−(

Πj︷ ︸︸ ︷
pj + Πj(P (p)R))dτj +

1

2
〈J−1R,R′ 〉

+
1

2
〈J−1R, (P (p) − P (p0))R

′ 〉 −
1

2
〈P ∗(p)J−1R, ∂pj

P (p)R〉dpj .

Then dα = Ω − Ω0 for

α := B̃ − dψ −B0 + d(Πjτj)

=
1

2
〈J−1R, (P (p) − P (p0))R

′ 〉 −
1

2
〈P ∗(p)J−1R, ∂pj

P (p)R〉dpj .
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By pj = Πj − Πj(P (p)R) we get

dpj = dΠj − 〈3jP (p)R,P (p)R′〉 − 〈3jP (p)R, ∂pj
P (p)R〉dpj .

Then inserting the next formula in the formula for α, we obtain (40):

dpj =
dΠj − 〈3jP (p)R,P (p)R′〉

1 + 〈3jP (p)R, ∂pj
P (p)R〉

. (43)

In the Lemmas 3.2–3.6 we will initially consider the regularity of the func-

tions in terms of the coordinates (τ, p, R).

Lemma 3.2. We have βj ∈ C∞(O × Σ−n,R) for any n. For any pair (n, n′)
we have Γ ∈ C∞(O, B(Σ−n′ ,Σn)). Summing on repeated indexes, we have

dα = −∂pk
βjdpk ∧ dΠj − 〈∇Rβj , R

′〉 ∧ dΠj

+dpk ∧ 〈∂pk
[Γ(p)R+ βj(p,R)P ∗(p)3jP (p)R], R′〉

+〈∇Rβj , R
′〉 ∧ 〈P ∗(p)3jP (p)R,R′〉 + 2〈ΓR′, R′〉 .

(44)

Proof. Follows from a simple computation. In particular, for a L ∈ B(Σ1, L
2)

fixed, we use the formula

d〈LR,R′〉(X,Y ) :=X〈LR,R′Y 〉 − Y 〈LR,R′X〉 − 〈LR,R′[X,Y ]〉

= 〈LR′X,R′Y 〉 − 〈LR′Y,R′X〉.

Lemma 3.3. Summing on repeated indexes, we have

dα= δ̂k∂pk
βjdΠj ∧ dΠk + 〈Γ̂j + (δ̂k∂pk

βj − δ̂j∂pj
βk)3kP (p)R,R′〉 ∧ dΠj

+2〈Γ(p)R′, R′〉 + 〈β̃j , R
′〉 ∧ 〈P ∗(p)3jP (p)R,R′〉 ,

where we have (this time not summing on repeated indexes)

δ̂k :=
1

1 + 〈3kP (p)R, ∂pk
P (p)R〉

,

Γ̂j :=−∇Rβj − δ̂j [∂pj
ΓR+

n0∑

i=1

βi∂pj
(P ∗(p)3iP (p))R]

+

n0∑

k=1

(δ̂k∂pk
βj − δ̂j∂pj

βk)(P ∗(p) − 1)3kP (p)R

β̃j :=∇Rβj + δ̂j∂pj
(Γ +

n0∑

k=1

βkP
∗(p)3kP (p))R .
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Proof. Follows by an elementary computation substituting (43) in (44)

Lemma 3.4. For any fixed large n and for ε0 > 0, consider the set Ud ⊂ P̃d =

{(p,R)} defined by ‖R‖Σ−n
≤ ε0 and |p− p0| ≤ ε0. Then for ε0 small enough

there exists a unique vectorfield X t : Ud → P̃ which solves iX tΩt = −α, where

Ωt := Ω0 + t(Ω − Ω0).

Proof. First of all we consider Y such that iY Ω0 = −α, that is to say

(Y )τj
dΠj − (Y )Πj

dτj + 〈J−1(Y )R, R
′〉

= βj(p,R)dΠj − 〈Γ(p)R+ βj(p,R)P ∗(p)3jP (p)R,R′〉 .

This yields

(Y )τj
= βj(p,R) = R0,2(p,R) , (Y )Πj

= 0 ,

(Y )R = −P (p0)JΓ(p)R− βj(p,R)P (p0)JP
∗(p)3jP (p)R

= S1,1(p− p0, R) + R0,2(p,R)P (p0)P (p)J3jP (p)R.

(45)

Equation iX tΩt = −α is equivalent to

(1 + tK)X t = Y (46)

where the operator K is defined by iXdα = iKXΩ0. In coordinates, (46) be-

comes (X t)Πj
= 0 and, for P = P (p),

(X t)τj
+ t〈Γ̂j + (δ̂k∂pk

βj − δ̂j∂pj
βk)3kPR, (X

t)R〉 = −βj , (47)

(X t)R + tL(X t)R = (Y )R ,where for X ∈ N⊥

g (H∗

p0
) (48)

LX := P (p0)J
[
2ΓX + 〈β̃j , X〉P ∗

3jPR− 〈P ∗
3jPR,X〉β̃j

]
. (49)

(49) implies the following lemma.

Lemma 3.5. We have, summing on repeated indexes, with i varying in some

finite set,

LX = Aj(X)J3jR+ Bi(X)Ψi (50)

where: Ψi = S0,0(p − p0, R); for L = Aj ,Bi, we have L ∈ C∞(Ud, B(L2,R))

with

L(X) = Lj 〈3jR,X〉 + 〈L̃,X〉, (51)

where we have L̃ = S1,0(p− p0, R) and Lj ∈ R0,0(p− p0, R).
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Proof. Schematically, for L̃i = S0,0(p−p0, R) and Ψi = S0,0(p−p0, R) we have

P (p)R = R− PNg
(p)R = R+

∑

i

〈L̃i, R〉Ψi ,

P ∗(p)3kR = 3kR− P ∗

Ng
(p)3kR = 3kR+

∑

i

〈L̃i, R〉Ψi.

Then (P ∗(p)3kP (p) − 3k)R = S0,1(p− p0, R).

By the definition of β̃j we have

β̃j =
∑

k

δ̂j(∂pj
βk)3kR+ L̂

L̂ := ∇Rβj +
1

2
J−1δ̂j∂pj

P (p)R+
∑

k

βk∂pj
(P ∗(p)3kP (p))R

−
∑

k

δ̂j∂pj
βk

[
P ∗

Ng
(p)3kP (p)R+ 3kPNg

(p)R
]
,

where L̂ = S0,1
n,∞(p− p0, R).

We also have ΓX = 1
2J

−1(PNg
(p0) − PNg

(p))X =
∑

i〈L̃i, X〉Ψi with L̃i =

S1,0(p− p0, R) and Ψi = S0,0(p− p0, R). This yields the result.

Lemma 3.6. System (47)–(49) admits exactly one solution X t. For Aj =

R0,2
n,∞(t, p− p0, R), D = S1,1

n,∞(t, p− p0, R) with |t| < 3, we have

(X t)R = AjJ3jR+ D. (52)

Proof. Recall Y defined by iY Ω0 = −α. By (45) with Ãj = R0,2
n,∞(p − p0, R)

and D̃ = S1,1
n,∞(p−p0, R) we have (Y )R = ÃjJ3jR+D̃. By (X t)R+tL(X t)R =

(Y )R and Lemma 3.5 this implies for X = (X t)R

〈3kR,X〉 + tBi(X)〈3kR,Ψi〉 = 〈3kR, (Y )R〉

〈L̃,X〉 + tAj(X)〈L̃, J3jR〉 + tBi(X)〈L̃,Ψi〉 = 〈L̃, (Y )R〉,

as L runs through all the L = Aj ,Bi. Taking appropriate linear combinations

of these equations with the coefficients Lj of L = Aj ,Bi, see Lemma 3.5, for a

matrix R0,1(p− p0, R) whose coefficients are R0,1(p− p0, R), we get

(1 + tR0,1(p− p0, R))

(
Aj((X

t)R)

Bi((X
t)R)

)
=

(
Aj((Y )R)

Bi((Y )R)

)
.

Then we get

(
Aj((X

t)R)

Bi((X
t)R)

)
= (1 + tR0,1(p− p0, R))−1

(
Aj((Y )R)

Bi((Y )R)

)
. (53)
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Using the left hand side of (53) set

L(X t)R := Aj((X
t)R)J3jR+ Bi((X

t)R)Ψi. (54)

The rhs of (54) satisfies the properties stated for the rhs of (52). Finally set

(X t)R := (Y )R − tL(X t)R. This is a solution of (48). It is elementary to

see from the argument that such solution is unique and that it satisfies the

properties of the statement.

With the proof of Lemma 3.6, the proof of Lemma 3.4 is completed.

Turning to coordinates (τ,Π, R) and by Lemma 2.11 we conclude what

follows.

Lemma 3.7. Consider the coordinate system (τ,Π, R). For G any of the Aj,

D in Lemma 3.6, we have G = G(Π,Π(R), R), with G(Π, ̺, R) smooth w.r.t.

(Π, ̺, R) ∈ Ud, with Ud formed by the (Π, ̺, R) ∈ R
2n0×(Σd∩N

⊥

g (Hp0
)) defined

by the inequalities ‖R‖Σ−n
≤ ε, |̺| ≤ ε and |Π−p0| ≤ ε for ε > 0 small enough.

3.2. Flows

The following lemma is repeatedly used in the sequel, see [2, Lemma 3.24].

Lemma 3.8. Below we pick r,M,M0, s, s
′, k, l ∈ N ∪ {0} with 1 ≤ l ≤ M .

Consider a system

τ̇j = Tj(t,Π,Π(R), R) , Π̇j = 0 ,

Ṙ = Aj(t,Π,Π(R), R)J3jR+ D(t,Π,Π(R), R),
(55)

where we assume what follows.

• PNg(p0)(AjJ3jR+ D) ≡ 0.

• At Π = p0, dropping the dependence on Π and for U−r a neighborhood of

0 in P−r, we have A(t, ̺, R) ∈ CM ((−3, 3) × U−r,R
n0) and D(t, ̺, R) ∈

CM ((−3, 3) × U−r,Σr)

• In (−3, 3) × U−r for a fixed i in {0, 1}, and a fixed Cr, we have:

|A(t, ̺, R)| ≤ C‖R‖M0+1
Σ−r

,

‖D(t, ̺, R)‖Σr
≤ C(|̺| + ‖R‖Σ−r

)i‖R‖M0

Σ−r
.

(56)
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Let k ∈ Z ∩ [0, r − (l + 1)d] and set for s′′ ≥ d (or s′′ ≥ d/2 if d/2 ∈ N)

Us′′

ε1,k := {(τ,Π, R) ∈ P̃s′′

: Π = p0 , ‖R‖Σ−k
+ |Π(R)| ≤ ε1}. (57)

Then for ε1 > 0 small enough, the initial value problem associated to (55) for

Π = p0 defines a flow Ft = (Ft
τ ,F

t
R) for t ∈ [−2, 2] in Ud

ε1,k. In particular for

Π = p0, for R in a neighborhood BΣ−k
of 0 in Σ−k and Π(R) in a neighborhood

BRn0 of 0 in R
n0 , we have

Ft
R(Π(R), R) = eJq(t,Π(R),R)·3(R+ S(t,Π(R), R)), (58)

with S ∈ Cl((−2, 2) ×BRn0 ×BΣ−k
,Σr−(l+1)d)

q ∈ Cl((−2, 2) ×BRn0 ×BΣ−k
,Rn0).

(59)

For fixed C > 0 we have

|q(t, ̺, R)| ≤ C‖R‖M0+1
Σ(l+1)d−r

,

‖S(t, ̺, R)‖Σr−(l+1)d
≤ C(|̺| + ‖R‖Σ(l+1)d−r

)i‖R‖M0

Σ(l+1)d−r
.

(60)

Furthermore we have S = S1 + S2 with

S1(t,Π(R), R) =

∫ t

0

D(t′,Π(R(t′)), R(t′))dt′

‖S2(t, ̺, R)‖Σs
≤ C‖R‖2M0+1

Σ(l+1)d−r
(|̺| + ‖R‖Σ(l+1)d−r

)i.

(61)

For r− (l+ 1)d ≥ s′ ≥ s+ ld ≥ ld and k ∈ Z ∩ [0, r− (l+ 1)d] and for ε1 > 0

sufficiently small, we have

Ft ∈ Cl((−2, 2) × Us′

ε1,k, P̃
s). (62)

Furthermore, there exists ε2 > 0 such that

Ft(Us′

ε2,k) ⊂ Us′

ε1,k for all |t| ≤ 2 . (63)

We have

Ft(eJτ ·3U) ≡ eJτ ·3Ft(U). (64)

Proof. It is enough to focus on the equation for R. Set S = e−Jq·3R for

q ∈ R
n0 . Then consider the following system:

Ṡ = e−Jq·3D(t, ̺, eJq·3S) ,

q̇ = A(t, ̺, eJq·3S) , q(0) = 0,

˙̺j = 〈S, e−Jq·3
3jD(t, ̺, eJq·3S)〉 .

(65)
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For l ≤M and k, s′′ ∈ [0, r−(l+1)d] the field in (65) is Cl((−3, 3)×U−k,Σs′′×
R

2n0) with U−k ⊂ Σ−k×R
2n0 a neighborhood of the equilibrium 0. This follows

from the fact that (q,X) → eJq·3X is in Cl(Rn0 ×Σℓ,Σℓ−ld) for all ℓ ∈ Z and

from the hypotheses on A and D. For example

(t, q, ̺, S)→e−Jq·3
3jD(t, ̺, eJq·3S) ∈ Cl((−3, 3) × R

2n0 × Σld−r,Σr−(l+1)d),

(more precisely for (q, ̺, S) in a neighborhood of the origin). So

(t, q, ̺, S)→〈S, e−Jq·3
3jD(t, ̺, eJq·3S)〉,

is in Cl((−3, 3)×R
2n0 ×Σ−k,R) for k ≤ r− (l+ 1)d (for (q, ̺, S) near origin).

For l ≥ 1 we can apply to (65) standard theory of ODE’s to conclude that there

are neighborhoods of the origin BR2n0 ⊂ R
2n0 and BΣ−k

⊂ Σ−k such that the

flow is of the form

S(t) = R+ S(t, ̺, R) , S(0, ̺, R) = 0 ,

q(t) = q(t, ̺, R) , q(0, ̺, R) = 0 ,

̺(t) = ̺+ ̺(t, ̺, R) , ̺(0, ̺, R) = 0 ,

(66)

with S ∈ Cl((−2, 2) ×BRn0 ×BΣ−k
,Σr−(l+1)d)

̺, q(t, ̺, R) ∈ Cl((−2, 2) ×BRn0 ×BΣ−k
,Rn0).

(67)

For S ∈ Σd ∩ BΣ−k
and S(0) = S, choosing s′′ ≥ d we have S(t) ∈ Σd with

Π(S(t)) = ̺(t) for ̺(0) = ̺ = Π(S). Then (67) yields (59) (we can replace Σd

with Σd

2
if d

2 ∈ N). (58) and (59) yield (62).

We have for R(0) = R

R(t) = eJq(t)·3(R+

∫ t

0

e−Jq(t′)·3D(t′, ̺(t′), R(t′))dt′). (68)

By (A6), for ǫ = 0, and by (56), for |s′′| ≤ r − (l + 1)d we have

‖R(t)‖Σs′′
≤ C‖R‖Σs′′

+ C

∫ t

0

‖D(t′, ̺(t), R(t′))‖Σr
dt′

≤ C‖R‖Σs′′
+ C

∫ t

0

‖R(t′)‖M0

Σ−r
(|̺(t′)| + ‖R(t′)‖Σ−r

)idt′

≤ C‖R‖Σs′′
+ C

∫ t

0

‖R(t′)‖M0

Σs′′
(|̺(t′)| + ‖R(t′)‖Σs′′

)idt′,

(69)

with the caveat that the second line is purely formal and is used to get the third
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line, where the integrand is continuous. Proceeding similarly, for ̺(0) = ̺

|̺(t) − ̺| ≤

∫ t

0

|〈R(t′),3D(t′, R(t′), ̺(t′))〉|dt′

≤

∫ t

0

‖R(t′)‖Σ(l+1)d−r
‖D(t′, ̺(t), R(t′))‖Σr−ld

dt′

≤ C

∫ t

0

‖R(t′)‖M0+1
Σ(l+1)d−r

(|̺(t′)| + ‖R(t′)‖Σ(l+1)d−r
)idt′.

(70)

So for |s′′| ≤ r − (l + 1)d, using the continuity in t′ of the integrals in the last

lines of (69) and (70), by the Gronwall inequality there is a fixed C such that

for all |t| ≤ 2 we have

‖R(t)‖Σs′′
≤ C‖R‖Σs′′

, (71)

|̺(t) − ̺| ≤ C‖R‖M0+1
Σ(l+1)d−r

(|̺| + ‖R‖Σ(l+1)d−r
)i. (72)

By (71) for s′′ = s′ and s′′ = −k and by |̺(t)−̺| ≤ C‖R‖M0+1
Σ−k

(|̺|+‖R‖Σ−k
)i,

we get Ft(Us′

ε2,k) ⊂ Us′

ε1,k for all |t| ≤ 2 for ε1 ≫ ε2, that is (63).

We have

S(t, ̺, R) =

∫ t

0

e−Jq(t′)·3D(t′, ̺(t′), R(t′))dt′),

Proceeding as for (69) and using (71)–(72) we get the estimate for S in (60).

The estimate on q is obtained similarly integrating the second equation in (66).

We have

S2(t, R, ̺) =

∫ 1

0

dt′′
∫ t

0

e−t′′q(t′)·3q(t′) · 3D(t′, ̺(t), R(t′))dt′ (73)

Then by (71)–(72) we get

‖S2(t, R, ̺)‖Σr−d
≤ C ′′

∫ t

0

|q(t′)|‖D(t′, ̺(t), R(t′))‖Σr−d
dt′

≤ C ′

∫ t

0

‖R(t′)‖2M0+1
Σ(l+1)d−r

(|̺(t′)|+‖R(t′)‖Σ(l+1)d−r
)idt′

≤ C‖R‖2M0+1
Σ(l+1)d−r

(|̺| + ‖R‖Σ(l+1)d−r
)i.

(74)

This yields (61). (62) follows by (58)–(59). Finally, (64) follows immediately

from (58).

Lemma 3.9. Assume hypotheses and conclusions of Lemma 3.8. Consider the

flow of system (65) for Π = p0 . Denote the flow in the space with variables

{(̺,R)} by Ft = (Ft
̺,F

t
R). Then we have

Ft
R(̺,R) = eJq(t,̺,R)·3(R+ S(t, ̺, R))

Ft
̺(̺,R) = ̺+ ̺(t, ̺, R).

(75)
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Furthermore, the following facts hold.

(1) Let k ∈ Z ∩ [0, r − (l + 1)d] and h ≥ max{k + ld, (2l + 1)d − r}. Then

we have Ft ∈ Cl((−2, 2) × U−k,P
−h) for a neighborhood of the origin

U−k ⊂ P−k.

(2) Let h and k be like above with h ≤ r − (l + 1)d. Then given a func-

tion Ra,b
h,l(̺,R), we have Ra,b

h,l ◦ Ft = Ra,b
k,l (t, ̺, R) and given a function

Sa,b
h,l(̺,R), we have Sa,b

h,l ◦ Ft = Sa,b
k,l (t, ̺, R).

Proof. (75) follows by (66). By (67) we have

S ∈ Cl((−2, 2) × U−k,Σr−(l+1)d) , q and Ft
̺ ∈ Cl((−2, 2) × U−k,R

n0).

By the above formulas we have Ft
R ∈ Cl((−2, 2) × U−k,Σr−(2l+1)d ∩ Σ−k−ld).

This yields Ft
R ∈ Cl((−2, 2) × U−k,Σ−h) and yields Claim (1).

By Claim (1), Ra,b
h,l ◦Ft ∈ Cl((−2, 2)×U−k,R

n0). Let (̺t, Rt) = Ft(̺,R). Then

|Ra,b
h,l ◦ Ft(̺,R)|= |Ra,b

h,l(̺
t, Rt)| ≤ C ′‖Rt‖b

Σ−h
(‖Rt‖Σ−h

+ |̺t|)a

≤ C‖R‖b
Σ−h

(‖R‖Σ−h
+ |̺|)a ≤ C‖R‖b

Σ−k
(‖R‖Σ−k

+ |̺|)a,

where the first inequality uses Definition (32), the second uses (71)–(72) for

s′′ = −h and the last is obvious. Similarly by Claim (1), S
a,b
h,l ◦Ft ∈ Cl((−2, 2)×

U−k,Σh) ⊂ Cl((−2, 2) × U−k,Σk) and

‖Sa,b
h,l(̺

t, Rt)‖Σk
≤ ‖Sa,b

h,l(̺
t, Rt)‖Σh

≤ C ′‖Rt‖b
Σ−h

(‖Rt‖Σ−h
+ |̺t|)a

≤C‖R‖b
Σ−h

(‖R‖Σ−h
+ |̺|)a ≤ C‖R‖b

Σ−k
(‖R‖Σ−k

+ |̺|)a.

To prove Theorem 6.4 we will need more information on (Π(R(1)), R(1)).

This is provided by the following lemma.

Lemma 3.10. Consider, for D the function in (55) at Π = p0, the system

Ṡ(t) = D(t,Π(R0), S(t)) , S(0) = R0. (76)

Then for S′ = S(1) and for R′ = R(1) with R(t) the solution of (55) with

R(0) = R0, we have (same indexes of Lemma 3.8)

‖R′ − S′‖Σ−s′
≤ C‖R0‖

M0+2
Σ−s

,

Π(R′) − Π(S′) = Ri,2M0+1
s,l (Π(R0), R0).

(77)
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Proof. Recall that for ̺ = Π(R) we have ˙̺ = 〈R,3D(t, ̺, R)〉. Similarly, for

σ = Π(S) we have σ̇ = 〈S,3D(t, ̺0, S)〉, where ̺0 = Π(R0). So we have

˙̺ − σ̇ = 〈R,3D(t, ̺, R)〉 − 〈S,3D(t, ̺0, S)〉

= 〈R− S,3D(t, ̺, R)〉 + 〈S,3(D(t, ̺0, S) −D(t, ̺, R))〉.

By (56) for fixed constants and using s′ ≤ r − d, we have

| ˙̺ − σ̇|. ‖R− S‖Σ−s′
‖D(t, ̺, R)‖Σr

+ ‖S‖Σ−s′
‖D(t, ̺0, S) −D(t, ̺, R)‖Σr

. ‖R− S‖Σ−s′
‖R‖M0

Σ−s
(|̺| + ‖R‖Σ−s′

)i + |̺− ̺0| ‖S‖Σ−s′
‖(R,S)‖M0

Σ−s′

+‖R− S‖Σ−s′
‖S‖Σ−s′

‖(R,S)‖M0−1
Σ−s′

(|(̺, ̺0)| + ‖(R,S)‖Σ−s′
)i.

We have Ṙ− Ṡ = D(t, ̺, R) −D(t, ̺0, S) + JA(t, ̺, R)(t, ̺, R) · 3R and hence

for fixed constants we have, using s ≤ s′ − d,

‖R− S‖Σ−s′
≤

∫ t

0

[‖D(̺,R) −D(̺0, S)‖Σ−s′
+ |A|‖R‖Σ−s

]dt′

.

∫ t

0

[
‖R− S‖Σ−s′

‖(R,S)‖M0−1
Σ−s′

(|(̺, ̺0)| + ‖(R,S)‖Σ−s′
)i

+|̺− ̺0| ‖(R,S)‖M0

Σ−s′
+ ‖R‖M0+2

Σ−s

]
dt′.

Recall that |̺ − ̺0| ≤ C‖R0‖
M0+1
Σ(l+1)d−r

(|̺0| + ‖R0‖Σ(l+1)d−r
)i by (72), that s <

r−(l+1)d and that we have (71) for s′′ = −s,−s′. Then by Gronwall inequality,

the above inequalities yield

‖R(t) − S(t)‖Σ−s′
≤ C‖R0‖

M0+2
Σ−s

|̺(t) − σ(t)| ≤ C‖R0‖
2M0+1
Σ−s

(|̺0| + ‖R0‖Σ−s
)i.

(78)

This yields the bounds implicit in (77). The regularity follows from Lemma 3.8.

3.3. Darboux Theorem: end of the proof

Formally the proof should follow by iX tΩt = −α, where Ωt = (1 − t)Ω0 + tΩ,

and by

d

dt
(F∗

t Ωt) = F∗

t

(
LXt

Ωt +
d

dt
Ωt

)
= F∗

t (diX tΩt + dα) = 0. (79)

But while for [4, 8] the above formal computation falls within the classical

framework of flows, fields and differential forms, in the case of [2, 10] this is
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not rigorous. In order to justify rigorously this computation, we will consider

first a regularization of system (55).

Lemma 3.11. Consider the system

τ̇j = Tj(t,Π,Π(R), R) , Π̇j = 0 ,

Ṙ = Aj(t,Π,Π(R), R)J〈ǫ3〉−2
3jR+ Dǫ(t,Π,Π(R), R),

(80)

where Dǫ = D + AjPNg(p0)J3j(1 − 〈ǫ3〉−2)R.

(1) For |ǫ| ≤ 1 system (80) satisfies all the conclusions of Lemma 80, if we

replace 3 in (58) with 〈ǫ3〉−2
3 (resp. D in (61) with Dǫ), with a fixed

choice of constants ε1, ε2, C, and with a fixed choice of sets BRn0 , BΣ−s
.

(2) For X t the vector field of (55), denote by X t
ǫ the vector field of (80). Let

n′ > n+ d with n, n′ ∈ N. Then for k ∈ Z ∩ [0, r] we have

lim
ǫ→0

X t
ǫ = X t in CM ((−3, 3) × Un′

ε0,k, P̃
n) uniformly locally, (81)

that is uniformly on subsets of (−3, 3) × Un′

ε0,k bounded in (−3, 3) × P̃n′

.

(3) Denote by Ft
ǫ = (Ft

ǫτ ,F
t
ǫR) the flow associated to (80) at Π = p0. Let s′,s

and k as in the statement of Lemma 3.8. Then there is a pair 0 < ε1 < ε0
such that

lim
ε→0

Ft
ǫ = Ft in Cl−1([−1, 1] × Us′

ε1,k,U
s
ε0,k) uniformly locally. (82)

Proof. For claim (1), it is enough to check that Dǫ satisfies an estimate like

the one of D in (60) for a fixed C for all |ǫ| ≤ 1. Indeed, after this has been

checked, the proof of Lemma 55 can be repeated verbatim, exploiting (A6) for

ǫ 6= 0 and with 3 replaced by 〈ǫ3〉−2
3.

The estimate on Dǫ needed for Claim (1) follows by the definition of Dǫ , by the

estimate on D, by PNg(p0) = ea〈e
∗

a, 〉 (sum on repeated indexes) for Schwartz

functions ea and e∗a and, for n ∈ N with n− 1 ≥ s+ d, and by

‖PNg(p0)J3i(1 − 〈ǫ3〉−2)‖B(Σ−r,Σr)

≤ ‖ea〈J3i(1 − 〈ǫ3〉−2)e∗a, 〉‖B(Σ−r,Σr)

≤ ‖ea‖Σr
‖(1 − 〈ǫ3〉−2)e∗a‖Σr+d

≤ C(ǫ)‖ea‖Σr
‖e∗a‖Σr′

(83)

C(ǫ) = ‖3(1 − 〈ǫ3〉−2)‖B(Σr′ ,Σr+d) is bounded by (4) for |ǫ| ≤ 1 for any pair

(r′, r) with r′ > r + d.

We consider now Claim (2). We have
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X t −X t
ǫ = Aj(t, ̺, R)

(
J(1 − 〈ǫ3〉−2)3jR− PNg(p0)J3j(1 − 〈ǫ3〉−2)R

)
.

We have PNg(p0)J3j(1 − 〈ǫ3〉−2)R
ǫ→0
→ 0 for R ∈ Σn′ for any n′ ∈ Z because

in fact C(ǫ)
ǫ→0
→ 0 by (5), with C(ǫ) defined like above for any pair (r′, r) with

r′ > r + d.

Still by (5), for n > n′ + d and for R ∈ Σn′ we have by (A5)

‖J3(1 − 〈ǫ3〉−2)R‖Σn
≤ ‖3(1 − 〈ǫ3〉−2)‖B(Σn′ ,Σn)‖R‖Σn′

≤ C‖(1 − 〈ǫ3〉−2)‖B(Σn′ ,Σn+d)‖R‖Σn′

ǫ→0
→ 0 .

(84)

These facts yield (81).

We turn now to Claim (3) and to (82). By the Rellich criterion, the embedding

Σa →֒ Σb for a > b is compact. Hence also Pa →֒ Pb is compact. Then (82)

follows by the Ascoli–Arzela Theorem by a standard argument.

Corollary 3.12. Consider (55) defined by the field X t and consider indexes

and notation of Lemma 3.8 (in particular we have M0 = 1 and i = 1 in (56)

and elsewhere; r and M can be arbitrary). Consider s′,s and k as in 3.8. Then

for the map Ft ∈ Cl(Us′

ε1,k, P̃
s) derived from (62), we have F1∗Ω = Ω0.

Proof. Ω0 is constant in the coordinate system (τ,Π, R) where R ∈ N⊥

g (H∗

p0
),

with Ω0 = dτj ∧ dΠj + 〈J−1 , 〉, where we apply 〈J−1 , 〉 only to vectors in

the R space. Hence Ω0 is C∞ in R ∈ L2, τ and Π, with values in B2(L2,R).
From Lemma 3.3 we have that dα, so also Ω by Ω = Ω0 + dα, belongs to

C∞(Us
ε0,k, B

2(P̃,R)) for an ǫ0 > 0, and so also to C∞(Us
ε0,k, B

2(P̃s,R)). Let

now r − (l + 1)d ≥ s′ ≥ s + ld and k ∈ Z ∩ [0, r − (l + 1)d]. Then for a fixed

0 < ε2 ≪ ε1 and for all |ǫ| ≤ 1 we have

Ft
ǫ ∈ Cl((−2, 2) × Us′

ε2,k,U
s
ε1,k), Ft

ǫ(U
s′

ε2,k) ⊂ Us′

ε1,k for all |t| ≤ 2 (85)

by Lemma 3.8, for a fixed l ≥ 2. By Lemma 3.11 we have uniformly locally

lim
ε→0

Ft
ǫ = Ft in Cl([−1, 1] × Us′

ε2,k,U
s
ε1,k). (86)

Let us take 0 < ε3 ≪ ε2 s.t. Ft
ǫ(U

s′

ε3,k) ⊂ Us′

ε2,k for all |t| ≤ 2 and |ǫ| ≤ 1.

In Us′

ε3,k the following computation is valid because X t
ǫ is a standard vector field

in Us′

ε1,k and similarly Ωt is a regular differential form therein:

F1∗
ǫ Ω − Ω0 =

∫ 1

0

d

dt

(
Ft∗

ǫ Ωt

)
dt =

∫ 1

0

Ft∗
ǫ

(
LX t

ǫ
Ωt +

d

dt
Ωt

)
dt

= d

∫ 1

0

Ft∗
ǫ

(
iX t

ǫ
Ωt + α

)
dt ,
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where we recall Ωt = Ω0 + t(Ω − Ω0).

If we consider a ball B in Us′

ε3,k, in the notation of Lemma 3.1, for some function

ψǫ ∈ C1(B,R) we can write

F1∗
ǫ (B0 + α) −B0 + dψǫ =

∫ 1

0

Ft∗
ǫ

(
iX t

ǫ
Ωt + α

)
dt, (87)

By (85)–(86) we have

lim
ǫ→0

(F1∗
ǫ (B0 + α) −B0) = F1∗(B0 + α) −B0 in Cl−1(Us′

ε3,k, B(P̃s′

,R)).

The set Γ := {Ft
ǫ(B) : |t| ≤ 2, |ǫ| ≤ 1} is a bounded subset in Us′

ε2,k because of

(71)–(72). Then by (81) we have

lim
ǫ→0

X t
ǫ = X t in C0((−2, 2) × Γ, P̃s) uniformly .

Hence by iX tΩt = −α we get

lim
ǫ→0

(
iX t

ǫ
Ωt + α

)
= iX tΩt + α = 0 in C0((−2, 2) × Γ, B(P̃s,R)) uniformly.

This implies

lim
ǫ→0

‖

∫ 1

0

Ft∗
ǫ

(
iX t

ǫ
Ωt + α

)
dt‖

L∞(B,B(P̃s′ ,R))

≤ C lim
ǫ→0

‖iX t
ǫ
Ωt + α‖

L∞([0,1]×Γ,B(P̃s,R)) = 0,

for C an upper bound to the norms ‖(Ft∗
ǫ )|Ft

ǫ(υ) : B(P̃s′

,R) → B(P̃s,R)‖ as υ
varies in B. Notice that C <∞ by (82).

By (87) we conclude that uniformly

lim
ǫ→0

dψǫ = B0 − F1∗(B0 + α) in C0(B, B(P̃s′

,R)).

Normalizing ψǫ(υ0) = 0 at some given υ0 ∈ B, it follows that also ψǫ converges

locally uniformly to a function ψ0 with dψ0 = B0 − F1∗(B0 + α). Taking the

exterior differential, we conclude that F1∗Ω = Ω0 in C∞(Us′

ε3,k, B
2(P̃s′

,R)).

4. Pullback of the Hamiltonian

In the somewhat abstract set up of this paper it is particularly important to

have a general description of the pullbacks of the Hamiltonian K. Our main

goal in this section is formula (101). This formula and its related expansion in

Lemma 5.4 obtained splitting R in discrete and continuous modes, play a key

role in the Birkhoff normal forms argument.

The first and quite general result is the following consequence of Lemma 3.8.
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Lemma 4.1. Consider F = F1 ◦ · · · ◦ FL with Fj = Ft=1
j transformations as

of Lemma 3.8. Suppose that for j we have M0 = mj, with given numbers

1 ≤ m1 ≤ ... ≤ mL. Suppose also that all the j we have the same pair r and

M , which we assume sufficiently large. Let ij = 1 if mj = 1. Fix 0 < m′ < M

(1) Let r > 2L(m′ + 1)d + s′L > 4L(m′ + 1)d + s1, s1 ≥ d. Then, for any

ε > 0 there exists a δ > 0 such that F ∈ Cm′

(U
s′

L

δ,a,U
s1

ε,h) for 0 ≤ a ≤ h
and 0 ≤ h < r − (m′ + 1)d.

(2) Let r > 2L(m′+1))d+h > 4L(m′+1)d+a, a ≥ 0. The above composition,

interpreting the Fj’s as maps in the (̺,R) variables as in Lemma 3.9,

yields also F ∈ Cm′

(U−a,P
−h) for U−a a sufficiently small neighborhood

of the origin in P−a.

(3) For U−a ⊂ P−a like above and for functions Ri,j
a,m′ ∈ Cm′

(U−a,R) and

S
i,j
a,m′ ∈ Cm′

(U−a,Σa), the following formulas hold:

Π(R′) := Π(R) ◦ F = Π(R) + Ri1,m1+1
a,m′ (Π(R), R),

p′ := p ◦ F = p+ Ri1,m1+1
a,m′ (Π(R), R),

Φp′ = Φp + S
i1,m1+1
a,m′ (Π(R), R).

(88)

(4) For a function F such that F (eJτ ·3U) ≡ F (U) we have

F ◦ F(U) = F
(
Φp + P (p)(R+ S

i1,m1

k′,m′ ) + Si1,m1+1
k′,m′

)
, k′ = r − 7L(m′ + 1)d.

Proof. Recall that by (62) we have Fj ∈ Cm′

(U
s′

j

ε′
j
,h
,U

sj

εj ,h) for r − (m′ + 1)d >

s′j ≥ sj +m′d and appropriate choice of the 0 < ε′j < εj and for h ∈ Z∩ [0, r−

(m′ + 1)d]. So for the composition we have F ∈ Cm′

(Uκ
ε′

L
,a,U

s1

ε1,h) for a ≤ h.

The inequalities r > 2L(m′ + 1)d + s′L > 4L(m′ + 1)d + s1, s1 ≥ d can be

accommodated since r is assumed sufficiently large. This yields claim (1).

By Lemma 3.9 we have Fj ∈ Cm′

(U−h+jm′d,P
−h+(j−1)m′

d) with U−h+jm′d ⊂

P−h+jm′
d a neighborhood of the origin. So for the composition we have F ∈

Cm′

(U−a,P
−h) for a ≤ h − Lm′d. The conditions r > 2L(m′ + 1)d + h,

h > 4L(m′ + 1)d + a and a ≥ 0, can be accommodated since r is assumed

sufficiently large. This yields claim (2).

We now prove (88). Let first L = 1. By (58) we have R′ := (F1)R(Π(R), R) =

eJq1·3(R + S
i1,m1

r−(m′+1)d,m′), where we use M > m′. Here we will omit the

variables (Π(R), R) in the S’s and R’s. Then we have for a′ = r − (m′ + 1)d

Π(R′) = Π(R+ S
i1,m1

a′,m′ ) = Π(R) + Ri1,m1+1
a′−d,m′ . (89)
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Here we have used

|〈R,3S
i1,m1

a′,m′ 〉| ≤ ‖R‖Σ−a′+d
‖Si1,m1

a′,m′ ‖Σa′ .

By pj = Πj − Πj(R) + R0,2(Π(R), R) we get

p′j = Πj − Πj(R
′) + R0,2(Π(R′), R′)

= Πj − Πj(R) + R0,2(Π(R), R) + Ri1,m1+1
a′−d,m′ = pj + Ri1,m1+1

a′−d,m′ .
(90)

This yields (88) for L = 1 since a ≤ r − 4(m′ + 1)d < a′ − d. We extend the

proof to the case L > 1. We write here and below F′ := F1 ◦ · · · ◦ FL−1. We

suppose that F′

R(Π(R), R) = eJq·3(R+ S
i1,m1

a′
L−1

,m′) for a′L−1 ≤ r− 2(L− 1)m′d,

which is true for L− 1 = 1. Then

R′ = eJ(q◦FL)·3
(
eJqL·3(R+ S

iL,mL

r−(m′+1)d,m′) + S
i1,m1

a′
L−1

,m′ ◦ FL

)

= eJ(q◦FL+qL)·3
(
R+ S

iL,mL

r−(m′+1)d,m′) + e−JqL·3S
i1,m1

a′
L−1

−m′d,m′

)
,

where qL = R0,mL+1
r−(m′+1)d,m′ and where we used the last claim in Lemma 3.9.

Since e−JqL·3S
i1,m1

a′
L−1

−m′d,m′ = S
i1,m1

a′
L−1

−2m′d,m′ we conclude that there is an ex-

pansion R′ = eJq·3(R+ S
i1,m1

a′
L

,m′) for a′L ≤ a′L−1 − 2m′d. Then

FR(Π(R), R) = eJq·3(R+ S
i1,m1

a′
L

,m′) , a′L := r − 2Lm′d. (91)

For a′ = a′L formulas (89)–(90) continue to hold. By a < a′L−d this yields (88).

We consider the last statement of Lemma 58. For a′ = r − (m′ + 1)d we have

F (F1(U)) = F (Φp′ + P (p′)eJq1·3(R+ S
i1,m1

a′,m′ ))

= F (Φp + P (p)eJq1·3(R+ S
i1,m1

a′,m′ ) + S
i1,m1+1
a′+d,m′)

= F
(
eJq1·3

(
Φp + P (p)(R+ S

i1,m1

a′,m′ ) + Y
))

with

Y = (eJq1·3 − 1)Φp + [P (p), eJq1·3](R+ S
i1,m1

a′,m′ ) + e−Jq1·3S
i1,m1+1
a′−d,m′ .

We claim

Y = S
i1,m1+1
a′−2m′d,m′ . (92)

To prove (92) we use (eJq1·3 − 1)Φp = S
i1,m1+1
r−(m′+1)d,m′ = S

i1,m1+1
a′,m′ . This follows

from Φp ∈ C∞(O,S) and

∣∣(eJq1·3 − 1)Φp

∣∣
Σl

≤ |q1j |

∫ 1

0

∣∣etJq1·3
3jΦp

∣∣
Σl
dt ≤ Cl|q1j | |3jΦp|Σl

. (93)
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Schematically we have, summing over repeated indexes and for ej , e
∗

j ∈ S,

[P (p), eJq1·3] = [eJq1·3, PNg
(p)] = eJq1·3ej〈e

∗

j , 〉 − ej〈e
−Jq1·3e∗j , 〉

= (eJq1·3 − 1)ej〈e
∗

j , 〉 − ej〈(e
−Jq1·3 − 1)e∗j , 〉

= S
0,m1+1
r−(m′+1)d,m′〈e

∗

j , 〉 + ej〈S
0,m1+1
r−(m′+1)d,m′ , 〉.

This yields for any a′′ ≤ a′ = r − (m′ + 1)d

[P (p), eJq1·3](R+ S
i1,m1

a′′,m′) = S
i1,m1+2
a′′,m′ .

We have e−Jq1·3S
i1,m1+1
a′−d,m′ = S

i1,m1+1
a′−(m′+1)d,m′ . Then (92) is proved. Then

F (F1(U)) = F
(
Φp + P (p)(R+ S

i1,m1

a′−2m′d,m′) + S
i1,m1+1
a′−2m′d,m′

)
(94)

for a′ = r − (m′ + 1)d. This proves the last sentence of our lemma for L = 1.

For L > 1 set once more F′ := F1 ◦ · · · ◦ FL−1. We assume by induction that

F (F′(U)) equals the rhs of (94) for a′ = a′L−1 := r− 2(L− 1)m′d. Then using

S
i1,m1

l,m′ ◦FL = S
i1,m1

l−m′d,m′ from Lemma 3.9, by (88) for F = FL and by (92) with

the index 1 replaced by index L, we get

F (F(U)) = F
(
Φp′ + P (p′)eJqL·3(R+ S

iL,mL

r−(m′+1)d,m′)

+ P (p′)Si1,m1

a′
L−1

−m′d,m′ + S
i1,m1+1
a′

L−1
−m′d,m′

)

= F
(
eJqL·3

[
Φp + P (p)(R+ S

i1,m1

a′
L−1

−m′d,m′) + S
i1,m1+1
a′

L−1
−2m′d,m′

])
.

We conclude that F (F(U)) equals the rhs of (94) for a′L = r − 2Lm′d. In

particular this proves the last sentence of our lemma for any L.

Lemma 4.2. For fixed vectors u and v and for B sufficiently regular with

B(0) = 0, we have

B(|u + v|21) = B
(
|u|21

)
+B(|v|21)

+

3∑

j=0

∫

[0,1]2

tj

j!
(∂j+1

t )|t=0∂s[B(|su + tv|21)] dtds

+

∫

[0,1]2
dtds

∫ t

0

∂5
τ∂s[B(|su + τv|21)]

(t− τ)3

3!
dτ.

(95)

Proof. Follows by Taylor expansion in t of
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B(|u + v|21) =B
(
|u|21

)
+

∫ 1

0

∂t[B(|u + tv|21)]dt

=B
(
|u|21

)
+B(|v|21) +

∫

[0,1]2
dtds ∂s∂t[B(|su + tv|21)].

Lemma 4.3. Consider a transformation F = F1 ◦· · ·◦FL like in Lemma 4.1 and

with m1 = 1, with same notations, hypotheses and conclusions. In particular we

suppose r and M sufficiently large that the conclusions of Lemma 4.1 hold for

preassigned sufficiently large s = s′L, k′ and m′. Let k ≤ k′ − max{d, ord(D)}
and m ≤ m′. Then there are a ψ(̺) ∈ C∞ with ψ(̺) = O(|̺|2) near 0 and a

small ε > 0 such that in Us
ε,k we have the expansion

K ◦ F = ψ(Π(R)) +
1

2
Ω(HpP (p)R,P (p)R) + R1,2

k,m + EP (P (p)R) + R′′ (96)

R′′ :=

4∑

d=2

〈Bd(R,Π(R)), (P (p)R)d〉 +

∫

R3

B5(x,R,R(x),Π(R))(P (p)R)5(x)dx

with:

• R1,2
k,m = R1,2

k,m(Π(R), R);

• B2(0, 0) = 0;

• (P (p)R)d(x) represent d−products of components of P (p)R;

• Bd(·, R, ̺) ∈ Cm(U−k,Σk(R3, B((R2N )⊗d,R))) for 2 ≤ d ≤ 4 with U−k ⊂
P−k a neighborhood of the origin;

• for ζ ∈ R
2N with |ζ| ≤ ε and (̺,R) ∈ U−k we have for i ≤ m

‖∇i
R,ζ,̺B5(R, ζ, ̺)‖Σk(R3,B((R2N )⊗5,R) ≤ Ci. (97)

Proof. Here we will omit the variables (Π(R), R) in the S’s and R’s.

By Lemma 4.1 for m ≤ m′ ≤ M , k + max{d, ord(D)} ≤ k′ ≤ r − L(m′ + 2)d,

we have

K(F(U)) = E(Φp + P (p)R+ P (p)S1,1
k′,m′ + S

1,2
k′,m′) − E (Φp0

)

−(λj(p) + R1,2
k,m)

(
Πj(Φp + P (p)R) + R1,2

k,m − Πj (Φp0
)
)
,

(98)
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where, by (88), we have used p′ := p ◦ F = p+ R1,2
k,m and where by k ≤ k′ − d

Πj(Φp + P (p)R+ P (p)S1,1
k′,m′ + S

1,2
k′,m′) = Πj(Φp + P (p)R) + R1,2

k,m.

Set now Ψ = Φp + P (p)S1,1
k′,m′ + S

1,2
k′,m′ . By (95) for u = Ψ and v = P (p)R

EP (Ψ + P (p)R) = EP (Ψ) +EP (P (p)R)

+

1∑

j=0

∫

R3

dx

∫

[0,1]2

tj

j!
(∂j+1

t )|t=0∂s[B(|sΨ + tP (p)R|21)]dtds

+

3∑

j=2

∫

R3

dx

∫

[0,1]2

tj

j!
(∂j+1

t )|t=0∂s[B(|sΨ + tP (p)R|21)]dtds

+

∫

R3

dx

∫

[0,1]2
dtds

∫ t

0

∂5
τ∂s[B(|sΨ + τP (p)R|21)]

(t− τ)3

3!
dτ.

(99)

The last two lines can be incorporated in R′′. For example, schematically we

have

∂5
τ∂sB(|sΦp + τP (p)R|21) ∼ B̃(sΦp + τP (p)R) Φp (P (p)R)5,

for some B̃(Y ) ∈ C∞(R2N , B6(R2N ,R)). This produces a term which can be

absorbed in the B5 term of R′′. In particular, (97) follows from (2). The terms

in the third line of (99) can be treated similarly yielding terms which end in

the Bd term of R′′ with d = j + 1.

The second line of (99) equals

∫

R3

dx

∫

[0,1]2
dtds

1∑

j=0

tj

j!
(∂j+1

t )|t=0∂s

{
B(|sΦp + tP (p)R|21) +

+

∫ 1

0

dτ∂τ [B(|s(Φp + τ(P (p)S1,1
k′,m′ + S

1,2
k′,m′) + tP (p)R|21)]

}
.

(100)

The contribution from the last line of (100) can be incorporated in R′′ +R1,2
k,m.

By k ≤ k′ − ord(D) we have

EK(Ψ + P (p)R) = EK(Ψ) + 〈DΦp, P (p)R〉

+

R
1,2

k,m︷ ︸︸ ︷
〈D(P (p)S1,1

k′,m′ + S
1,2
k′,m′), P (p)R〉+EK(P (p)R).

Notice that from the j = 0 term in the first line of (100) we get

2

∫

R3

dx

∫ 1

0

ds∂s[B
′(|sΦp|

2
1)sΦp ·1 P (p)R] = 2

∫

R3

dxB′(|Φp|
2
1)Φp ·1 P (p)R

= 〈∇EP (Φp), P (p)R〉.
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By (6) and (16), that is ∇E(Φp) = λ(p) · 3Φp ∈ Ng(H
∗

p), and by P (p)R ∈

N⊥

g (Hp), we have

〈DΦp, P (p)R〉 + 〈∇EP (Φp), P (p)R〉 = 〈∇E(Φp), P (p)R〉 = 0.

The j = 1 term in the first line of (100) is 1
2 〈∇

2EP (Φp)P (p)R,P (p)R〉 which

summed to the EK(P (p)R) in (4) yields the 1
2Ω(HpP (p)R,P (p)R) in (96).

We have EK(Ψ) +EP (Ψ) = E(Ψ) and

E(Ψ) = E(Φp) +

0︷ ︸︸ ︷
〈∇E(Φp), P (p)S1,1

k′,m′〉+

R
1,2

k,m︷ ︸︸ ︷
〈∇E(Φp),S

1,2
k′,m′〉+R1,2

k,m.

The last term we need to analyze, for for d(p) := E(Φp) − λ(p) · Π(Φp), is

E(Φp) − E(Φp0
) −

∑

j

λj(p)(Πj(Φp) − Πj(Φp0
))

= d(p) − d(p0) −
∑

j

(λj(p0) − λj(p))p0j =: ψ̃(p, p0),

where ψ̃(p, p0) = O((p − p0)
2) by ∂pj

d(p) = −p · ∂pj
λ(p). Notice that ψ̃ ∈

C∞(O2,R). Now recall that in the initial system of coordinates we have p′ =

Π − Π(R′) + R0,2(Π(R′), R′). Substituting p′ and Π(R′) by means of (88),

and R′ by means of (91) we conclude that p = p0 − Π(R) + R0,2
k′,m′ . Then

ψ̃(p, p0) = ψ(Π(R)) + R1,2
k,m with ψ(̺) := ψ̃(p0 − ̺, p0) a C∞ function with

ψ(̺) = O(|̺|2) for ̺ near 0.

Lemma 4.4. Under the hypotheses and notation of Lemma 4.3, for an R′ like

R′′, for a ψ ∈ C∞ with ψ(̺) = O(|̺|2) near 0, we have

K ◦ F = ψ(Π(R)) +
1

2
Ω(Hp0

R,R) + R1,2
k,m(Π(R), R) + EP (R) + R′, (101)

R′ :=

4∑

d=2

〈Bd(R,Π(R)), Rd〉 +

∫

R3

B5(x,R,R(x),Π(R))R5(x)dx,

the Bd for d = 2, ..., 5 with similar properties of the functions in Lemma 4.3.

Proof. We have

P (p)R = R+ (P (p) − P (p0))R = R+ S1,1(p− p0, R) = R+ S1,1(Π(R), R).

Substituting P (p)R = R+ S1,1(Π(R), R) in (96) we obtain that R1,2
k,m + R′′ is

absorbed in R1,2
k,m(Π(R), R) + R′. This is elementary to see for the terms with

d ≤ 4. We consider the case d = 5.
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B5(x,R,R(x),Π(R))Ri(x)(S1,1)5−i

=

5−i∑

j=0

1

j!
(∂j

t )|t=0[B5(x,R, tR(x),Π(R))]Ri(x)(S1,1)5−i

+

∫ 1

0

(1 − t)4−i

(4 − i)!
∂5−i

t [B5(x,R, tR(x),Π(R))]Ri(x)(S1,1)5−i

The last term can be absorbed in the d = 5 term of R′. Similarly, all the other

terms either are absorbed in R′ or, like for instance the i = j = 0 term, they

are R1,2.

We write EP (P (p)R) = EP (R − PNg(p)R) and use (95) for u = R and v =

−PNg(p)R. We get the sum of EP (R) with a term which can be absorbed in

R1,2
k,m(Π(R), R) + R′. We finally focus on

1

2
〈J−1HpP (p)R,P (p)R〉 =

1

2
〈DP (p)R,P (p)R〉 − λj(p)Πj(P (p)R)

+
1

2
〈∇2EP (Φp)P (p)R,P (p)R〉.

(102)

We have

〈DP (p)R,P (p)R〉 = 〈DR,R〉 + R1,2
k,m(Π(R), R)

〈∇2EP (Φp)P (p)R,P (p)R〉 = 〈∇2EP (Φp0
)R,R〉 + R1,2

k,m(Π(R), R)

+ 〈(∇2EP (Φp) −∇2EP (Φp0
))R,R〉

λj(p) = λj(p0) + R1,0(Π(R)) + R1,2
k,m(Π(R), R)

Πj(P (p)R) = Πj(R) + R1,2
k,m(Π(R), R).

Then we conclude that the right hand side of (102) is

1
2
〈J−1

Hp0
R,R〉

︷ ︸︸ ︷
1

2
〈(D − λ(p0) · 3 + ∇2EP (Φp0

))R,R〉+R2,0(Π(R)) + R1,2
k,m(Π(R), R)

+
1

2
〈(∇2EP (Φp) −∇2EP (Φp0

))R,R〉

(103)

where the last term can be absorbed in the d = 2 term of R′ by (34). Setting

ψ(̺) = ψ(̺) + R2,0(̺) with the R2,0 in (103), we get the desired result.

We have completed the part of this paper devoted to the Darboux Theorem.

The next step consists in the decomposition of R into discrete and continuous

modes, and the search of a new coordinate system by an appropriate Birkhoff

normal forms argument.
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5. Spectral coordinates associated to Hp0

We will consider the operator Hp0
, which will be central in our analysis hence-

forth. We will list now various hypotheses, starting with the spectrum of

Hp0
thought as an operator in the natural complexification L2(R3,C2N ) of

L2(R3,R2N ).

(L1) σe(Hp0
) is a union of intervals in iR with 0 6∈ σe(Hp0

) and is symmetric

with respect to 0.

(L2) σp(Hp0
) is finite.

(L3) For any eigenvalue e ∈ σp(Hp0
)\{0} the algebraic and geometric dimen-

sions coincide and are finite.

(L4) There is a number n ≥ 1 and positive numbers 0 < e′1 ≤ e′2 ≤ ... ≤ e′
n

such that σp(Hp0
) consists exactly of the numbers ±ie′j and 0. We assume

that there are fixed integers n0 = 0 < n1 < ... < nl0 = n such that

e′j = e′i exactly for i and j both in (nl,nl+1] for some l ≤ l0. In this case

dimker(Hp0
− e′j) = nl+1 − nl. We assume there exist Nj ∈ N such that

Nj + 1 = inf{n ∈ N : ne′j ∈ σe(Hp0
)}. We set N = supj Nj . We assume

that e′j 6∈ σp(Hp0
) for all j.

(L5) If e′j1 < ... < e′ji
are i distinct λ’s, and µ ∈ Z

k satisfies |µ| ≤ 2N +3, then

we have

µ1e
′

j1
+ · · · + µke

′

ji
= 0 ⇐⇒ µ = 0 .

The following hypothesis holds quite generally.

(L6) If ϕ ∈ ker(Hp0
− ie) for ie ∈ σp(Hp0

) then ϕ ∈ S(R3,C2N ).

By (15), Hp0
ξ = eξ implies H∗

p0
J−1ξ = −eJ−1ξ. Then σp(Hp0

) = σp(H
∗

p0
).

We denote it by σp.

By general argument we have:

Lemma 5.1. The following spectral decomposition remains determined:

N⊥

g (H∗

p0
) ⊗R C =

(
⊕e∈σp\{0} ker(Hp0

− e)
)
⊕Xc(p0) (104)

Xc(p0) :=
{
Ng(H

∗

p0
) ⊕

(
⊕e∈σp\{0} ker(H∗

p0
− e)

)}⊥
.

We denote by Pc the projection on Xc(p0) associated to (104). Set H :=

Hp0
Pc.

The following hypothesis is important to solve the homological equations in the

Birkhoff normal forms argument.
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(L7) We have RH ◦3
i
j ∈ Cω(ρ(H), B(Σn,Σn)) for any n ∈ N, any j = 1, ..., n0

and for any i = 0, 1, where ρ(H) = C\σe(Hp0
).

For the examples in Section 7, (L7) can be checked with standard arguments.

We discuss now the choice of a good frame of eigenfunctions.

Lemma 5.2. It is possible to choose eigenfunctions ξ′ ∈ ker(Hp0
− ie′j) so that

Ω(ξ′j , ξ
′

k) = 0 for j 6= k and Ω(ξ′j , ξ
′

j) = −isj with sj ∈ {1,−1} . We have

Ω(ξ′j , ξ
′

k) = 0 for all j and k. We have Ω(ξ, f) = 0 for any eigenfunction ξ and

any f ∈ Xc(p0).

Proof. First of all, if λ, µ ∈ σp(Hp0
) are two eigenvalues with λ 6= 0 and given

two associated eigenfunctions ξµ and ξλ

〈J−1ξλ, ξµ〉 =
1

λ
〈J−1Hp0

ξλ, ξµ〉 = −
1

λ
〈H∗

p0
J−1ξλ, ξµ〉

= −
1

λ
〈J−1ξλ,Hp0

ξµ〉 = −
µ

λ
〈J−1ξλ, ξµ〉,

(105)

where for the second equality we used (15) and for the last one the fact that

Hp0
ξ = µξ implies Hp0

ξ = µξ. Then, for ej 6= ek and associated eigenfunctions

ξj and ξk we get Ω(ξj , ξk) = 0. Notice that by a similar argument we have

Ω(ξλ, ξµ) = −µ
λ
Ω(ξλ, ξµ) and so Ω(ξ′j , ξ

′

k) ≡ 0 .

Since Hp0
ξ = eξ implies H∗

p0
J−1ξ = −eJ−1ξ, for any eigenfunction ξ of Hp0

then J−1ξ is an eigenfunction of H∗

p0
. By the definition of Xc(p0) in (104), we

conclude Ω(ξ, f) = 〈J−1ξ, f〉 = 0 for any f ∈ Xc(p0).

Let ie ∈ iR\{0} be an eigenvalue. By the above discussion, the Hermitian form

〈iJ−1ξ, η〉 is non degenerate in ker(Hp0
− ie). Then we can find a basis such

that 〈iJ−1ηj , ηk〉 = −|aj |sign(aj)δjk, for appropriate non zero numbers aj ∈ R.

Then set ξ′ =
√
|aj |ηj .

We set ξj = ξ′j and ej = e′j if sj = 1.

We set ξj = ξ′j and ej = −e′j if sj = −1.

Notice that if f ∈ Xc(p0) then also f ∈ Xc(p0). This implies that for R ∈
N⊥

g (H∗

p0
) ⊗R C with real entries, that is if R = R, then we have

R(x) =

n∑

j=1

zjξj(x) +

n∑

j=1

zjξj(x) + f(x), f ∈ Xc(p0). (106)

with f = f .

By Lemma 5.2 we have, for the sj of Lemma 5.2,

1

2
Ω(Hp0

R,R) =

n∑

j=1

ej |zj |
2 +

1

2
Ω(Hp0

f, f) =: H2. (107)
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Consider the map R→ (z, f) obtained from (106). In terms of the pair (z, f),

the Fréchet derivative R′ can be expressed as

R′ =

n∑

j=1

(dzjξj + dzjξj) + f ′.

We have

Ω(R′, R′) = −i

n∑

j=1

dzj ∧ dzj + Ω(f ′, f ′). (108)

For a function F independent of τ and Π let us decompose XF as of spectral

decomposition (106):

XF =

n∑

j=1

(XF )zj
ξj(x) +

n∑

j=1

(XF )zj
ξj(x) + (XF )f , (XF )f ∈ Xc(p0).

By iXF
Ω = dF and by

dF = ∂zj
Fdzj + ∂zj

Fdzj + 〈∇fF, f
′ 〉

iXF
Ω = −i(XF )zj

dzj + i(XF )zj
dzj + 〈J−1(XF )f , f

′ 〉,

we get

(XF )zj
= i∂zj

F , (XF )zj
= −i∂zj

F , (XF )f = J∇fF.

This implies

{F,G} := dF (XG) = i∂zj
F∂zj

G− i∂zj
F∂zj

G+ 〈∇fF, J∇fG〉. (109)

Hence, for H2 defined in (107), for z = (z1, ...., zn), using standard multi index

notation and by (15), we have:

{H2, z
µzν} = −ie · (µ− ν)zµzν ; {H2, 〈J

−1ϕ, f〉} = 〈J−1Hϕ, f〉. (110)

5.1. Flows in spectral coordinates

We restate Lemma 3.8 for a special class of transformations.

Lemma 5.3. Consider

χ =
∑

|µ+ν|=M0+1

bµν(Π(f))zµzν +
∑

|µ+ν|=M0

zµzν〈J−1Bµν(Π(f)), f〉 (111)

with bµν(̺) = Ri,0
r,M (̺) and Bµν(̺) = Si,0

r,M (̺) with i ∈ {0, 1} fixed and r,M ∈ N

sufficiently large and with

bµν = bνµ , Bµν = Bνµ, (112)

(so that χ is real valued for f = f). Then we have what follows.
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(1) Consider the vectorfield Xχ defined with respect to Ω0. Then, summing

on repeated indexes (with the equalities defining the field Xst
χ ), we have:

(Xχ)zj
= i∂zj

χ =: (Xst
χ )zj

, (Xχ)zj
= −i∂zj

χ =: (Xst
χ )zj

,

(Xχ)f = ∂Πj(f)χP
∗

c (p0)J3jf + (Xst
χ )f where (Xst

χ )f := zµzνBµν(Π(f)).

(2) Denote by φt the flow of Xχ provided by Lemma 3.8 and set (zt, f t) =

(z, f) ◦ φt. Then we have

zt = z + Z(t) f t = eJq(t)·3(f + S(t)) (113)

where, for (k,m) with k ∈ Z ∩ [0, r − (m + 1)d] and 1 ≤ m ≤ M , for

BΣ−k
a sufficiently small neighborhood of 0 in Σ−k ∩Xc(p0) and for BCn

(resp.BRn0 ) a neighborhood of 0 in C
n (resp.Rn0)

S ∈ Cm((−2, 2) ×BCn ×BΣ−k
×BRn0 ,Σk)

q ∈ Cm((−2, 2) ×BCn ×BΣ−k
×BRn0 ,Rn0)

Z ∈ Cm((−2, 2) ×BCn ×BΣ−k
×BRn0 ,Cn),

(114)

with for fixed C

|q(t, z, f, ̺)| ≤ C(|z| + ‖f‖Σ−k
)M0+1

|Z(t, z, f, ̺)| + ‖S(t, z, f, ̺)‖Σk
≤ C(|z| + ‖f‖Σ−k

)M0 .
(115)

We have S(t, z, f, ̺) = S1(t, z, f, ̺) + S2(t, z, f, ̺) with

S1(t, z, f, ̺) =

∫ t

0

(Xst
χ )f ◦ φt′dt′

‖S2(t, z, f, ̺)‖Σk
≤ C(|z| + ‖f‖Σ−k

)2M0+1(|z| + ‖f‖Σ−k
+ |̺|)i.

(116)

(3) The flow φt is canonical: for s, s′, k as in Lemma 3.8, the map φt ∈

Cl(Us′

ε1,k, P̃
s) satisfies φt∗Ω0 = Ω0 in C∞(Us′

ε2,k, B
2(P̃s′

,R)) for ε2 > 0

sufficiently small.

Proof. First of all notice that χ does not depend on τ and Π so that the only

nonzero component ofXχ is (Xχ)R = J∇Rχ. The latter is of the form indicated

in claim (1) by a direct computation. Claim (2) follows now by Lemma 3.8.

To prove Claim (3) we need to make rigorous the following formal computation

d

dt
φt∗Ω0 = φt∗LXχ

Ω0 = φt∗diXχ
Ω0 = φt∗d2χ = 0.

To make sense of this we can proceed as in Corollary 3.12. We skip the proof.
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Lemma 5.4. Consider a transformation F = F1 ◦ · · · ◦ FL like in Lemma 4.1

and with m1 = 2 and for fixed r and M sufficiently large. Denote by (k′,m′)

the pair (k,m) of Lemma 4.4 and consider a pair (k,m) with k ≤ k′ and

m ≤ m′ − (2N+ 5). Set H ′ := K ◦F. Consider decomposition (106). Then on

a domain Us
ε,k like (57) we have

H ′ = ψ(Π(f)) +H ′

2 + R , (117)

for a ψ ∈ C∞ with ψ(̺) = O(|̺|2) near 0 and with what follows.

(1) We have

H ′

2 =
∑

|µ+ν|=2
e·(µ−ν)=0

aµν(Π(f))zµzν +
1

2
〈J−1Hp0

f, f〉. (118)

(2) We have R = R−1 +R0 +R1 +R2 +R1,2
k,m+2(Π(f), f) +R3 +R4, with:

R−1 =
∑

|µ+ν|=2
e·(µ−ν) 6=0

aµν(Π(f))zµzν +
∑

|µ+ν|=1

zµzν〈J−1Gµν(Π(f)), f〉;

For N as in (L4) of this section,

R0 =

2N+1∑

|µ+ν|=3

zµzνaµν(Π(f));

R1 =

2N∑

|µ+ν|=2

zµzν〈J−1Gµν(Π(f)), f〉;

R2 = 〈B2(Π(f)), f2〉 with B2(0) = 0

where fd(x) represents schematically d−products of components of f ;

R3 =
∑

|µ+ν|=
=2N+2

zµzνaµν(z, f,Π(f)) +
∑

|µ+ν|=
=2N+1

zµzν〈J−1Gµν(z, f,Π(f)), f〉;

R4 =

4∑

d=2

〈Bd(z, f,Π(f)), fd〉 +

∫

R3

B5(x, z, f, f(x),Π(f))f5(x)dx

+ R̂2(z, f,Π(f)) + EP (f) with B2(0, 0, ̺) = 0.
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(3) For δj := (δ1j , ..., δmj),

aµν(0) = 0 for |µ+ ν| = 2 with (µ, ν) 6= (δj , δj) for all j,

aδjδj
(0) = λj(ω0),

Gµν(0) = 0 for |µ+ ν| = 1 .

(119)

These aµν(̺) and Gµν(x, ̺) are Cm in all variables with Gµν(·, ̺) ∈
Cm(U,Σk(R3,C2N )), for a small neighborhood U of (0, 0, 0) in C

n ×
(Σ−k ∩ Xc(p0)) × R

n0 (the space of the (z, f, ̺)), and they satisfy sym-

metries analogous to (112).

(4) We have aµν(z, ̺) ∈ Cm(U,C) .

(5) Gµν(·, z, ̺) ∈ Cm(U,Σk(R3,C2N ))).

(6) Bd(·, z, f, ̺) ∈ Cm(U,Σk(R3, B((C2N )⊗d,R))), for 2 ≤ d ≤ 4. B2(·, ̺)
satisfies the same property.

(7) Let ζ ∈ C
2N . Then for B5(·, z, f, ζ, ̺) we have (the derivatives are not in

the holomorphic sense)

for |l| ≤ m , ‖∇l
z,f,ζ,̺B5(z, f, ζ, ̺)‖Σk(R3,B((R2N )⊗5,R) ≤ Cl.

(8)

R̂2 ∈ Cm(U,C),

|R̂2(z, f, ̺)| ≤ C(|z| + ‖f‖Σ−k
)‖f‖2

Σ−k
;

(120)

Proof. We need to express R in terms of (z, f) using (106) inside (101).

We have Π(R) = Π(f) + R0,2(R). Then, succinctly,

R1,2
k′,m′(Π(R), R) =

2N+1∑

a+b=2

1

a!b!
〈∇a

̺∇
b
RR

1,2
k′,m′(Π(f), 0), (R0,2(R))aRb⊗〉

+
∑

a+b
=2N+2

∫ 1

0

(1−t)2N+1

a!b!
〈∇a

̺∇
b
RR

1,2
k′,m′(Π(f)+ tR0,2(R), tR), (R0,2(R))aRb⊗〉dt,

with (k′,m′) the pair (k,m) of Lemma 4.4. We substitute (106), that is R =

z·ξ+z·ξ+f . Form ≤ m′−(2N+2) and k ≤ k′, the terms from the Rb⊗ of degree

in f at most 1, go into Ri with i = −1, 0, 1, 3 and H ′

2. For m ≤ m′ − (2N+ 4),

the remaining terms are absorbed in R1,2
k′,m+2(Π(f), f) + R̂2(z, f,Π(f)).

We focus now on the d = 5 term in (101). We substitute R = z · ξ + z · ξ + f .

This schematically yields, for a B̃5 satisfying claim (7) with the pair (m′, k′),
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5∑

j=0

∫

R3

B̃5(x, z, f, f(x),Π(f))(z · ξ + z · ξ)5−jf j(x)dx. (121)

For j = 5 we get a term that can be absorbed in the B5 term in R4. Expand

the j < 5 terms in (121) as

4−j∑

i=0

∫

R3

1

i!
(∂i

t)|t=0B̃5(x, z, f, tf(x),Π(f))(z · ξ + z · ξ)5−jf i+j(x)dx

+

∫

R3

1

(4 − j)!

∫ 1

0

∂5−j
t [B̃5(x, z, f, tf(x),Π(f))](z · ξ + z · ξ)5−jf5(x)dx.

go into the Bd term in R4 The last term fits in the B5 term in R4 bym ≤ m′−5.

The terms in the first line go into the Bd of R4 for d = i+ j ≥ 2 . The terms

with i+ j < 2 can be treated like the R1,2
k′,m′(Π(R), R) for m ≤ m′ − (2N + 5)

and k ≤ k′.
We focus on EP (R) = EP (z · ξ + z · ξ + f). We use Lemma 4.2 for v = f and

u = z · ξ + z · ξ. Then

EP (R) = EP (f) + EP (z · ξ + z · ξ)

+

∫

R3

dx
3∑

j=0

∫

[0,1]2

tj

j!
(∂j+1

t )|t=0∂s[B(|s(z · ξ + z · ξ) + tf |21)]dtds

+

∫

R3

dx

∫

[0,1]2
dtds

∫ t

0

∂5
τ∂s[B(|s(z · ξ + z · ξ) + τf |21)]

(t− τ)3

3!
dτ.

By B(0) = B′(0) = 0, we have EP (z ·ξ+z ·ξ) = R0,4(R). It is easy to conclude

that this term easily fits into R0+R3. Similarly, the j = 0 term fits in R1+R3.

The j ≥ 1 terms fit in the Bj+1 term in R4. The last line fits in the B5 term

in R4.

The symmetries (112) for the coefficients in H ′

2 + R−1 + R0 + R1 are an

elementary consequence of the fact that H ′ is real valued.

Remark 5.5. Given a Hamiltonian H ′ expanded as in Lemma 5.4 and given

a transformation F, we cannot obtain the expansion of Lemma 5.4 for H ′ ◦ F

analysing one by one the terms of the expansion of H ′. This works in the set

up of [8, 10] but not here (see in particular the discussion on the exponential

under formula (152) later).

6. Birkhoff normal forms

In this section we arrive at the main result of the paper.
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6.1. Homological equations

We consider a
(ℓ)
µν (̺) ∈ Cm̂(U,C) for k0 ∈ N a fixed number and U a neighbor-

hood of 0 in R
n0 . Then we set

H
(ℓ)
2 (̺) :=

∑

|µ+ν|=2
e·(µ−ν)=0

a(ℓ)
µν (̺)zµzν +

1

2
〈J−1Hf, f〉. (122)

ej(̺) := a
(ℓ)
δjδj

(̺), e(̺) = (λ1(̺), · · · , λm(̺)). (123)

We assume ej(0) = ej and a
(ℓ)
µν (0) = 0 if (µ, ν) 6= (δj , δj) for all j, with δj

defined in (119).

Definition 6.1. A function Z(z, f, ̺) is in normal form if Z = Z0 +Z1 where

Z0 and Z1 are finite sums of the following type:

Z1 =
∑

e(0)·(ν−µ)∈σe(Hp0
)

zµzν〈J−1Gµν(̺), f〉 (124)

with Gµν(x, ̺) ∈ Cm(U,Σk(R3,C2N )) for fixed k,m ∈ N and U ⊆ R
n0 a

neighborhood of 0;

Z0 =
∑

e(0)·(µ−ν)=0

gµν(̺)zµzν (125)

and gµν(̺) ∈ Cm(U,C). We assume furthermore that the above coefficients

satisfy the symmetries in (112): that is gµν = gνµ and Gµν = Gνµ.

Lemma 6.2. We consider χ = χ(b, B) with

χ(b, B) =
∑

|µ+ν|=M0+1

bµνz
µzν +

∑

|µ+ν|=M0

zµzν〈J−1Bµν , f〉 (126)

for bµν ∈ C and Bµν ∈ Σ
k̂
(R3,C2N )∩Xc(p0) with k̂ ∈ N, satisfying the symme-

tries in (112). Here we interpret the polynomial χ as a function with parameters

b = (bµν) and B = (Bµν). Denote by X
k̂

the space of the pairs (b, B). Let us

also consider given polynomials with K = K(̺) and K̃ = K̃(̺, b, B) where:

K(̺) :=
∑

|µ+ν|=M0+1

kµν(̺)zµzν +
∑

|µ+ν|=M0

zµzν〈J−1Kµν(̺), f〉, (127)

with kµν(̺) ∈ Cm̂(U,C) and Kµν(̺) ∈ Cm̂(U,Σ
k̂
(R3,C2N ) ∩Xc(p0)) for U a

neighborhood of 0 in R
n0 , satisfying the symmetries in (112);
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K̃(̺, b, B) :=
∑

|µ+ν|=M0+1

k̃µν(̺, b, B)zµzν

+

1∑

i=0

n0∑

j=1

∑

|µ+ν|=M0

zµzν〈J−1
3

i
jK

i
jµν(̺, b, B), f〉,

(128)

with k̃µν ∈ Cm̂(U×X
k̂
,R) and K̃i

jµν ∈ Cm̂(U×X
k̂
,Σ

k̂
(R3,C2N )∩Xc(p0)), sat-

isfying the symmetries in (112). Suppose also that the sums (127) and (128) do

not contain terms in normal form and that K̃(0, b, B) = 0. Then there exists a

neighborhood V ⊆ U of 0 in R
n0 and a unique choice of functions (b(̺), B(̺)) ∈

Cm̂(V,X
k̂
) such that for χ(̺) = χ(b(̺), B(̺)), K̃(̺) = K̃(̺, b(̺), B(̺)) we

have

{
χ(̺), H

(ℓ)
2 (̺)

}st

= K(̺) + K̃(̺) + Z(̺) (129)

where {· · · }st is the bracket (109) for ̺ fixed and where Z(̺) is in normal form

and homogeneous of degree M0 + 1 in (z, f).

Proof. Summing on repeated indexes, by (110) we get

{H
(ℓ)
2 , χ}st = −ie(̺) · (µ− ν)zµzνbµν(̺)

− zµzν〈f, J−1(ie(̺) · (µ− ν) −H)Bµν(̺)〉 + K̂(̺, b(̺), B(̺)),
(130)

K̂(̺, b, B) : =
∑

|µ+ν|=2
(µ,ν) 6=(δj ,δj) ∀ j

a(ℓ)
µν (̺)


 ∑

|µ′+ν′|=M0+1

{zµzν , zµ′

zν′

}bµ′ν′

+
∑

|µ′+ν′|=M0

{zµzν , zµ′

zν′

}〈J−1Bµ′ν′ , f〉


 .

(131)

K̂ is a homogeneous polynomial of the same type of the above ones and we

have K̂(0, b, B) = 0. In particular, K̂ satisfies the symmetries (112) by (for

f = f)

(a(ℓ)
µνbµ′ν′{zµzν , zµ′

zν′

})∗ = a(ℓ)
νµbν′µ′{zνzµ, zν′

zµ′

}

(a(ℓ)
µν 〈J

−1Bµ′ν′ , f〉{zµzν , zµ′

zν′

})∗ = a(ℓ)
νµ〈J

−1Bν′µ′ , f〉{zνzµ, zν′

zµ′

}

which follow by (i∂zj
F∂zj

G−i∂zj
F∂zj

G)∗ = i∂zj
F ∗∂zj

G∗−i∂zj
F ∗∂zj

G∗, where

in these formulas a∗ = a, and by the symmetries (112) for χ and for H
(ℓ)
2 .
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Denote by Ẑ(̺, b, B) the sum of monomials in normal form of K̃ and set K :=

K̃ + K̂ − Ẑ. We look at

− ie(̺) · (µ− ν)zµzνbµν − zµzν〈f, J−1(ie(̺) · (µ− ν) −H)Bµν〉

+ K (̺, b, B) +K(̺) = 0
(132)

that is at

kµν(̺) + kµν(̺, b, B) − bµν(̺)ie(̺) · (µ− ν) = 0

Bµν(̺) = −RH(ie(̺) · (µ− ν)) [Kµν(̺) + Kµν(̺, b, B)] ,
(133)

with kµν and Kµν the coefficients of K. Notice that when kµν(0, b, B) = 0 and

Kµν(0, b, B) = 0, for ̺ = 0 there is a unique solution (b, B) ∈ X
k̂

given by

bµν(0) =
kµν(0)

ie · (µ− ν)
, Bµν(0) = −RH(ie · (µ− ν))Kµν(0). (134)

Lemma 6.2 is then a consequence of the Implicit Function Theorem by Hy-

pothesis (L7) in Section 5.

In the particular case M0 = 1 we need a slight variation of Lemma 6.2.

Lemma 6.3. Suppose now M0 = 1 and assume the notation of Lemma 6.2,

assuming K(0) = 0, K̃(0, 0, 0) = 0 and ∇b,BK̃(0, 0, 0) = 0. We furthermore

consider function aµ′ν′

µν ∈ Cm̂(U × X
k̂
,C) with |aµ′ν′

µν (̺, b, B)| ≤ C‖(b, B)‖X
k̂

and we set

{
χ(̺), H

(ℓ)
2 (̺)

}s̃t

=
{
χ(̺), H

(ℓ)
2 (̺)

}st

+
∑

|µ+ν|=1
|µ′+ν′

|=1

aµ′ν′

µν (̺, b(̺), B(̺))zµzν〈HBµ′ν′(̺), f〉. (135)

Then, the same conclusions of Lemma 6.2 hold for

{
χ(̺), H

(ℓ)
2 (̺)

}s̃t

= K(̺) + K̃(̺) + Z(̺). (136)

Proof. Like above we get to

kµν(̺) + kµν(̺, b, B) − bµν ie(̺) · (µ− ν) = 0

Bµν = −RH(ie(̺) · (µ− ν))[Kµν(̺) + Kµν(̺, b, B) +
∑

µ′ν′

aµ′ν′

µν (̺, b, B)HBµ′ν′ ].

For (̺, b, B) = (0, 0, 0) both sides are 0. Then Lemma 6.3 follows by Implicit

Function Theorem.
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6.2. The Birkhoff normal forms

Our goal in this section is to prove the following result where N is as of (L4)

in Section 5.

Theorem 6.4. For any integer 2 ≤ ℓ ≤ 2N+1 we have transformations F(ℓ) =

F1 ◦ φ2 ◦ ... ◦ φℓ, with F1 the transformation in Corollary 3.12 the φj’s like in

Lemma 5.3, such that the conclusions of Lemma 5.4 hold, that is such that we

have the following expansion

H(ℓ) := K ◦ F(ℓ) = ψ(Π(f)) +H
(ℓ)
2 + R1,2

k,m+2(Π(f), f) +

4∑

j=−1

R
(ℓ)
j ,

with H
(ℓ)
2 of the form (118) and with the following additional properties:

(i) R
(ℓ)
−1 = 0;

(ii) all the nonzero terms in R
(ℓ)
0 with |µ + ν| ≤ ℓ are in normal form, that

is λ · (µ− ν) = 0;

(iii) all the nonzero terms in R
(ℓ)
1 with |µ + ν| ≤ ℓ − 1 are in normal form,

that is λ · (µ− ν) ∈ σe(Hp0
).

Proof. The proof of Theorem 6.4 is by induction. There are two distinct parts

in the proof, [2, 8, 10]. Here we follow the ordering of [2]. In the first part we

assume that for some ℓ ≥ 2 the statement of the theorem is true, and we show

that it continues to be true for ℓ+ 1. The proof of case ℓ = 2, which presents

some additional complications, is dealt in the second part.

In the proof we will get polynomials (111) withM0 = 1, ..., 2N with decreas-

ing (r,M) as M0 increases. Nonetheless, in view of the fact that in Lemma 3.7

the n is arbitrarily large and that (r,M) decreases by a fixed amount at each

step, these (r,M) are arbitrarily large. This is exploited in Theorem 6.5 later.

The step ℓ + 1 > 2. We can assume that H(ℓ) have the desired properties for

indexes (k′,m′) (instead of (k,m)) arbitrarily large. We consider the represen-

tation (117) forH(ℓ) and we set h = H(ℓ)(z, f, ̺) replacing Π(f) with ̺ in (117).

Then h = H(ℓ)(z, f, ̺) is C2N+2 near 0 in Ps0 = {(̺,R)} for m′ ≥ 2N + 2 for

s0 > max{ord(Hp0
), 3/2} by Lemma 5.4. So we have equalities

aµν(̺) =
1

µ!ν!
∂µ

z ∂
ν
z h|(z,f,̺)=(0,0,̺) , |µ+ ν| ≤ 2N + 1, (137)

J−1Gµν(̺) =
1

µ!ν!
∂µ

z ∂
ν
z∇fh|(z,f,̺)=(0,0,̺) , |µ+ ν| ≤ 2N. (138)
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We consider now a yet unknown χ as in (111) with M0 = ℓ, i = 0, M = m′

and r = k′. Set φ := φ1, where φt is the flow of Lemma 5.3. We are seeking χ
such that H(ℓ) ◦ φ satisfies the conclusions of Theorem 6.4 for ℓ+ 1.

We know that H(ℓ) ◦ φ satisfies the conclusions of Lemma 5.4. Therefore, to

prove the induction step, all we need to do is to check that the expansion of

H(ℓ) ◦ φ satisfies R−1 = 0 and that the only terms in R0 and R1 of degree

≤ ℓ+ 1 are in normal form. We have

H
(ℓ)
2 ◦ φ = H

(ℓ)
2 +

∫ 1

0

{H
(ℓ)
2 , χ}st ◦ φtdt

+

∫ 1

0

(∂̺j
aµνz

µzν{Πj(f), χ}) ◦ φtdt.

(139)

By (130)–(131) we have for ̺ = Π(f)

{H
(ℓ)
2 , χ}st = −i

∑

|µ+ν|=ℓ+1

e(ℓ)(̺) · (µ− ν)zµzνbµν(̺)

−
∑

|µ+ν|=ℓ

zµzν〈J−1(ie(ℓ)(̺) · (µ− ν) −H)Bµν(̺), f〉

+
∑

|µ+ν|=2
(µ,ν) 6=(δj ,δj) ∀ j

a(ℓ)
µν (̺)


 ∑

|µ′+ν′|=ℓ+1

{zµzν , zµ′

zν′

}bµ′ν′(̺)

+
∑

|µ′+ν′|=ℓ

{zµzν , zµ′

zν′

}〈J−1Bµ′ν′(̺), f〉


 .

(140)

By Lemma 5.3 for M0 = ℓ, i = 0, M = m′ and r = k′ for first and last formula

and by the proof of Lemma 3.8, in particular by (72), we have

z ◦ φt = z + R0,ℓ
k′′,m′(t,Π(f), R) , Π(f) ◦ φt = Π(f) + R0,ℓ+1

k′′,m′(t,Π(f), R) ,

f ◦ φt = e
JR

0,ℓ+1

k′′,m′ (t,Π(f),R)·3
(f + S

0,ℓ
k′′,m′(t,Π(f), R)) (141)

for k′′ ≤ k′ − (m′ + 1)d. Then, substituting (141) in (140) we get, if k ≤ k′′ −
ord(Hp0

), where ord(Hp0
) ≤ max{ord(D),d}, for 1 ≤ m ≤ m′ and exploiting

that an R0,2ℓ
k,m is also an R0,ℓ+2

k,m for ℓ ≥ 2,

∫ 1

0

{H
(ℓ)
2 , χ}st ◦ φtdt = {H

(ℓ)
2 , χ}st + R0,ℓ+2

k,m (Π(f), R). (142)

We have

{Πj(f), χ} =

n0∑

k=1

{Πj(f),Πk(f)}∂Πk(f)χ+
∑

|µ′+ν′|=ℓ

zµ′

zν′

〈P ∗

c (p0)3jf,Bµ′ν′〉.
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We have, for Pd(p0) = 1− Pc(p0) the projection on the direct sum of Ng(Hp0
)

and the complement of Xc(p0) in (104), and using JP ∗

c (p0) = Pc(p0)J which

follows from (15),

{Πi(f),Πj(f)} = 〈P ∗

c (p0)3if, JP
∗

c (p0)3jf〉

= 〈3if, Pd(p0)J3jf〉 = R0,2(f).
(143)

Notice also that, for Bµν ∈ Σk′ independent of Π(f) and for |µ + ν| = ℓ, we

have

{Πi(f), zµzν〈J−1Bµν , f〉} = zµzν〈P ∗

c (p0)3if,Bµν〉

= zµzν〈f,3iBµν〉 − zµzν〈P ∗

d (p0)3if,Bµν〉

= R0,ℓ+1
k′−d,∞(R) + R0,ℓ+1(R).

(144)

By (143)–(144) we conclude that {Πj(f), χ} = R0,ℓ+1
k′−d,m′(Π(f), R). By (141)

we get for m ≤ m′

{Πj(f), χ} ◦ φt = R0,ℓ+1
k′−d,m′

(
Π(f) + R0,ℓ+1

k′′,m′(t,Π(f), R),S
)
,

for S := e
JR

0,ℓ+1

k′′,m′ (t,Π(f),R)·3
(
R+ S

0,ℓ
k′′,m′(t,Π(f), R)

)
.

Then

{Πj(f), χ} ◦ φt = R0,ℓ+1
k′′−m′d,m′(t,Π(f), R). (145)

By (141) and (145) the last term in (139) is R0,ℓ+2
k,m (Π(f), R) for k ≤ k′′−m′d.

This and (142) yield for k = min{k′ − (2m′ + 1)d, k′ − (m′ + 1)d − ord(Hp0
)}

H
(ℓ)
2 ◦ φ = H

(ℓ)
2 + {H

(ℓ)
2 , χ}st + R0,ℓ+2

k̃,m
(Π(f), R). (146)

A second observation is that h = (H(ℓ) ◦φ)(z, f, ̺) is C2N+2 in Ps0 = {(̺,R)}
for m ≥ 2N+2. We can compute again the corresponding coefficients in (137)–

(138). Because of (115), for |µ+ ν| ≤ ℓ in (137) and for |µ+ ν| ≤ ℓ− 1 in (138)

these coefficients are the same of h = H(ℓ)(z, f, ̺).

A third observation is that for j = 3, 4 we have for k = R
(ℓ)
j ◦ φ

∂µ
z ∂

ν
z k|(0,0,̺) = 0 for |µ| + |ν| ≤ ℓ+ 1

∂µ
z ∂

ν
z∇fk|(0,0,̺) = 0 for |µ| + |ν| ≤ ℓ.

(147)

By Lemma 3.10 for l = m, s = k and r = k′, we have for k ≤ k′ − (2m+ 1)d

Πj(f) ◦ φ = Πj(f) ◦ φ0 + R0,2ℓ+1
k,m (Π(f), R), (148)
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with φ0 = φ1
0 and φt

0 the flow defined as in Lemma 3.10 using the field Xst
χ .

Then we have

Πj(f) ◦ φ0 = Πj(f) +

∫ 1

0

〈
3j(X

st
χ )f (Π(f), R ◦ φt

0), f ◦ φt
0

〉
dt. (149)

By the definition ofXst
χ and by formulas (141) for φt

0, which are simpler because

there are no phase factors, by |µ+ ν| = ℓ the integrand in (149) is

(
z + R0,ℓ

k′′,m(t,Π(f), R)
)µ (

z + R0,ℓ
k′′,m(t,Π(f), R)

)ν

×
〈
3jBµ,ν(Π(f)), f + S

0,ℓ
k′′,m(t,Π(f), R)

〉

= zµzν〈3jBµ,ν(Π(f)), f〉 + R0,2ℓ
k′′,m(t,Π(f), R).

Then for k ≤ k′′ we have

Πj(f) ◦ φ0 = Πj(f) + 〈3j(X
st
χ )f , f〉 + R0,2ℓ

k,m(Π(f), R). (150)

By ℓ ≥ 2 we have 2ℓ ≥ ℓ+ 2 and so R0,2ℓ
k,m is an R0,ℓ+2

k,m .

By ψ(̺) = O(|̺|2) near 0, we conclude that

ψ(Π(f)) ◦ φ = ψ(Π(f)) + K̃ ′ + R1,ℓ+2
k,m (Π(f), R), (151)

with K̃ ′ a polynomial as in (128) with M0 = ℓ, with K̃ ′(0, b, B) = 0 and

(k̂, m̂) = (k′,m′) satisfying. Notice that it was to get the last equality, which

follows from (150), that we introduced the flow φt
0.

We now focus on R2. We have by (141)

R2 ◦ φ = 〈B2(Π(f ′)), (f ′)2〉

=
〈
B2

(
Π(f) + R0,ℓ+1

k,m (Π(f), R)
)
,

(
e

JR
0,ℓ+1

k′′,m′ (Π(f),R)·3
(f + S

0,ℓ
k′′,m′(Π(f), R))

)2 〉
.

(152)

In our present set up the exponential e
JR

0,ℓ+1

k′′,m′ ·3 cannot be moved to the B2

by a change of variables in the integral as in [10]. Fortunately we know already

that H(ℓ) ◦ φ has the expansion of Lemma 5.4 and that all we need to do is to

compute some derivatives of R2 ◦ φ.
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Using the expansion in (152) and formula (116), for i = 0 now, we set

R2 := 〈B2(Π(f)), (f + S
i,ℓ
k′′,m′(Π(f), R))2〉

=

〈
B2(Π(f)),

[
f +

∫ 1

0

(Xst
χ )f ◦ φtdt+ S

i,2ℓ+1
k′′,m′ (Π(f), R)

]2
〉

=〈B2(Π(f)), f2〉+2

∫ 1

0

〈B2(Π(f)), (Xst
χ )f ◦ φt f〉dt+Ri,2ℓ

k′′,m′(Π(f), R).

(153)

We have that k = R2 ◦ φ− R2 is Cℓ+1 and satisfies (147). Hence the analysis

of R2 ◦ φ reduces to that of R2. By (141), for k ≤ k′′, m ≤ m′ − 1 and ℓ > 1

we have

∫ 1

0

Xst
χ ◦ φtdt = Xst

χ + S
0,2ℓ−1
k′′,m′−1(Π(f), R) = Xst

χ + S
0,ℓ+1
k,m (Π(f), R). (154)

This implies

R2 = 〈B2(Π(f)), f2〉 + K̃ ′′ + R0,ℓ+2
k,m (Π(f), R) ,

K̃ ′′ := 2〈B2(Π(f)), f(Xst
χ )f 〉.

(155)

Then K̃ ′′ is a polynomial like in (128) for the pair (k̂, m̂) = (k′,m′) satisfying

K̃ ′′(0, b, B) = 0 by B2(̺) = 0 for ̺ = 0.

By (141) and for the pullback of the term R1,2
k′,m′+2(Π(f), f) in Lemma 5.4 we

have for ̺ = Π(f)

R1,2
k′,m′+2(Π(f ′), f ′) = R1,2

k′,m′+2(̺, f
′)

+

∫ 1

0

(∇̺R
1,2
k′,m′+2)(̺+ tR0,ℓ+1

k′′,m′+2(̺, f), f ′) · R0,ℓ+1
k′′,m′(̺, f)dt

= R1,2
k′,m′+2(̺, f

′) + R0,ℓ+3
k,m (̺,R)

(156)

for k ≤ k′′ −md and m ≤ m′, by elementary analysis of the second line.

Applying again (141) we have

R1,2
k′,m′+2(̺, f

′) = R1,2
k′,m′+2

(
̺, e

JR
0,ℓ+1

k′′,m′ (̺,R)·3
(
f + S

0,ℓ
k′′,m′(̺,R)

))

= R1,2
k′,m′+2

(
̺, f + S

0,ℓ
k′′,m′(̺,R)

)
+ R1,ℓ+2

k,m (̺,R)
(157)

for k ≤ k′′ −md and m ≤ m′ − 1. Next, by Lemma 5.3, (116) and by (154),
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we have S
0,ℓ
k′′,m′(̺,R) = (Xst

χ )f + S
0,ℓ+1
k′′,m′−1(̺,R) and

R1,2
k′,m′+2

(
̺, f + (Xst

χ )f + S
0,ℓ+1
k′′,m (̺,R)

)

= R1,2
k′,m′+2(̺, f) +

∫ 1

0

〈
∇RR

1,2
k′,m′+2

(
̺, f + t(Xst

χ )f + tS0,ℓ+1
k′′,m (̺,R)

)
,

(Xst
χ )f + S

0,ℓ+1
k′′,m (̺,R)

〉
dt

= R1,2
k′,m′+2(̺, f) + 〈∇fR

1,2
k′,m′+2(̺, f), (Xst

χ )f 〉 + R1,ℓ+2
k,m (̺,R)

where we have used ℓ ≥ 2, k ≤ k′′ ≤ k′ and m ≤ m′ − 1. Notice that we have

that R1,2
k′,m′+2(̺, f) is an R1,2

k,m+2(̺, f). Finally we have

〈∇fR
1,2
k′,m′+2(̺, f), (Xst

χ )f 〉 = K̃ ′′′ + R2 ,

K̃ ′′′ := 〈∇2
fR

1,2
k′,m′+2(̺, 0)f, (Xst

χ )f 〉,
(158)

with R2 a term we can absorb in R̂2 and with K̃ ′′′ like in (128) for the pair

(k̂, m̂) = (k′,m′) satisfying K̃ ′′′(0, b, B) = 0.

We set

R
(ℓ)
0 + R

(ℓ)
1 = Z ′ +K + R01 , (159)

where: Z ′ is the sum of the monomials in normal form of degree ≤ ℓ + 1; K,

which is like in (127), is the sum of the the monomials of degree equal to ℓ+ 1

not in normal form; R01 is the sum of the monomials of degree > ℓ + 1. By

induction there are no monomials not in normal form of degree ≤ ℓ so that

each of the monomials of the lhs of (159) go into exactly one of the three terms

of the rhs.

We define Z ′′ and K̃ by setting

K̃ ′ + K̃ ′′ + K̃ ′′′ = Z ′′ + K̃, (160)

collecting in Z ′′ all monomials of the lhs in normal form (all of degree ℓ + 1)

and in K̃ all monomials of the lhs not in normal form. Here K̃ is like in (128)

for (k̂, m̂) = (k′,m′) with K̃(0, b, B) = 0.

Applying Lemma 6.2 for (k̂, m̂) = (k′,m′) we can choose χ such that for Z =

Z ′ + Z ′′ we have

{H
(ℓ)
2 , χ}st + Z +K + K̃ = 0. (161)

Then H(ℓ+1) := H(ℓ) ◦ φ satisfies the conclusions of Theorem 6.4 for ℓ+ 1.

The step ℓ + 1 = 2. Set H(1) = K ◦ F1. We are seeking a transformation

φ as in the previous part such that H(2) := H(1) ◦ φ has term R
(2)
−1 = 0 in its

expansion in Lemma 5.4. The argument is similar to the previous one, but this
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time χ has degree ℓ + 1 with ℓ = 1. So the steps in the previous argument

where we exploited ℓ ≥ 2 need to be reframed. We know that H(1) satisfies

Lemma 5.4 for L = 1 for some pair that we denote by (k′,m′) rather than

(k,m).

The proof of (142) is different from the previous one. By (77) we have for some

(k,m) appropriately smaller than (k′,m′)

{H
(1)
2 , χ}st ◦ φt = {H

(1)
2 , χ}st ◦ φt

0 + R0,4
k,m(Π(f), R). (162)

The following linear transformation

(Z,Z, F ) →




iνjbµν(Π(f))ZµZ
ν

Zj
+ iνj

ZµZ
ν

Zj
〈J−1Bµν(Π(f)), F 〉

−iµjbµν(Π(f))ZµZ
ν

Zj
− iµj

ZµZ
ν

Zj
〈J−1Bµν(Π(f)), F 〉

Bµν(Π(f))ZµZ
ν




depends linearly on (b(̺), B(ρ)), for ̺ = Π(f). Then

zj ◦ φ
t
0 = zj +aj(t, b, B)·z+bj(t, b, B)·z+

∑

µν

cjµν(t, b, B)〈J−1Bµν , f〉 (163)

for aj , bj ∈ C∞([0, 1] × Xk′ ,Cn) with |aj | + |bj | ≤ C‖(b, B)‖Xk′ and cjµν ∈
C∞([0, 1] ×Xk′ ,C). Similarly

f ◦ φt
0 = f+a(t, b, B)·z+ b(t, b, B)·z+

∑

µν

cµν(t, b, B)〈J−1Bµν , f〉 (164)

with a,b ∈ C∞([0, 1] × Xk′ ,Σn

k′) with ‖a‖Σn

k′
+ ‖b‖Σn

k′
≤ C‖(b, B)‖Xk′ and

cµν ∈ C∞([0, 1] ×Xk′ ,Σk′). These coefficients satisfy appropriate symmetries

that ensure f ◦ φt
0 = f ◦ φt

0.

We have

{H
(1)
2 , χ}st ◦ φt

0 = {H
(1)
2 , χ}st(Π(f), R ◦ φt

0) + R1,4
k,m(t,Π(f), R). (165)

To compute {H
(1)
2 , χ}st(Π(f), R ◦ φt

0) we replace the R in (140) with R ◦ φt
0.

The coordinates of R◦φt
0 can be expressed in terms of R by (163)–(164). When

we substitute (z, f) in (140) using (163)–(164), by an elementary computation

we obtain

{H
(1)
2 , χ}st(̺,R ◦ φt

0) = {H
(1)
2 , χ}st(̺,R)

+
∑

|µ+ν|=1
|µ′+ν′

|=1

aµ′ν′

µν (t, ̺, b(̺), B(̺))zµzν〈HBµν(̺), f〉 +At + Rt.

Here:
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• aµ′ν′

µν (t, ̺, b, B) ∈ Cm′

with aµ′ν′

µν (t, 0, 0, 0) = 0;

• we have

At =
∑

|µ+ν|=2

αµν(t, ̺, b(̺), B(̺))zµzν

+

1∑

l=0

n0∑

j=1

∑

|µ+ν|=1

zµzν〈3l
jA

l
µν(t, ̺, b(̺), B(̺)), f〉,

αµν(t, ̺, b, B) and Al
µν(t, ̺, b, B) are Cm′

with for i = 2

|αµν(t, ̺, b, B)| + ‖Al
µν(t, ̺, b, B)‖Σk′ ≤ C‖(b, B)‖i

Xk′
; (166)

• Rt(̺, z, f) is Cm in (t, ̺, z, f) ∈ R
n0+1 × C

n × Σ−k with (̺, z, f) near

(0, 0, 0), with for i = 2

|Rt| ≤ C‖(b, B)‖2
Xk′

‖f‖2
Σ−k

. (167)

Then, in the notation of Lemma 6.3

∫ 1

0

{H
(1)
2 , χ}st ◦ φt

0dt = {H
(1)
2 , χ}s̃t +A+ R + R1,4

k,m(Π(R), R), (168)

with A =
∫ 1

0
Atdt and R =

∫ 1

0
Rtdt are like A1 and R1. Then, using also (162),

we get the following analogue of (146):

H
(1)
2 ◦ φ = H

(1)
2 + {H

(1)
2 , χ}s̃t +A+ R + R0,4

k,m(Π(f), R). (169)

(148) remains true also for ℓ = 1. We consider (149) and expand

〈3j(X
st
χ )f (Π(f), R ◦ φt

0), f ◦ φt
0〉 = 〈3j(X

st
χ )f (Π(f), R), f〉 +At + Rt,

with At and Rt like the previous ones but such that (166)–(167) hold for i = 1.

This yields

Πj(f) ◦ φ0 = Πj(f) +A′ + R′. (170)

Here R′ is like R1 such that (167) holds for i = 1. A′ is like A1 such that (166)

holds for i = 1.

By ψ(̺) = O(|̺|2) near 0 and (148) we get the first equality in

ψ(Π(f)) ◦ φ = ψ(Π(f)) ◦ φ0 + R1,3
k,m(Π(f), R)

= ψ(Π(f)) + K̃ ′ + R1,2
k′,m′(Π(f), f) + R1,3

k,m(Π(f), R),
(171)
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where K̃ ′ = R1,2
k′,m′(Π(f), R) is a polynomial in R as in (128) with K̃ ′(0, b, B) =

0. The second line in (171) follows by ψ(̺) = O(|̺|2), by the fact that

ψ(̺) is smooth and by (170). Notice that by choosing m ≤ m′ − 2 we have

R1,2
k′,m′(Π(f), f) = R1,2

k,m+2(Π(f), f).
The discussion of R ◦ φ is similar to the previous one after (152) . This time,

though, by (77) we write

∫ 1

0

Xst
χ ◦ φtdt =

∫ 1

0

Xst
χ ◦ φt

0dt+ S
0,3
k,m(Π(f), R). (172)

By (163)–(164) we get

∫ 1

0

Xst
χ ◦ φt

0dt = Xst
χ + A in Pk′

, (173)

with (z, f) → A(̺, z, f) linear, with Cm′

dependence in ̺ and with

‖A(̺, z, f)‖
Pk′ ≤ C‖(b(̺), B(̺))‖Xk′ (|z| + ‖f‖Σ−k′ ). (174)

This yields, for R2 defined as in (153),

R2 =

〈
B2(Π(f)),

[
f +

∫ 1

0

(Xst
χ )f ◦ φt

0dt

]2
〉

+ R1,3
k,m(Π(f), R)

= 〈B2(Π(f)), f2〉+2〈B2(Π(f)), fA〉+〈B2(Π(f)),A2〉+R1,3
k,m(Π(f), R),

where we have used B2(0) = 0 for the reminder.

We have

2〈B2(Π(f)), fA〉 + 〈B2(Π(f)),A2〉 = K̃ ′′ + R′′,

with R′′ like R and with K̃ ′′ like (128) with K̃ ′′(0, b, B) = 0, by B2(0) = 0,

and with (k̂, m̂) = (k′,m′). Summing up, we have

R2 = 〈B2(Π(f)), f2〉 + K̃ ′′ + R′′ + R1,3
k,m(Π(f), R). (175)

Notice that the reduction of R2 ◦ φ to R2 continues to hold also for ℓ = 1.

We consider R1,2
k′,m′+2 ◦ φ from the R1,2

k′,m′+2 term in the expansion of R in

Lemma 5.4. Then, by (156) and by (172)–(173), for ̺ = Π(f) we have

R1,2
k′,m′+2(Π(f ′), f ′) = R1,2

k′,m′+2(̺, f + (Xst
χ )f + A + S

0,3
k,m) + R0,4

k,m(̺,R).

The first term in the rhs can be expanded for ̺ = Π(f) as

R1,2
k′,m′+2(̺, f + (Xst

χ )f + A) + R1,4
k,m(̺,R).

We have for ̺ = Π(f)

R1,2
k′,m′+2(̺, f + (Xst

χ )f + A) = B2(̺)(f + (Xst
χ )f + A)2 + R1,3

k,m(̺,R),
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with B2(̺) a Cm′

function with values in B2(Σ−k′ ,Σk′) with B2(0) = 0.

Considering the binomial expansion we get for ̺ = Π(f)

R1,2
k′,m′+2(Π(f ′), f ′) = B2(̺)f

2 + K̃ ′′′ + R′′′ + R0,3
k,m(̺,R),

with R′′′ like R and with K̃ ′′′ like (128) with K̃ ′′′(0, b, B) = 0 and (k̂, m̂) =

(k′,m′).

We now set K = R
(1)
−1 and with the A of (168) we write

K̃ ′ + K̃ ′′ + K̃ ′′′ +A = Z ′′ + K̃, (176)

where in Z ′′ we collect the null terms of the lhs and in K̃ the other terms. Now

we have K(0) = 0, K̃(0, 0, 0) = 0 and ∇b,BK̃(0, 0, 0) = 0. By Lemma 6.3 for

(k̂, m̂) = (k′,m′) we can choose χ such that for we have

{H
(ℓ)
2 , χ}s̃t + Z ′′ +K + K̃ = 0. (177)

Then H(2) := H(1) ◦ φ satisfies the conclusions of Theorem 6.4 for ℓ = 2.

Summing up, we have proved the following result, whose proof we sketch

now.

Theorem 6.5. For fixed p0 ∈ O and for sufficiently large l ∈ N, there are a

fixed k ∈ N, an ǫ > 0, an 1 ≪ s′ ≪ l and a 1 ≪ k ≪ k′ such that for solutions

Û(t) to (3) with Π(U) = p0 with |Π(R̂(t))| + ‖R̂(t)‖Σ−k
< ǫ and R̂(t) ∈ Σl,

there exists a C0 map Φ : U l
ǫ,k → Us′

ǫ′,k′ such that

R := ΦR(Π(R̂), R̂) = eJq(Π(R̂),R̂)·3(R̂+ S(Π(R̂), R̂)), (178)

with S ∈ C2((−2, 2) ×BRn0 ×BΣ−k
,Σs′)

q ∈ C2((−2, 2) ×BRn0 ×BΣ−k
,Rn0)

(179)

such that ‖S(Π(R̂), R̂)‖Σs′
≤ Cǫ‖R̂‖Σ−k

and such that splitting R(t) in spectral

coordinates (z(t), f(t)) the latter satisfy

żj = i∂zj
H , ḟ = J∇fH (180)

where H is a given function satisfying the properties ofH(2N+1) in Theorem 6.4.

Proof. Since in Lemma 3.7 we can pick arbitrary n, we see by the proof of

Theorem 6.4 that we can suppose that the 2N + 1 transformations φℓ are

defined by flows (55) with pair (r,M) with r and M as large as needed.

Starting with an appropriate Us
ε0,κ0

, we know that there is a map F : Us′

ε1,κ′ →
Us

ε0,κ0
as regular as needed which satisfies the conclusions of Theorem 6.4. In
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particular here we have s′ ≫ s and 1 ≪ κ′ ≪ κ0 and in Us′

ε1,κ′ we get the

system (180) by pulling back the system which exists in Us
ε0,κ0

.

We choose now l ≫ s′, 1 ≪ k ≪ κ′ and sufficiently small ǫ and δ with U l
δ,k ⊂

Us
ε0,κ0

and U l
ǫ,k ⊂ Us′

ε1,κ′ . Here l and κ′ can be as large as we want, thanks to

our freedom to choose (r,M).

By choosing δ small we can assume U l
δ,k ⊂ F(Us′

ε1,κ′). This follows from (63)

which implies F−1(U l
δ,k) ⊂ U l

ǫ,k. Finally we set Φ = F−1 where F−1 : U l
δ,k →

Us′

ε1,κ′ .

Formula (178) and the information on S has been proved in the course of the

proof of Lemma 4.1. The information on the phase function q can be proved

by a similar induction argument, which we skip here.

Remark 6.6. The paper [2] highlights in the Introduction and states in Theo-

rem 2.2, that it is able to treat all solutions of the NLS near ground states in

H1. But in fact, in [2] there is no explicit proof of this. While [2] does not

state the regularity properties of the maps in [2, Theorems 3.21 and 5.2], from

the context they appear to be just continuous. Even if we assume that they

are almost smooth transformations (but see Remark 2.10 above), nonetheless

an explanation is required on why they preserve the structure needed to make

sense of the NLS. But while pullbacks of the Hamiltonian are analyzed, the

question on how in [2] it is possible to pullback differential forms with maps

which are continuous but non differentiable, is left unexplained in [2]. So, for

example, in the statement of [2, Theorem 3.21] it is claimed that F∗Ω = Ω0. It

is then stated that this means that in the coordinates φ′ the differential form Ω

is Ω0. The meaning of this statement is unclear though, since the chart of φ′

is not differentiable and differential forms are not topological invariants. The

proof of [2, Theorem 3.21] does not clarify this point since formulas such as [2,

(3.42)], i.e. (79) here, are treated on a purely formal basis, leaving unexplained

basic things such as, for example, the meaning of Ft∗Ωt.

Remark 6.7. In the 2nd version of [2] there is an incorrect effective Hamilto-

nian. If we use the correct definition of the symbols Si,j which we give above,

the functions Φµν used in the normal form expansion in [2] are in Wj for some

large j, rather than in ∩j≥0W
j. In pp. 25–27 in the 2nd version of [2], the

Wj’s are defined using the classical pair of operators L±, see [14], and are

closed subspaces of Hj−1(R3) of finite codimension. This last fact seems to be

unnoticed in [2] and leads to the breakdown of the proof in the 2nd version of [2],

as we explain below. The space W2, for example, is defined by first considering

〈L+u, u〉 for u ∈ ker⊥ L− ∩ ker⊥ L+ ⊂ L2. Notice that 〈L+u, u〉 ≥ 0, see [14,

Proposition 2.7] or [11, Lemma 11.12]. Proceeding like in [11, Lemma 11.13]

it can be shown that for u ∈ ker⊥ L− ∩ ker⊥ L+ ⊂ L2 with u 6= 0 we have

‖u‖2
L := 〈L+u, u〉 > 0. Then consider the completion of ker⊥ L−∩ker⊥ L+∩C∞

0

by the norm ‖u‖L. This completion is exactly ker⊥ L− ∩ ker⊥ L+ ∩ H1(R3).
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Then W2 is a closed subspace of finite codimension of the latter space. Specif-

ically, W2 is in the continuous spectrum part in the spectral decomposition of

the operator L−L+, which is selfadjoint for 〈u, v〉L := 〈L−1
−
u, v〉 in ker⊥ L−.

Notice that, under hypotheses analogous to (L1)–(L6) in Section 5, L−L+ has

finitely many eigenvalues and its eigenfunctions are Schwartz functions. Like-

wise, also the other Wj’s are closed subspaces of Hj−1(R3) of finite codimen-

sion. Later in the 2nd version of [2], at p.41, the Strichartz estimates hinge

on the false inclusion of Wj, or of W∞, in L
6
5 (R3,C). Additional mistakes

appear in the justification of the Fermi Golden rule. While formulas R±

L0
(ρ)Φ

in (St.2)–(St.3) on p. 38 of the 2nd version make sense because Φ ∈ Hk,s

for s > 0 appropriate, analogous formulas R±

B(ρ)Φ in (6.50) and elsewhere in

Section 6.2, are undefined when we know only that Φ ∈ W∞. In fact even

R±

−∆(ρ)Φ is undefined for ρ ≥ 0 for such Φ’s. So in particular, in the 2nd

version of [2], the discussion of the Fermi Golden rule is purely formal. The

above ones are not simple oversights. Rather, they stem from the fact that, in

the 2nd version of [2], the homological equations are solved only in these Wj’s,

while it is unclear if they can be solved in spaces with spacial weights like the

Hk,n or the Σn for n > 0, as we remarked in an early version of [10]. The

3rd version of [2] credits our remark for having stimulated changes in this part

of the paper. These changes are classified in the 3rd version of [2] as mere

simplifications, possibly leaving the wrong impression that the proof in the 2nd

version of [2], while more complicated than in the 3rd version, is still correct.

7. The NLS and the Nonlinear Dirac Equation

We give a sketchy discussion of few examples.

The Nonlinear Schrödinger equation. We consider the equation

iUt = −∆U + 2B′(|U |2)U .

Here N = 1, D = −∆, | |1 = | |, J =

(
0 1

−1 0

)
. There are four invariants:

Q(U) = Π4(U) =
1

2
〈U,U〉 and Πj(U) =

1

2
〈U, J

∂

∂xj

U〉 for j ≤ 3.

For fixed v ∈ R
3 we have

Q(e−
1
2
Jv·xU) = Q(U) , Πj(e

−
1
2
Jv·xU) = Πj(U) −

vj

2
Q(U) for j ≤ 3 and

E(e−
1
2
Jv·xU) = E(U) −

3∑

j=1

vjΠj(U) +
v2

2
Q(U).
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There is well established theory guaranteeing under appropriate hypotheses

existence of open sets O ⊆ R
+ and (φω, 0) ∈ C∞(O,S(R3,R2)) such that

∆φω − ωφω + 2B′(φ2
ω)φω = 0 for x ∈ R

3.

More precisely it is possible to prove exponential decay to 0 of φω(x) as x→ ∞.

For v ∈ R
3 arbitrary we get Φp(x) = e−

1
2
Jv·x(φω(x), 0) where p4 = Π4(φω) and

pj = − 1
2vjp4 for j ≤ 3. We have λ4(p) = −ω − v2

4 and λj(p) = −vj for j ≤ 3.

Notice that for d
dω
Q(φω) 6= 0 this yields (7). Notice that

∇2E(e−
1
2
Jv·xU) = e−

1
2
Jv·x

(
∇2E(U) − Jv · ∇x +

v2

4

)
e

1
2
Jv·x

and that v · ∇x ◦ e−
1
2
Jv·x = e−

1
2
Jv·x ◦ (v · ∇x − J v2

2 ) and

∇2E(Φp(x)) − λ(p) · 3 = e−
1
2
Jv·x

(
∇2E((φω, 0)) − Jv · ∇x +

v2

4

)
e

1
2
Jv·x

+ Jv · ∇xe
−

1
2
Jv·xe

1
2
Jv·x+

(
ω +

v2

4

)
e−

1
2
Jv·xe

1
2
Jv·x.

They imply

Hp = e−
1
2
Jv·xHωe

1
2
Jv·x , Hω := J(∇2E((φω, 0)) + ω). (181)

The multiplier operator e−
1
2
Jv·x is an isomorphism in all spaces Σn so all the

information on the spectrum of Hp is obtained from the spectrum of Hω. We

have Hω = H0ω + V where H0ω := J(−∆ + ω) and

V := 4J

(
−B′(φ2

ω) − 2B′′(φ2
ω)φ2

ω 0

0 −B′(φ2
ω)

)
.

This yields σe(Hω) = σ(H0ω) = (−∞,−ω] ∪ [ω,∞) and that σp(Hω) is finite

with finite multiplicities. The fact that σp(Hω) is in the complement of σe(Hω)

is expected to be true generically. Set H = HωPc(ω) for Pc(ω) the projection

on Xc(Hω).

Lemma 7.1. The statement in (A5) is true.

Proof. Notice that Σn is invariant by Fourier transform so that (4) is equivalent

to the fact that for the following multiplier operator (that is an operator ψ(x)
which maps u→ (ψu)(x) := ψ(x)u(x)) we have

‖(1 + ǫ2 + ǫ2|x|2)−2‖B(Σn,Σn) ≤ Cn <∞ ∀ |ǫ| ≤ 1 and n ∈ N. (182)
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Similarly (5) is equivalent to

strong − lim
ǫ→0

(1 + ǫ2 + ǫ2|x|2)−2 = 1 in B(Σn,Σn) (183)

lim
ǫ→0

‖(1 + ǫ2 + ǫ2|x|2)−2 − 1‖B(Σn,Σn′ ) = 0 for any n′ ∈ N with n′ < n.

Both (182)–(183) are elementary to check using the first definition of Σn in

Section 2, computing commutators of the multiplier operators with ∂α
x and

computing elementary bounds on the derivatives of the multipliers.

Lemma 7.2. The statement in (A6) is true.

Proof. Using the Fourier transformation like in Lemma 7.1, (A6) is equivalent

to the statement that for any n ∈ N and c > 0 there a C s.t. the following

multiplier operator satisfies

‖e(1+ǫ2+ǫ2|x|2)−2J(τ4−
∑

3

j=1
xjτj )‖B(Σn,Σn) ≤ C

for any |τ | ≤ c and any |ǫ| ≤ 1. This too is elementary to check.

Lemma 7.3. The statement in (L7) is true.

Proof. From σ(H) = σe(Hω) we have RH ∈ Cω(ρ(H), B(L2, L2)).

We have RH0ω
and RH0ω

∂xj
are in Cω(ρ(H), B(Σn,Σn)) for any n ∈ N. By

conjugation by Fourier transform this is equivalent to the statement that for

z ∈ ρ(H0ω) and i = 0, 1, we have

ξi
j

(
(|ξ|2 + ω − z)−1 0

0 −(|ξ|2 + ω + z)−1

)
∈ B(Σn,Σn).

This is elementary, using the first definition of Σn in Section 2.

We have for i = 0, 1

RH(z)∂i
xj

= RH0ω
(z)Pc(ω)∂i

xj
−RH0ω

(z)V RH(z)∂i
xj
. (184)

From (184) we derive, for ‖ ‖ = ‖ ‖B(L2,L2).

‖RH(z)∂i
xj
‖ ≤ ‖(1 +RH0ω

(z)V )−1‖‖RH0ω
(z)Pc(ω)∂i

xj
‖, (185)

which yields the n = 0 case.

From (184) we derive

‖RH(z)∂i
xj
‖B(Σn,Σn) ≤ C‖RH0ω

(z)∂i
xj
‖B(Σn,Σn)

+ C‖RH0ω
(z)‖B(Σn,Σn)‖〈x〉

nV ‖W n,∞‖RH(z)∂i
xj
‖B(Hn,Hn).

The last factor is bounded. Indeed for v = RH(z)∂i
xj

u we have

∂α
x v = RH(z)∂α

x ∂
i
xj

u +RH(z)[V, ∂α
x ]∂i

xj
u

and induction in n yields the desired bounds ‖v‖Hn ≤ C‖u‖Hn .
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The Nonlinear Dirac Equation. Here the unknown U is C
4-valued, u∗

its complex conjugate and for m > 0

iUt −DmU − V u+ 2B′(U · βU∗)βU = 0 (186)

where we assume for the moment V = 0 and where Dm = −i
∑3

j=1 αj∂xj
+mβ,

with for j = 1, 2, 3

αj =

(
0 σj

σj 0

)
, β =

(
IC2 0

0 −IC2

)
,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 i

−i 0

)
, σ3 =

(
1 0

0 −1

)
.

Notice that the symmetry group (186) is not Abelian. In [4] there is a sym-

metry restriction on the solutions considered, by looking only at functions

such that for any x ∈ R
3 we have U(−x) = βU(x) and U(−x1,−x2, x3) =

S3U(x1, x2, x3) with S3 :=

(
σ3 0

0 σ3

)
. We need to redefine the spaces Σn in

the proof, introducing these symmetries. This does not affect the proof.

There is a unique invariant Q(U) = 1
2‖u‖L2 . In this case 31U = U for any u.

Hence all the changes of variables are diffeomorphism within each space PK

(or P̃K).

(A5)–(A6) in this case are elementary. In fact (A5) is unnecessary, (A6) is

necessary only for ǫ = 0, in which case is trivial. (L7) is necessary only for

i = 0 (given that the only 3j is the identity) and can be proved in a way

similar to Lemma 7.3.

Nonlinear Dirac Equation with a Potential. Pick V ∈ S(R3, B(C4))

with V (x) selfadjoint for the scalar product in C
4 for any x ∈ R

3. Then

generically σp(Dm + V ) ⊂ (−m,m). Suppose σp(Dm + V ) = {e0, ..., en} with

e0 < ... < en. Then bifurcation yields corresponding families of small standing

waves e−iωtφω(x) of (186). For generic V the ej have multiplicity 1. If we

focus on e0, for generic smooth B′(r) there will be a smooth family ω → φω in

C∞(O,Σn) for any n, with O an open interval one of whose endpoints is e1.
Then it can be shown that for generic V the hypotheses (L1)–(L6) in Section

are true, as well as all the previous hypotheses. Indeed in this case, taking ω
sufficiently close to e0, we have eigenvalues with e′j arbitrarily close to ej − e0.
Generically this yields (L4)–(L5). The multiplicity of the ie′j is 1. We have

σe(Hω) = (−∞,−m + |ω|] ∪ [m − |ω|,∞). An eigenvalue λ of Hω is either

λ = 0, or λ = ±ie′j for some j. This in particular yields (L1)–(L3).
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Abstract. In this paper, we show that the quasilinear equation

−div

(
∇u√

1 − |∇u|2

)
= |u|α−2u, in R

N

has a positive smooth radial solution at least for any α > 2⋆ = 2N/(N−
2), N ≥ 3. Our approach is based on the study of the optimizers for

the best constant in the inequality

∫

RN

(1 −
√

1 − |∇u|2) ≥ C

(∫

RN

|u|α
) N

α+N

,

which holds true in the unit ball of W 1,∞(RN )∩D1;2(RN ) if and only if

α ≥ 2⋆. We also prove that the best constant is not achieved for α = 2⋆.

As a byproduct, our arguments combined with Lusternik-Schnirelmann

category theory allow to construct a sequence of radial solutions.

Keywords: Mean curvature equation in the Lorentz-Minkowski space, Lusternik-

Schnirelmann category, multiplicity, super critical exponent

MS Classification 2010: 35J25,35J93, 58E05, 35A23, 35Q75

1. Introduction

It is well known [19] that the Lane-Emden equation

−∆u = |u|α−2u in R
N , (1)
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admits no nontrivial nonnegative solution for 2 < α < 2⋆, N ≥ 3, while, for

α = 2⋆, any positive solution can be written in the form

uδ,a(x) = βN

(
δ

δ2 + |x − a|2

)N−2

2N

,

as proved by Caffarelli, Gidas and Spruck [11]. For α > 2⋆, the set of all positive

radial solutions is a one-parameter family {ua(r) = au1(a
(α−2)/2r) : a > 0},

where u1 is strictly decreasing in r (see for instance [20]). Non radial singular

solutions have been constructed by Dancer, Guo and Wei [15]. We mention

that it is still open whether all smooth positive solutions are radially symmetric

around some point or not.

The prescribed mean curvature equation in Euclidian space

−div

(
∇u√

1 + |∇u|2

)
= |u|α−2u in R

N ,

has also been the object of many studies. It has been considered, among

others, by Ni and Serrin [26] and del Pino and Guerra [17]. It is known that

this problem has infinitely many radial positive solution if α ≥ 2⋆ and no

smooth positive solutions if α ≤ (2N − 2)/(N − 2). In contrast with the non-

existence result for the Lane-Emden equation in the subcritical range, del Pino

and Guerra proved the existence of many positive solutions when α = 2⋆ − ǫ,
for sufficiently small ǫ > 0.

In this work, we aim to study the following prescribed mean curvature

equation in the Lorentz-Minkowski space

Q(u) = |u|α−2u in R
N , (2)

where

Q(u) = −div

(
∇u√

1 − |∇u|2

)
. (3)

The quasilinear operator Q is a classical object in Riemannian geometry.

The Lorentz-Minkowski space L
N+1 = {(x, t) ∈ R

N × R}, with the flat metric∑N

j=1(dxj)
2 − (dt)2 is the natural framework of classical relativity. If M is an

N -dimensional hypersurface of L
N+1 that is the graph of a smooth function

u ∈ C1(Ω) with ‖∇u‖L∞ < 1, the local mean curvature of M is given by

Q(u), see for instance [2, 12]. The determination of maximal or constant mean

curvature hypersurfaces is an important issue in classical relativity. The volume

integral
∫
Ω

√
1 − |∇u|2 gives the area integral in L

N+1 and surfaces of maximal

area (or simply maximal surfaces) solve the equation Q(u) = 0 in Ω.
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For functions defined on the whole of R
N , the operator Q is relevant in

Maxwell-Born-Infeld field theory, see for instance [7, 8, 22, 23]. Basically, in

this theory, which is fully relativistic, it is assumed that there is a maximal

field strength. This lead Born and Infeld to consider the following Lagrangian

density, expressed in Lorentz-Minkowski space,

LBI = b2


1 −

√

1 −
| ~E|2 − | ~B|2

b2
−

( ~E. ~B)2

b4


 ,

where ~E is the electric field, ~B is the magnetic field and b is the maximal

admissible value of the electric field.

Up to our knowledge, the equation (2) has never been considered in the

literature, at least in R
N . We refer to [3, 4, 9, 14] for recent results on the exis-

tence of radial solutions for BVPs involving Q in the ball with either Dirichlet

or Neumann conditions.

Supercritical problems are usually difficult to tackle through variational

methods. For instance, concerning the Lane-Emden equation, Farina [18] has

obtained a Liouville-type result for C2 solutions of (1) with finite Morse index.

Basically, if the dimension is small (N ≤ 10), the only finite Morse index

solution is 0 except at the critical exponent where the above-mentioned positive

solutions arise as constrained minimizers on a manifold of codimension 1.

In contrast, we show here that the quasilinear equation (2) has a smooth

positive radial solution for any α > 2⋆, N ≥ 3 by using simple arguments from

Critical Point Theory and the Calculus of Variations. In fact, when α > 2⋆, we

have enough compactness to deal with the problem in a standard way. Indeed,

we minimize the volume integral

∫

RN

(1 −
√

1 − |∇u|2), (4)

truncated in a convenient way, constrained to the unit sphere of Lα(RN ). Then

we prove a gradient estimate which is uniform with respect to the truncation

parameter.

Our first main result is the following.

Theorem 1.1. If α > 2⋆, equation (2) has a positive radial classical solution.

We restrict here our attention to the existence of radially symmetric solu-

tions. On the one hand, we expect that all positive smooth solutions are indeed

radially symmetric, though this is an open question. On the other hand, our

solution arises as a constrained minimizer and its Schwarz symmetric rearrange-

ment yields a radially symmetric minimizer (and therefore a radially symmetric

solution).
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Surprisingly, our approach to establish the existence of a solution of (2)

fails in the critical case α = 2⋆. Indeed, as stated in Theorem 1.2 below, the

solution of Theorem 1.1 realizes the best constant in an inequality between the

volume integral (4) and the Lα-norm. This inequality still holds for α = 2⋆

but the best constant is not achieved. We emphasize that this contrasts with

the Sobolev inequality.

In the sequel, we denote by X the functional space

X :=
{

u ∈ D1;2(RN ) : ∇u ∈ L∞(RN ) and ‖∇u‖L∞ ≤ 1
}

,

endowed with the norm

‖u‖D1;2(RN ) :=

(∫

RN

|∇u|2
)1/2

.

We establish the following Sobolev-type inequality.

Theorem 1.2. There exists C > 0 such that

∫

RN

(1 −
√

1 − |∇u|2) ≥ C

(∫

RN

|u|α
) N

α+N

(5)

for every u ∈ X if and only if α ≥ 2⋆. Moreover, the best constant

inf
u∈X\{0}

∫
RN (1 −

√
1 − |∇u|2)

(∫
RN |u|α

) N
N+α

is achieved by a radial solution of (2) for α > 2⋆ while it is not achieved for

α = 2⋆.

The fact that inequality (5) does not hold below the critical exponent is

rather clear since the volume integral (4) is bounded from above by the Dirichlet

energy. This does not mean that (2) has no non trivial nonnegative solutions

for α < 2⋆ though we conjecture that this is indeed the case. One can for

instance exclude the existence of fast decaying solution but we are not able

to prove a complete non-existence result for α < 2⋆. Also the existence of a

positive solution of (2) in the critical case α = 2⋆ remains an interesting open

question.

At last, as a natural extension of our existence result, we combine our

previous approach with Lusternik-Schnirelmann category theory to obtain a

sequence of solutions whose volume integral diverge. Namely we prove the

following multiplicity result.
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Theorem 1.3. For any α > 2⋆, equation (2) has a sequence of radial solutions

(uk)k∈N such that
∫

RN

(1 −
√

1 − |∇uk|2) → +∞ as k → ∞.

Again, we first consider an auxiliary problem and conclude by a sharp uni-

form estimate on the gradient of our solutions. Note that we do not provide

sign information on solutions though one could probably argue as in [27, 5]

to obtain a sequence of sign changing solutions. We leave this, as well as the

existence of infinitely many positive solutions, as open questions.

The paper is organized as follows. Section 2 contains some preliminary

results on the functional spaces we will work with. In Section 3, we establish

the existence of at least one classical solution of (2) (see Theorem 1.1 above).

Section 4 is devoted to the proof of the inequality in Theorem 1.2 and especially

to the existence of optimizers for the best constant in this inequality. Finally, in

Section 5, we obtain infinitely many solutions of (2) as stated in Theorem 1.3.

With some abuse of notation, we will sometimes consider radial functions

as functions of one variable, thus writing u(|x|) or u(x) or u(r). For any set

A of functions, Arad is defined as the set of all radially symmetric functions of

A. Throughout the paper, C denotes a positive constant that can change from

line to line.

2. Functional framework and preliminary results

Let us set a0(s) = (1 − s)−1/2 for all s < 1. Equation (2) can be written as

−div
(
a0(|∇u|2)∇u

)
= |u|α−2u in R

N .

We introduce the energy functional

I0(u) :=
1

2

∫

RN

A0(|∇u|2),

where A0(t) =
∫ t

0
a0(s) ds for all t ≤ 1. This functional is well defined on

X = {u ∈ D1;2(RN ) : ∇u ∈ L∞(RN ) and ‖∇u‖L∞ ≤ 1}, because we have

1

2
|∇u|2 ≤ 1 −

√
1 − |∇u|2 =

|∇u|2

1 +
√

1 − |∇u|2
≤ |∇u|2.

Lemma 2.1. Let u ∈ X . Then |∇u| ∈ Lq(RN ) for every q ≥ 2, and u ∈ Ls(RN )

for every s ≥ 2⋆. Moreover, u can be assumed to be continuous and such that

lim
|x|→∞

u(x) = 0.
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Proof. Since |∇u| ≤ 1 and |∇u| ∈ L2(RN ), we infer that |∇u| ∈ Lq(RN )

for every q ≥ 2. It then follows that u ∈ LqN/(N−q)(RN ) for every q ≥ 2,

and, by interpolation, u ∈ Ls(RN ) for every s ≥ 2⋆. Observe also that since

u ∈ W 1,r(RN ) for some r > N , it can be assumed to be continuous and

moreover lim|x|→∞ u(x) = 0.

Working with the functional I0 in X requires some care. Since I0 is weakly

lower semi-continuous, a natural way to obtain a solution of (2) consists in

minimizing I0 constrained to the manifold

M0 :=

{
u ∈ X :

∫

RN

|u|α = 1

}
.

However, it is not clear that minimizers solve an associated Euler-Lagrange

equation. Indeed, the functional I0 is C1 only at points u ∈ X with Lipschitz

constant Lip(u) strictly less than 1. Without this condition, minimizers solely

solve a variational inequality.

To overcome this lack of differentiability on the boundary of X , we will work

with an auxiliary functional. This type of truncation argument has already

been used in [13, 14] to deal with Dirichlet boundary condition in an interval

or a ball. Here, one of the novelties is that an a priori L∞ bound on minimizers

cannot be derived from the solely boundedness of the gradient. Therefore, we

truncate the volume integral in a different way than in [13, 14] and we deal

with a different functional framework.

We now define our auxiliary functional. For θ ∈ ]0, 1[, define aθ : R → R
+

by

aθ(s) = a0(s) for 0 ≤ s ≤ 1 − θ and aθ(s) = γsp + δ for s > 1 − θ, (6)

where γ and δ are chosen in such a way that aθ is C1. The exponent p will be

chosen later according to the value of α in (2).

In the sequel, we will work with the spaces D1;r
rad(R

N ) and D
1;(2,q)
rad (RN ),

defined respectively as the closure of the smooth compactly supported radially

symmetric functions for the norms

‖u‖D1;r :=

(∫

RN

|∇u|r
) 1

r

and

‖u‖D1;(2,q) :=

(∫

RN

|∇u|2
) 1

2

+

(∫

RN

|∇u|q
) 1

q

,
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with 1 < q, r < ∞. Consider the manifold

M :=

{
u ∈ D

1;(2,q)
rad (RN ) :

∫

RN

|u|α = 1

}
.

We will look for critical points of Iθ constrained to M where

Iθ : D
1;(2,q)
rad (RN ) → R

+

is defined by

Iθ(u) :=
1

2

∫

RN

Aθ(|∇u|2),

and Aθ(t) =
∫ t

0
aθ(s) ds.

We next recall some elementary facts. We quote them in separate lemmas

for further references in the text. We do not provide the details for Lemma 2.2

which follows from standard arguments. We refer for instance to [28, 25, 6]

for Lemma 2.3, whereas Lemma 2.4 can easily be deduced from [25, Corollary

II-3]. Below, q⋆ := qN/(N − q) for q < N .

Lemma 2.2. Let u ∈ D
1;(2,q)
rad (RN ). Then u ∈ D1;r

rad(R
N ) for every r ∈ [2, q].

If q < N then u ∈ Ls(RN ) for every s ∈ [2⋆, q⋆]; if q = N then u ∈ Ls(RN )

for every s ∈ [2⋆, +∞[; if q > N then u ∈ Ls(RN ) for every s ∈ [2⋆, +∞].

Moreover, the embeddings are continuous.

Lemma 2.3. Let r ∈ [2, q] if q < N , and r ∈ [2, N [ if q ≥ N . Then there exists

C > 0 (depending only on N and r) such that for all u ∈ D
1;(2,q)
rad (RN ), there

holds

|u(x)| ≤ C|x|−
N−r

r ‖∇u‖Lr ,

for almost all x ∈ R
N \ {0}.

Lemma 2.4. Let (un)n ⊂ D
1;(2,q)
rad (RN ) be a bounded sequence. If q < N

then for any s ∈ ]2⋆, q⋆[, there exists a subsequence which converges weakly

in D
1;(2,q)
rad (RN ) and strongly in Ls(RN ). If q > N , the same result holds for

any s ∈ ]2⋆, +∞[.

We close this section by a uniform estimate on the regularization schema.

Observe that for θ1 := 1/(2p + 1), the function aθ defined in (6) is given by

aθ1
(s) = 1/

√
1 − s if 0 ≤ s ≤ 1 − θ1 and aθ1

(s) = γps
p if s > 1 − θ1,

where γp =
√

2p + 1 ((2p + 1)/2p)
p
. Therefore, for all θ ∈ ]0, θ1] and s ∈ R

+

we have
γp

p + 1
sp+1 ≤ Aθ1

(s) ≤ Aθ(s), (7)
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and
Aθ(s) ≥ Aθ1

(s) ≥ s, if s ≤ 2p
2p+1 ,

≥ γp

p+1

(
2p

2p+1

)p

s, if s > 2p
2p+1 .

(8)

Inequalities (7) and (8) lead to uniform estimates (with respect to θ) in

D
1;(2,2p+2)
rad (RN ). They will be important keys in the sequel to obtain a priori

bounds independent of the truncation parameter θ. As for an upper bound on

Iθ, we observe that for all u ∈ D1;(2,2p+2)(RN ),

Aθ(|∇u|2) ≤ C (|∇u|2p+2 + |∇u|2). (9)

for some constant C depending on θ. The functional Iθ is then well defined

in D
1;(2,q)
rad (RN ) with q := 2p + 2 and it is straightforward that Iθ is C1 on

D
1;(2,q)
rad (RN ).

The preceding lemmas suggest to choose p in the definition of aθ such that

q = 2p+2 satisfies q⋆ > α. Indeed, a lower bound in D1;(2,2p+2)(RN ) will follow

from (7) and (8) whereas M is weakly closed as soon as q⋆ > α.

3. Existence of a positive solution for supercritical

exponents

In this section, we prove that equation (2) has at least one positive solution.

3.1. The auxiliary problem

We will first look for a solution of the modified problem

−div
(
aθ(|∇uθ|

2)∇uθ

)
= λθα|uθ|

α−2uθ in R
N ,

where aθ is defined in (6). It will turn out that if the parameter θ is small

enough, this solution also solves the original equation (2). From now on, we

assume θ ∈ ]0, θ1]. Recall also that q⋆ > α (which can be written as q >
Nα/(N + α)), θ1 = 1/(2p + 1) and q = 2p + 2.

Proposition 3.1. Let α>2⋆ and q > Nα
N+α

. Then there exists uθ∈D
1;(2,q)
rad (RN )

such that

c1
θ := min

v∈M

Iθ(v) = Iθ(uθ) > 0. (10)

For any minimizer uθ of (10), there exists λθ ∈ R
+ such that uθ is a weak

solution of the equation

−
(
rN−1aθ(|u

′

θ|
2)u′

θ

)′
= λθαrN−1|uθ|

α−2uθ, (11)
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i.e. ∫ +∞

0

rN−1aθ(|u
′

θ|
2)u′

θv
′ = λθα

∫ +∞

0

rN−1|uθ|
α−2uθv,

for every v ∈ D
1;(2,q)
rad (RN ).

Moreover, for every s ∈ [2⋆, q⋆], s ∈ [2⋆, +∞[ or s ∈ [2⋆, +∞] if q < N ,

q = N and q > N respectively, there exist C1,M1 > 0 independent of θ ∈ ]0, θ1]

such that

max{‖uθ‖D1;(2,q) , ‖uθ‖Ls} ≤ C1 and c1
θ ≤ M1. (12)

Proof. We proceed in several steps.

Step 1: Lower bounds on c1
θ. The inequalities (7) and (8) imply the existence

of a positive constant C depending only on p such that, for all θ ∈ ]0, θ1] and

all u ∈ D
1;(2,q)
rad (RN ),

Iθ(u) ≥ C

∫

RN

|∇u|2 and Iθ(u) ≥ C

∫

RN

|∇u|q. (13)

As α > 2⋆, we have 2 < Nα
N+α

< q and we deduce by interpolation and Sobolev

inequality that for all u ∈ M,

Iθ(u) ≥ C

∫

RN

|∇u|
Nα

N+α ≥ C

(∫

RN

|u|α
) N

N+α

= C > 0, (14)

for some C > 0 which depends only on p, α and N . This implies that

inf
v∈M

Iθ(v) > 0.

Step 2: Existence of a minimizer. Let (un)n ⊂ M be a minimizing sequence,

i.e.

Iθ(un) → inf
v∈M

Iθ(v)

as n → ∞. Choosing ū ∈ M a smooth function such that |∇ū(x)| < 1− θ1 for

all x ∈ R
N , we can assume w.l.g. that

Iθ(un) ≤

∫

RN

(1 −
√

1 − |∇ū|2) =: M1 (15)

for any n ∈ N and any θ ∈ ]0, θ1].

It then follows from (13) and (15) that (un)n is bounded in D
1;(2,q)
rad (RN ).

Since α > 2⋆ and q > Nα
N+α

, Lemma 2.4 implies that, up to a subsequence, (un)n

converges weakly to uθ in D
1;(2,q)
rad (RN ) and strongly in Lα(RN ) as n → ∞.

Obviously,
∫

RN |uθ|
α = 1 and uθ ∈ M.
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Moreover, Iθ being convex and continuous, Iθ is weakly lower semi-continu-

ous and

Iθ(uθ) ≤ lim inf
n→∞

Iθ(un) = inf
v∈M

Iθ(v).

Since uθ ∈ M, we conclude that Iθ(uθ) = infv∈M Iθ(v).

Step 3: A priori bounds on the family {uθ : θ ∈ ]0, θ1]}. From (15), we infer

that

c1
θ = Iθ(uθ) ≤ M1. (16)

By (13) and (16), uθ is bounded in D1;(2,q) uniformly in θ. The a priori bound

in Ls follows from Lemma 2.2 according to whether q < N , q = N or q > N .

Step 4: The Euler-Lagrange equation. By the Lagrange multiplier rule, there

exists λθ ∈ R such that for all ϕ ∈ D
1;(2,q)
rad (RN ),

I ′θ(uθ)(ϕ) = λθα

∫

RN

|uθ|
α−2uθ ϕ.

This means that

−div
(
aθ(|∇uθ|

2)∇uθ

)
= λθα|uθ|

α−2uθ in R
N ,

in the weak sense. As uθ is radial, (11) follows.

Observe that it is standard to prove that uθ is a classical solution of (11)

on ]0, +∞[. If q > N then the solution is bounded and we can apply the

regularity theory of Lieberman [24] to deduce that the weak solution uθ is also

C1,α for some 0 < α < 1 in a neighborhood of the origin. We can deduce the

regularity at the origin from even simpler arguments if q < N . Observe that

for α > 2⋆, we have N − N/α > Nα/(N + α). In particular, Proposition 3.1
holds if q > N − N/α.

Lemma 3.2. Let α > 2⋆ and N − N
α

< q < N . If uθ is a minimizer of (10), it

is bounded in C1(RN ) and either uθ > 0 or uθ < 0 on R
N .

Proof. As uθ is a solution of (11) on ]0, +∞[, it is standard to check that, for

r > 0, uθ is regular. On the other hand, one observes that rN−1aθ(|u
′

θ|
2)u′

θ

satisfies the Cauchy condition at the origin so that it has a finite limit as r → 0.

This limit must be zero otherwise we have

rN−1aθ(|u
′

θ|
2)|u′

θ|
2 ≥ Cr−

N−1

q−1

near 0, which is not integrable because q < N . This contradicts the fact that,

as uθ is a weak solution of (11), we have

∫ +∞

0

rN−1aθ(|u
′

θ|
2)|u′

θ|
2 = λθα.
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We now claim that u′

θ is bounded. Integrating the equation, we get

∣∣aθ(|u
′

θ(r)|
2)u′

θ(r)
∣∣ = λθα

rN−1

∫ r

0

sN−1|uθ(s)|
α−1 ds,

for all r ∈ [0,∞[. Using the estimate from Proposition 3.1, it follows that

aθ(|u
′

θ(r)|
2) |u′

θ(r)| ≤ Cλθαr
N(q⋆−α+1)

q⋆ −N+1‖uθ‖
α−1
Lq⋆ ,

with C > 0. Moreover, we have N(q⋆ −α +1)/q⋆ −N +1 > 0 since we assume

N − N
α

< q, and therefore u′

θ(0) = 0 and, for r ≤ 1, we conclude that

aθ(|u
′

θ(r)|
2) |u′

θ(r)| ≤ Cλθα‖uθ‖
α−1
Lq⋆ .

We next deduce from Lemma 2.3 and Proposition 3.1 that for all r > 1,

∣∣aθ(|u
′

θ(r)|
2)u′

θ(r)
∣∣ =

λθα

rN−1

[∫ 1

0

sN−1|uθ(s)|
α−1 ds +

∫ r

1

sN−1|uθ(s)|
α−1 ds

]

≤ Cλθα‖uθ‖
α−1
Lq⋆ +

λθα

rN−1
‖u′

θ‖
α−1
L2

∫ r

1

sN−1s−
(N−2)(α−1)

2 ds

≤ C
(
1 + r1−

(N−2)(α−1)

2

)
,

and since α > 2⋆, we have

1 −
N − 2

2
(α − 1) < −

N

2
,

so that the claim follows.

As u′

θ(0) = 0 one proves by standard arguments that uθ is a classical solu-

tion.

To show that any minimizer satisfies either uθ > 0 or uθ < 0, we argue

by contradiction. Indeed, if uθ changes sign, then |uθ| ∈ M and Iθ(|uθ|) =

Iθ(uθ). In other words, v = |uθ| is also a minimizer, and vanishes at some

point r0 ∈ [0,∞[. Since v is a solution of (11) with min
[0,+∞[

v = v(r0) = 0 and

the solutions of (11) are regular, we also have v′(r0) = 0, which contradicts

the local uniqueness of the solution of the Cauchy problem. This concludes the

proof.

3.2. Back to the original equation (2)

We now prove that the solution obtained in Proposition 3.1 is a solution of our

original problem (2) provided the parameter θ is small enough.
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In the sequel, (uθ, λθ) is the solution of

−div
(
aθ(|∇uθ|

2)∇uθ

)
= λθα|uθ|

α−2uθ in R
N , (17)

obtained in Proposition 3.1. We first estimate the Lagrange multiplier through

an argument of the Calculus of Variations.

Lemma 3.3. For all θ ∈ ]0, θ1], we have 0 < λθ = N
N+α

c1
θ.

Proof. Multiplying (17) by uθ and integrating, we obtain

∫

RN

aθ(|∇uθ|
2)|∇uθ|

2 = λθα

∫

RN

|uθ|
α = λθα. (18)

Next, we prove that

∫

RN

aθ(|∇uθ|
2)|∇uθ|

2 =
Nα

2N + 2α

∫

RN

Aθ(|∇uθ|
2). (19)

To this end, consider the function f : R
+ → R defined by f(t) := Iθ

(
t

N
α uθ(tx)

)
.

For all t ∈ R
+, tN/αuθ(tx) ∈ M, and f achieves its minimum at t = 1. A change

of variable yields

f(t) =
1

2

∫

RN

Aθ

(
t

2N
α

+2|∇uθ(tx)|2
)

dx =
1

2tN

∫

RN

Aθ

(
t

2N
α

+2|∇uθ(y)|2
)

dy.

From the last equality and Lebesgue’s dominated convergence theorem, it is

easy to see that f is differentiable. Hence, as f(1) is a minimum, we have

f ′(1) =
1

2

[(
2N

α
+ 2

)∫

RN

aθ(|∇uθ|
2)|∇uθ|

2 − N

∫

RN

Aθ(|∇uθ|
2)

]
= 0,

which proves (19).

Combining (19) with (18), we conclude that

λθ =
N

2N + 2α

∫

RN

Aθ(|∇uθ|
2) =

N

N + α
c1
θ > 0.

An important consequence of this lemma is that the uniform estimate on

the levels c1
θ from Proposition 3.1 yields a uniform estimate on the Lagrange

multiplier. This estimate allows to deduce that, for θ small, our regularization

leads to a solution of an unperturbed equation (with Lagrange multiplier).
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Proposition 3.4. Assume N−N/α < q < N . For α > 2⋆ and θ small enough,

the function uθ obtained in Proposition 3.1 is a radial solution of

−div

(
∇u√

1 − |∇u|2

)
= λ|u|α−2u in R

N , (20)

with

λ =

∫

RN

|∇u|2√
1 − |∇u|2

> 0.

Moreover either uθ > 0 or uθ < 0 on R
N .

Proof. Consider the solution (uθ, λθ) of

−div
(
aθ(|∇uθ|

2)∇uθ

)
= λθα|uθ|

α−2uθ in R
N ,

obtained in Proposition 3.1. Let us prove the existence of a constant E > 0

such that for all θ ∈ ]0, θ1] and all r > 0,
∣∣aθ(|u

′

θ(r)|
2)u′

θ(r)
∣∣ ≤ E. (21)

We argue as in Lemma 3.2 to deduce uniform estimates. First, using the

uniform estimates from Proposition 3.1 and Lemma 3.3, it follows that for all

r < 1 and all θ ∈ ]0, θ1],

aθ(|u
′

θ(r)|
2) |u′

θ(r)| ≤ Cλθα‖uθ‖
α−1
Lq⋆ ≤ C,

with C > 0 independent of θ ∈ ]0, θ1]. Moreover, by Lemma 2.3, Proposition 3.1

and Lemma 3.3, we have for all r > 1 and θ ∈ ]0, θ1],

∣∣aθ(|u
′

θ(r)|
2)u′

θ(r)
∣∣ ≤ Cλθα‖uθ‖

α−1
Lq⋆ +

λθα

rN−1
‖∇uθ‖

α−1
L2

∫ r

1

sN−1s−
(N−2)(α−1)

2 ds

≤ C
(
1 + r1−

(N−2)(α−1)

2

)
,

where C > 0 is still independent of θ. As α > 2⋆, we have

1 −
N − 2

2
(α − 1) < −

N

2
.

This proves (21).

Finally, by construction of aθ, (21) implies that |u′

θ(r)| ≤ 1 − ǫ for some

ǫ > 0, and hence uθ solves (20) for θ small enough. More precisely, we have for

all r ≥ 0 and all θ < min{θ1, 1/(1 + E2)},

|u′

θ(r)| ≤
E

√
1 + E2

,

and the result follows for θ < min{θ1, 1/(1 + E2)}. The fact that λ := λθ is

bounded away from zero follows from Lemma 3.3.
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Proof of Theorem 1.1. By Proposition 3.4, we know that for θ small enough,

uθ is a radial solution of (20) i.e. uθ is a solution of

−

(
rN−1 v′√

1 − |v′|2

)′

= λrN−1|v|α−2v in ]0, +∞[.

Observe that wt defined by wt(r) = tuθ(r/t) solves

−

(
rN−1 w′

√
1 − |w′|2

)′

= λ
1

tα
rN−1|w|α−2w in ]0, +∞[.

Then wt is a solution of the original equation (2) if t = λ1/α.

Remark 3.5. Note that, for θ ∈ ]0, θ1], wt satisfies in fact

Iθ(|∇wt|
2) = min

{
Iθ(|∇v|2) : v ∈ D

1;(2,q)
rad (RN ),

∫

RN

|v|α = λ
α+N

α

}
,

where λ = c1
θN/(N + α) > 0.

4. Optimizers in the inequality involving the volume

integral

This section deals with the proof of Theorem 1.2 stated in the introduction.

This theorem will follow from Proposition 4.1, Proposition 4.2, Proposition 4.4

and Proposition 4.5 below.

Proposition 4.1. Assume α ≥ 2⋆. Then there exists a constant C > 0, de-

pending only on α and N , such that for all u ∈ X ,

∫

RN

(1 −
√

1 − |∇u|2) ≥ C

(∫

RN

|u|α
) N

α+N

. (22)

Proof. If α ≥ 2⋆ then 2 ≤ Nα/(N +α). Hence, using the fact that ‖∇u‖L∞ ≤ 1

and Sobolev inequality, we have for all u ∈ X ,

∫

RN

(1 −
√

1 − |∇u|2) ≥
1

2

∫

RN

|∇u|2 ≥
1

2

∫

RN

|∇u|
Nα

N+α ≥ C

(∫

RN

|u|α
) N

N+α

,

where C > 0 depends only on α and N .

Observe that the exponent Nα/(α + N) in the Lα-norm naturally arises

in the proof when using Sobolev inequality. The presence of this exponent

can also be explained from the invariance of the inequality (22) under the

homeomorphisms φt : u(·) 7→ tu(·/t) for t > 0.
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We next show that the inequality (22) does not hold whatever C > 0 when

α < 2⋆.

Proposition 4.2. If α < 2⋆ then

inf
u∈X\{0}

∫
RN (1 −

√
1 − |∇u|2)

(∫
RN |u|α

) N
N+α

= 0.

Proof. It is straightforward to construct a sequence (un)n ⊂ D1;2(RN ) such

that ‖∇un‖L∞ ≤ 1, ‖un‖Lα = 1, and
∫

RN |∇un|
2 → 0 as n → ∞. Then we

have for all n ∈ N,

∫

RN

(1 −
√

1 − |∇un|2) =

∫

RN

|∇un|
2

1 +
√

1 − |∇un|2
≤

∫

RN

|∇un|
2,

and the conclusion follows.

We now focus on the best constant for which (22) holds when α > 2⋆. We

will use the following lemma. For the definition and basic properties of the

symmetric rearrangement, the reader is referred to [21, 29] (among many oth-

ers). Since we adapt a rather classical lemma from [29], we keep the notations

therein. In particular, the symmetric rearrangement u⋆ of u is the function

whose graph is the Schwarz symmetrization of |u|, see for instance [29, Defini-

tion 1.C].

Lemma 4.3. For all u ∈ X , we have the inequality

∫

RN

(
1 −

√
1 − |∇u|2

)
≥

∫

RN

(
1 −

√
1 − |∇u⋆|2

)
, (23)

where u⋆ : R → R denotes the symmetric rearrangement of u.

Proof. First we observe that u⋆ is well defined if u ∈ X because u is Lipschitz

continuous and all the level sets {x ∈ R
N : u(x) > t} (t ∈ R) have finite mea-

sure. In addition, by the Pólya-Szegö inequality (see for instance [10, Theorem

4.7]), we have

‖∇u⋆‖L∞ ≤ ‖∇u‖L∞ ≤ 1

and ∫

RN

|∇u⋆|2 ≤

∫

RN

|∇u|2.

Therefore the right-hand side of (23) makes sense and both sides of the in-

equality are finite because ∇u is square integrable for u ∈ X .
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It is proven in [29, Theorem 1.C] (see also [21]) that the inequality

∫

RN

Φ(|∇u|) ≥

∫

RN

Φ(|∇u⋆|)

holds for any Lipschitz-continuous u which decays at infinity and any convex,

increasing function Φ : [0,∞[→ [0,∞[ satisfying Φ(0) = 0.

For all n ∈ N, let us consider the functions Hn, Gn : [0,∞[→ [0,∞[ defined

by

Hn(s) = 1 − (1 − s)1/2, for s < 1 − 1/n2,

= 1 −
1

n
+

n

2
(s − 1 +

1

n2
), for s ≥ 1 − 1/n2,

and Gn(s) = Hn(s2). Observe that Gn is convex, increasing and satisfies

Gn(0) = 0. Hence, by [29, Theorem 1.C], we know that

∫

RN

Gn(|∇u|) ≥

∫

RN

Gn(|∇u⋆|). (24)

As u ∈ D1;2(RN ), the measure of the set A := {x ∈ R
N : |∇u| ≥ 1/2} is finite

and the fact that u ∈ X implies that, for all n ≥ 2, |Gn(|∇u(x)|2)| ≤ h(x) with

h ∈ L1(RN ) defined by

h(x) = 1, for x ∈ A,
= |∇u|2, for x 6∈ A.

Hence, we can apply Lebesgue’s dominated convergence theorem to prove that

∫

RN

Gn(|∇u|) →

∫

RN

(
1 −

√
1 − |∇u|2

)
. (25)

as n goes to infinity. We can argue in the same way to prove that

∫

RN

Gn(|∇u⋆|) →

∫

RN

(
1 −

√
1 − |∇u⋆|2

)
. (26)

We then conclude by (24), (25) and (26).

With this lemma at hand we can prove the following proposition.

Proposition 4.4. If α > 2⋆, the infimum

C(α) := inf
u∈X\{0}

∫
RN (1 −

√
1 − |∇u|2)

(∫
RN |u|α

) N
N+α

is achieved by a radial solution of (2).
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Proof. By Lemma 4.3 and the Lα-norm-preserving property of the symmet-

ric rearrangement, we may restrict our attention to a minimizing sequence

(un)n ⊂ X of radial functions. Since the quotient is invariant under the

family of homeomorphisms φt : v(·) 7→ tv(·/t) (t > 0), we may assume that∫
RN |un|

α = 1. It is easily seen that (un)n is a priori bounded in X . Lemma 2.1

then provides a bound in D1;q(RN ) for every q ≥ 2. From Lemma 2.4, we

deduce the required compactness to conclude that (un)n weakly converges in

D1;2(RN ) to a function u ∈ X with
∫

RN |u|α = 1. The fact that u realizes the

infimum C(α) follows from the weak lower semi-continuity (with respect to the

weak convergence in D1;2(RN )) of the volume integral.

To show that wt = t u(·/t) solves (2) for some t > 0, we first prove that

|∇u| is bounded away from 1. Denoting by uθ a minimizer of Iθ over M (see

Proposition 3.1), we have for all θ > 0,

Iθ(uθ) ≤ Iθ(u) ≤ I0(u), (27)

where the second inequality follows from the ordering property of the family

Iθ. Moreover, we have established in Section 3 that Iθ(uθ) = I0(uθ) for θ small

enough. As u is a minimizer of I0 this implies that the inequalities in (27) are

in fact equalities. In particular, Iθ(u) = Iθ(uθ), and u is a minimizer of Iθ over

M too. The arguments of Proposition 3.4 now apply so that

|u′(r)| ≤
E

√
1 + E2

< 1,

for some E > 0 and we conclude as in the proof of Theorem 1.1.

We now turn to the case of the critical exponent α = 2⋆.

Proposition 4.5. The infimum

C(2⋆) = inf
u∈X\{0}

∫
RN (1 −

√
1 − |∇u|2)

(∫
RN |u|2⋆

) N
N+2⋆

is not achieved.

Proof. Assume by contradiction that C(2⋆) is achieved by some u ∈ X . As

above, we may suppose that u is radial. Let us prove that

∫
∞

0

rN−1

[(
1 +

N

α

)
u′2

√
1 − |u′|2

− N(1 −
√

1 − |u′|2)

]
≤ 0. (28)

Define for all t ∈ [0, 1],

f(t) :=
1

2

∫

RN

A0

(
t

2N
α

+2|∇u(tx)|2
)

dx =
1

2tN

∫

RN

A0

(
t

2N
α

+2|∇u(y)|2
)

dy.
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Let t ∈ (0, 1) be fixed. As 1 is a minimum of f , the mean value theorem yields

the existence of t̃ ∈ (t, 1) such that

f ′(t̃) ≤ 0. (29)

(Note that we cannot conclude as in Lemma 3.3 that f ′(1) = 0 because f
may not be well defined for t > 1.) Here, the mean value theorem applies

because f is continuous on [t, 1] and differentiable on (t, 1). In order to prove

the differentiability of f in s̃ ∈ (t, 1), observe first that from the strict inequality

s̃(2N/α)+2 |∇u|2 < 1 a.e. in R
N , we deduce the differentiability of the integrand.

Moreover the derivative of the integrand satisfies the uniform estimate

∣∣∣∣
(

2N

α
+ 2

)
s̃

2N
α

+1 |∇u|2√
1 − s̃

2N
α

+2 |∇u|2

∣∣∣∣ ≤ C |∇u|2,

which holds for all s close to s̃ and almost every x ∈ R
N . Lebesgue’s dominated

convergence theorem implies then that f is differentiable on (t, 1), and the

inequality (29) is equivalent to

− Nt̃−N−1

∫

RN

(
1 −

√
1 − t̃

2N
α

+2 |∇u|2
)

+ t̃−N

∫

RN

1

2

(
2N

α
+ 2

)
t̃

2N
α

+1 |∇u|2√
1 − t̃

2N
α

+2 |∇u|2
≤ 0. (30)

Next, we consider (tk) ⊂ (0, 1) such that tk → 1 as k → ∞. From what

precedes, we infer the existence of a sequence (t̃k) ⊂ (0, 1) still converging to

1 as k goes to ∞, and satisfying (30) with t̃ = t̃k for all k ∈ N. This implies

that, for every k ∈ N,

0 ≤

∫

RN

(
N

α
+ 1

)
t̃

2N
α

+1

k |∇u|2√
1 − t̃

2N
α

+2

k |∇u|2

≤
N

t̃k

∫

RN

(
1 −

√
1 − t̃

2N
α

+2

k |∇u|2
)

≤ Nt̃
2N
α

+1

k

∫

RN

|∇u|2

≤ N

∫

RN

|∇u|2.

Hence, it follows from Fatou’s Lemma, Lebesgue’s dominated convergence the-
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orem and (30) that
|∇u|2√
1−|∇u|2

∈ L1(RN ) and

∫

RN

|∇u|2√
1 − |∇u|2

≤ lim inf
k→∞

∫

RN

(
N

α
+ 1

)
t̃

2N
α

+1

k |∇u|2√
1 − t̃

2N
α

+2

k |∇u|2

≤ lim inf
k→∞

N

t̃k

∫

RN

(
1 −

√
1 − t̃

2N
α

+2

k |∇u|2
)

= N

∫

RN

(
1 −

√
1 − |∇u|2

)
.

This implies that (28) holds.

To conclude, we define the function g : [0, 1[→ R by g(s) := (1 + N
α

−

N)s − N
√

1 − s + N and we compute g(0) = 0, g′(0) = 1 + N
α

− N
2 and

g′′(s) = N
4(1−s)3/2 . Therefore we have g(s) > 0 for s ∈ ]0, 1[ if and only if

1 + N
α
− N

2 ≥ 0, which is true if and only if α ≤ 2⋆. Hence, we infer that

0 <

∫
∞

0

rN−1 g(u′2)√
1 − |u′|2

=

∫
∞

0

rN−1

[(
1 +

N

α

)
u′2

√
1 − |u′|2

− N(1 −
√

1 − |u′|2)

]
,

which contradicts (28).

5. A multiplicity result

In this section, we use again the auxiliary functional Iθ defined in Section 2.

Since the manifold M is symmetric and Iθ is an even functional, Lusternik-

Schnirelmann category theory provides a sequence of critical values for Iθ con-

strained to M. More precisely, let A denote the set of closed and symmetric

(with respect to the origin) subsets of D
1;(2,q)
rad (RN ). We define the usual min-

max values

ck
θ := inf

A∈Γk

max
u∈A

Iθ(u),

where

Γk := {A ⊂ M : A ∈ A, A is compact and γ(A) ≥ k},

and γ(A) is the genus of the set A. We refer e.g. to [1] for the definition of the

genus and for more details on Lusternik-Schnirelmann theory.

We first show that these levels are indeed critical levels of Iθ. It is clear that

M ⊂ A and γ(M) = +∞. Next we show that Iθ satisfies the Palais-Smale
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condition on M by which we mean that every sequence (un)n ⊂ M such that

Iθ(un) is bounded and

I ′θ|M(un) → 0

admits a converging subsequence. Here I ′
θ|M

denotes the derivative of Iθ con-

strained to M. Denoting by

TuM := {v ∈ D
1;(2,q)
rad (RN ) :

∫

RN

|u|α−2uv = 0}

the tangent space to M at u, the projection Pu : D
1;(2,q)
rad (RN ) → TuM is given

by

Pu(w) = w − u

∫

RN

|u|α−2uw.

Then, for any w ∈ D
1;(2,q)
rad (RN ) we have v = Pu(w) ∈ TuM and

I ′θ|M(u)(v) = I ′θ|M(u)(Pu(w)) = I ′θ(u)(w) − λI ′θ(u)(u),

where λ =
∫

RN |u|α−2uw.

To prove the Palais-Smale condition, we will use the following convexity

inequalities.

Lemma 5.1. There exist γ2, γq > 0 such that for every u, v ∈ D
1;(2,q)
rad (RN ),

Iθ(
u + v

2
) ≤

1

2
Iθ(u) +

1

2
Iθ(v) − γ2

∫

RN

|∇u −∇v|2 (31)

and

Iθ(
u + v

2
) ≤

1

2
Iθ(u) +

1

2
Iθ(v) − γq

∫

RN

|∇u −∇v|q. (32)

Proof. Since Iθ has a uniformly positive definite second derivative, we can

apply [16, Lemma 2.3] to deduce (31). In order to prove (32), we first observe

that [16, Lemma 2.1] allows to show that s → Aθ(s
2) is strongly q-monotone.

This yields, for some γq > 0, the inequality

Aθ

([
u′(r) + v′(r)

2

]2)
≤

1

2
Aθ(u

′(r)2) +
1

2
Aθ(v

′(r)2) − 2γq|u
′(r) − v′(r)|q

where u, v are given functions in D
1;(2,q)
rad (RN ) and r > 0. Multiplying by rN−1

and integrating from 0 to +∞, we deduce (32).

We now turn to the verification of the Palais-Smale condition.
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Lemma 5.2. For α > 2⋆, the functional Iθ satisfies the Palais-Smale condition

on M.

Proof. Let (un)n ⊂ M be a Palais-Smale sequence, i.e. Iθ(un) is bounded and

I ′θ|M(un) → 0.

Since Iθ is coercive, it is clear that (un)n is bounded in D
1;(2,q)
rad (RN ) and

therefore, by Lemma 2.4, up to a subsequence, there exists u ∈ M such that

un converges weakly to u in D
1;(2,q)
rad (RN ) and strongly in Lα(RN ) as n → ∞.

Since (un)n is a Palais-Smale sequence, we have, as n → ∞,

I ′θ(un)(Pun
(un − u)) = I ′θ(un)(un − u) − λnI ′θ(un)(un) → 0,

where we have written λn =
∫

RN |un|
α−2un(un − u). Now, using the fact that

(un)n is bounded in D
1;(2,q)
rad (RN ) and un → u in Lα(RN ), we infer λn → 0 and

I ′θ(un)(un) is bounded. Hence, we deduce that

lim sup
n→∞

I ′θ(un)(un − u) ≤ 0. (33)

To complete the proof, it remains to show that (un)n converges strongly to u,

which amounts to prove that

‖un − u‖ =

(∫

RN

|∇un −∇u|2
) 1

2

+

(∫

RN

|∇un −∇u|q
) 1

q

→ 0,

as n → ∞. Since Iθ is locally bounded, we may assume that Iθ(un) converges.

By weak lower semi-continuity, we infer

Iθ(u) ≤ lim inf
n→∞

Iθ(un),

whereas the convexity of Iθ and (33) implies

lim sup
n→∞

Iθ(un) ≤ Iθ(u) + lim sup
n→∞

I ′θ(un)(un − u) ≤ Iθ(u).

Hence Iθ(un) converges to Iθ(u). Using again the lower semi-continuity of

Iθ, (31) and (32), we conclude that

Iθ(u) ≤ lim inf
n→∞

Iθ(
un + u

2
) ≤ Iθ(u) − γ2 lim sup

n→∞

∫

RN

|∇un −∇u|2

and

Iθ(u) ≤ lim inf
n→∞

Iθ(
un + u

2
) ≤ Iθ(u) − γq lim sup

n→∞

∫

RN

|∇un −∇u|q.

This concludes the proof.
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Classical arguments now show that the level ck
θ are critical values. We keep

the notation θ1 = 1/(2p + 1).

Proposition 5.3. Assume α > 2⋆ and N − N
α

< q < N . For every k ≥ 1,

there exists µk
θ ∈ R

+ and uk
θ ∈ D

1;(2,q)
rad (RN ) such that uk

θ is a weak solution of

−div
(
aθ(|∇uk

θ |
2)∇uk

θ

)
= µk

θα|uk
θ |

α−2uk
θ in R

N , (34)

and Iθ(u
k
θ) = ck

θ → +∞ as k → ∞. Moreover, uk
θ is bounded in C1(RN ) and

there exists Ck > 0, Mk > 0 such that, for all θ ∈ ]0, θ1],

max{‖uk
θ‖D1;(2,q) , ‖uk

θ‖Lq⋆ } ≤ Ck and ck
θ ≤ Mk.

Proof. The proof follows easily from [1, Theorem 10.9 and Theorem 10.10]

observing also that one can bound the min-max levels taking smooth functions

such that |∇u(x)| < 1 − θ1 as competitors in the definition of ck
θ . Then it is

enough to follow the lines of the proof of Proposition 3.1 and Lemma 3.2.

The next step towards the proof of Theorem 1.3 consists in finding a priori

bounds for the Lagrange multiplier µk
θ with respect to θ. The argument in

Lemma 3.3 cannot be used here (except for u1
θ which is a global minimizer).

We then go back to the equation to derive the identity (19) for the solutions

uk
θ . In fact, we just need an inequality.

Lemma 5.4. For all θ ∈ ]0, θ1], 0 < µk
θ ≤ N

N+α
ck
θ .

Proof. Multiplying (34) by uk
θ and integrating, remembering also that uk

θ ∈ M,

we obtain ∫

RN

aθ(|∇uk
θ |

2)|∇uk
θ |

2 = µk
θα

∫

RN

|uk
θ |

α = µk
θα.

This shows µk
θ > 0.

Let us prove that

∫

RN

aθ(|∇uk
θ |

2)|∇uk
θ |

2 ≤
Nα

2N + 2α

∫

RN

Aθ(|∇uk
θ |

2). (35)

This implies that

µk
θ ≤

N

2N + 2α

∫

RN

Aθ(|∇uk
θ |

2) =
N

N + α
ck
θ .

We know that uk
θ is a solution of

−
(
rN−1aθ(v

′2)v′
)′

= µk
θαrN−1|v|α−2v,
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bounded in C1(RN ) and satisfying
∫

RN |∇uk
θ(x)|2 < ∞. Let us define the

function

F (r) = rNaθ(|v
′|2)|v′|2 −

1

2
rNAθ(|v

′|2) + µrN |v|α +
N

α
rN−1v′va(|v′|2)

= r
(
rN−1v′aθ(|v

′|2)
)
v′ −

1

2
rNAθ(|v

′|2) + µrN |v|α

+
N

α
v
(
rN−1aθ(|v

′|2)v′
)
,

where for short we have written µ = µk
θ and v = uk

θ . Then, using the equation,

we compute

F ′(r) = rN−1aθ(|v
′|2)|v′|2 + r[

(
rN−1aθ(|v

′|2)v′
)′

v′ + rN−1aθ(|v
′|2)v′v′′]

− rNv′v′′aθ(|v
′|2) −

N

2
rN−1Aθ(|v

′|2) + µNrN−1|v|α

+µαrN |v|α−2vv′ +
N

α
v(rN−1aθ(|v

′|2)v′)′ +
N

α
rN−1aθ(|v

′|2)|v′|
2

= rN−1

[
(1 +

N

α
)aθ(|v

′|2)|v′|2 −
N

2
Aθ(|v

′|2)

]
.

As v′ and v are bounded, we have F (0) = 0. To estimate F at +∞, we integrate

the equation and we obtain

rN−1aθ(|v
′|2)v′ = −µα

∫ r

0

(sN−1|v|α−2(s)v(s)) ds.

Using the decay estimate of Lemma 2.3, the a priori bound of Proposition 5.3

and the arguments of Lemma 3.2, we deduce that

rN−1aθ(|v
′|2)|v′| ≤ µα

∫ r

0

(sN−1|v|α−1(s)) ds.

≤ µα

∫ 1

0

(sN−1|v|α−1(s)) ds + C

∫ r

1

(sN−1s−
N−2

2
(α−1)) ds

≤ C(1 +

∫ r

1

(s
3N−4

2
−

N−2

2
α) ds)

≤ C(1 + r
3N−2

2
−

N−2

2
α).

Hence, we deduce that

aθ(|v
′|2)|v′| ≤ C(r1−N + r

N
2
−

N−2

2
α),

and since aθ(|v
′|2) ≥ 1, the same estimate holds for |v′|. This implies, again by
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Lemma 2.3 and Proposition 5.3, that

F (r) ≤ rNaθ(|v
′|2)|v′|2 + µrN |v|α +

N

α
rN−1v′vaθ(|v

′|2)

≤ C(r2−N + r
2+N−(N−2)α

2 + r2N−(N−2)α + rN−
N−2

2
α + r−

N−2

2 ).

Since α > 2⋆, we infer that

lim sup
r→∞

F (r) ≤ 0

and therefore ∫
∞

0

F ′(r) ≤ lim sup
r→∞

F (r) − lim
r→0

F (r) = 0. (36)

This completes the proof of (35).

We are now able to complete the proof of Theorem 1.3.

Proposition 5.5. For α > 2⋆ and θ small enough, the function tkuk
θ(r/tk)

where uk
θ is given by Proposition 5.3, and

tk =



∫

RN

|∇uk
θ |

2

√
1 − |∇uk

θ |
2




1/α

,

is a solution of (2).

Proof. Fix k ≥ 1. The proof follows from arguments that were used in Section

3. Indeed, since we have an estimate of the Lagrange multiplier µk
θ and on uk

θ

in D
1;(2,q)
rad (RN ) as well as in Lq⋆

(RN ) which are independent of θ, we infer, as

in the proof of Proposition 3.4, that

|∇uk
θ | ≤

E
√

1 + E2
,

for some E > 0. The result then follows for θ < min{θ1, 1/(1 + E2)} as in the

proof of Theorem 1.1.
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Abstract. This is a survey covering sequential structures and their

applications to the foundations of probability theory. Sequential conver-

gence, convergence groups and the extension of sequentially continuous

maps belong to general topology and Trieste for long has been a center

of sequential topology. We begin with some personal reflections, con-

tinue with topological problems motivated by the extension of probability

measures, and close with some recent results related to the categorical

foundations of probability theory.

Keywords: Convergence of sequences, sequentially continuous map, field of sets, ex-

tension of probability measures, convergence group, free group, completion, categorical

approach to probability, bold algebra, MV-algebra, D-poset of fuzzy sets, state, exten-

sion of states, epireflection

MS Classification 2010: 06D35, 54C20, 60A10, 04A72, 28C99, 54B30

1. Introduction

My PhD advisor Professor Josef Novák (1905 - 1999) and Professor Mario

Dolcher (1920 - 1997), the PhD advisor of Fabio Zanolin, have had a common

interest in sequential convergence and sequential topology (cf. [3]). Fabio

has solved some problems posed by Novák related to sequential convergence

spaces and groups ([37, 38]) and our personal meeting at the Prague Topological

Symposium in 1982 resulted in friendship, fruitful cooperation, and a series of

joint papers ([2, 12, 13, 14, 15, 16, 17, 18, 19]).

During my first visit of Italy in 1986, my homeland Slovakia (part of Czecho-

slovakia until 1993) and Italy have been separated by the Iron Curtain. That

time, due to the Helsinky Agreement in 1975, scientific contacts and even joint

research have been more easy and, thanks to a generous support by the Con-

siglio Nazionale delle Ricerche, I had both honor and pleasure to spend few

fantastic weeks within the mathematical community in Trieste. Besides inten-

sive joint research on convergence groups with Fabio, my plan was to present

some results of Novák and members of his research team. The topic was

“topological (sequential) aspects of the extension of measure”. While work-

ing on my colloquium presentation, I have solved the “product problem for
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sequential envelopes” (the product of sequential envelopes is equal to the se-

quential envelope of product, cf. [5]). The theory of sequential envelopes

and its applications to probability has been a big theme for people around

Novák ([5, 6, 9, 10, 25, 26, 29, 30, 31, 34]). Indeed, sequential envelopes

are epireflections similar to the Čech-Stone β-compactification, the Hewitt υ-

realcompactification, and the E-compactifications of S. Mrówka, for which the

product problems and their solutions are really “hard mathematics” (cf. [21]).

I remember being so happy, that even the bad news about Chernobyl looked

unimportant to me (that time the information was very limited).

At this point, let me provide some background information about Josef

Novák and his interest in the relationship between (sequential) topology and

probability. He was a student of Eduard Čech and hence a topologist by faith.

During WWII, Czech universities have been closed by the Nazi authorities and

Novák became involved in statistical applications. Continuity in applications

usually means sequential continuity, while the “real topology” means ultrafil-

ters, compactness, and the like. . . The idea of Novák was to utilize sequences

in general topology as much as possible (remember his construction of a regular

topological space every continuous function on which is constant). The exten-

sion of probability measures (in fact bounded sequentially continuous functions)

from a field A of subsets to the generated σ-field σ(A) served as a canonical

example in three directions.

1. Operations in A are sequentially continuous, hence we can study A as

a sequential convergence algebra (group) and σ(A) can be considered as its

sequential completion.

2. The sequential convergence in a field of sets is determined by probability

measures (a sequence {An}
∞

n=1 converges to A iff the sequence {p(An)}∞n=1 con-

verges to p(A) for all probability measures p) - a sequential version of complete

regularity of a topological space. The problem is to find suitable sequential

absolute properties of σ(A) analogous to absolute properties like compactness

or realcompactness.

3. Sequential convergence structures do not belong to the mainstream of

general topology, hence there was a need to develop a suitable classification of

such structures and to introduce characteristic properties guaranteeing relevant

constructions in the realm of sequential structures. Observe that sequences are

“short and meager”, so that analogous topological and sequential constructions

usually have different properties, for example, unlike βX and υX, the exten-

sion of bounded sequentially continuous functions and unbounded sequentially

continuous functions are equivalent constructions ([5]).

An interested reader can find more detailed information about sequential

structures in [6] and references therein.

In the present paper I will concentrate on the outcome of research related
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to the second of the three directions. Most of our joint research with Fabio

Zanolin concerned the other two directions. Here I mention two main themes

related to sequential convergence groups, also known as L-groups.

1. Free convergence groups. Beside being a natural construction, the free

group serves as a vehicle to transport properties of sequential convergence

spaces to L-groups (cf. [12, 14, 15, 16]).

2. Coarse convergence groups. To define a compatible sequential conver-

gence (we assume unique limits) for a given group G, it is the same as to define

a suitable subgroup of GN (the group of all sequences converging to the neutral

element of G). This relates algebraic properties of G, resp. GN , and certain

properties of the convergence in question. Coarse convergence means that it

cannot be enlarged without ruining the compatibility (e.g. the uniqueness of

limits). The coarseness can be characterized by an algebraic condition, which

results in an nice interplay between algebra and sequential topology. Coarse

groups have interesting nontrivial properties (cf. [2, 13, 17, 19, 35]).

2. Measure extension theorem and more

In this section we outline the basic ideas of Josef Novák related to the extension

of probability measures and leading to the notion of sequential envelope (cf. [8]).

Theorem 2.1 (METHM – classical). Let A be a field of sets, let σ(A) be the

generated σ-field, and let p be a probability measure on A. Then there exists a

unique probability measure p on σ(A) such that p(A) = p(A) for all A ∈ A.

The proof (usually based on the outer measure) can be found in any treatise

on measure. However, additional properties of σ(A) are usually not mentioned

there. J. Novák pointed out that from the ”topological viewpoint” σ(A) can

be viewed as a maximal object over which all probability measures on A can

be extended.

In order to make the text more self-contained, we recall some facts about

fields of sets. Let X be a set. Then each subset A ⊆ X can be viewed as the

indicator function χA ∈ {0, 1}X , χA(x) = 1 if x ∈ A and χA(x) = 0 other-

wise. Moreover, a sequence {An}
∞

n=1 converges to A (i.e. A = lim sup An =

lim inf An) iff the sequence {χAn
}∞n=1 converges pointwise to χA. If A is a field

of subsets of X, then the generated σ-field σ(A) is the smallest sequentially

closed subset of {0, 1}X containing A and A is sequentially dense in σ(A) (i.e.

each A ∈ σ(A) can be reached by iterations, up to ω1 times, of adding sequen-

tial limits, starting with sequences from A). Observe that if two probability

measures on σ(A) coincide on A, then a topological argument guarantees that

they are identical. Let A, B be fields of subsets of X and let A ⊆ B. A sequence

{An}
∞

n=1 of sets in A is said to be P -Cauchy if for each probability measure

p on A the sequence {p(An)}∞n=1 is a Cauchy sequence of real numbers. If for
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each probability measure p on A there exists a probability measure p on B such

that p(A) = p(A) for all A ∈ A, then A is said to be P -embedded in B.

Theorem 2.2. The following are equivalent

(i) A = σ(A);

(ii) Each P -Cauchy sequence converges in A;

(iii) A is sequentially closed in each field of sets B in which A is P -embedded.

Proof. (i) implies (ii). Assume (i) and let {An}
∞

n=1 be a P -Cauchy sequence

in A. Since each x ∈ X represents a point-probability, the sequence {An}
∞

n=1

(pointwise) converges in {0, 1}X . From A = σ(A) it follows that A is sequen-

tially closed and hence {An}
∞

n=1 converges in A.

(ii) implies (iii). Let A be P -embedded in B and let {An}
∞

n=1 be a sequence

in A which converges in B. Since each p ∈ P (B) is sequentially continuous,

{An}
∞

n=1 is P -Cauchy and hence converges in A.

(iii) implies (i). From the classical METHM it follows that A is P -embedded

in σ(A). Thus (iii) implies that A sequentially closed in σ(A) and hence A =

σ(A). This completes the proof.

Theorem 2.3 (METHM – Novák). Let A be a field of subsets of X and let

σ(A) be the generated σ-field. Then σ(A) is a maximal field of subsets of X in

which A is P -embedded and sequentially dense.

Proof. The assertion follows from the preceding theorem. Let A be a field of

subsets of X. Assume that A is P -embedded and sequentially dense in a field B.

Clearly, A is P -embedded and sequentially dense in σ(B). Since the generated

σ-field of a field of subsets of X is the smallest sequentially closed system in

{0, 1}X containing the field in question, necessarily σ(B) = σ(A). Thus σ(A)

is maximal. This completes the proof.

Observe that σ-fields form a special class of fields of subsets. Indeed, A

= σ(A) means that A has the following absolute property with respect to the

extension of probability measures (cf. [7]): A is sequentially closed in each field

of subsets in which it is P -embedded (in this respect, this absolute property is

similar to the compactness).

J. Novák showed that each bounded σ-additive measure on a ring of sets

A is sequentially continuous ([28]) and pointed out the topological aspects of

the extension of such measures on A over the generated σ-ring σ(A): it is of

a similar nature as the extension of bounded continuous functions on a com-

pletely regular topological space X over its Čech-Stone compactification βX
(or as the extension of continuous functions on X over its Hewitt realcompact-

ification υX). He developed a theory of sequential envelopes and (exploiting

the Measure Extension Theorem) he proved that σ(A) is the sequential enve-

lope of A with respect to the probabilities. However, the sequential continuity
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does not capture other properties (e.g. additivity) of probability measures. We

show that in the category ID of D-posets of fuzzy sets (such D-posets gener-

alize both fields of subsets and their fuzzy counterparts called bold algebras)

probabilities are morphisms and the extension of probabilities on A over σ(A)

is a completely categorical construction (an epireflection, see [1]).

Observation 2.4. Novák’s original construction of the sequential envelope of

a space X (a set carrying sequential convergence and the corresponding conver-

gence closure) with respect to a given class C0 of sequentially continuous func-

tions into [0, 1] follows the usual construction of β-compactification: embedding

X into the power [0, 1]C0 and taking the closure (instead of the product topology,

[0, 1]C0 carries the pointwise convergence, i.e. the categorical product conver-

gence, and instead of the topological closure we take the smallest sequentially

closed set containing the embedded X). In fact, this is a categorical construc-

tion of an epireflection of X, belonging to the category of space embeddable into

powers [0, 1]S, into the subcategory of spaces embeddable as sequentially closed

subspaces of powers [0, 1]S (cf. [5]).

Observation 2.5. In the realm of sequential convergence spaces, the sequen-

tially closed subspaces of categorical convergence powers [0, 1]S possess the qual-

ity of being absolutely sequentially closed with respect to the extension of sequen-

tially continuous functions of a given class, i.e., sequentially closed in every

larger space to which sequentially continuous functions of a given class can be

extended.

Observation 2.6. The category ID of D-posets of fuzzy sets is the result of

a quest for a natural domain of generalized random events in which “all goes

well”:

1. Both the classical Kolmogorovian probability theory, or CPT, and the

fuzzy probability theory, or FPT, initiated by A. L. Zadeh ([36]) “live as mini-

mal models having simple characteristic properties”.

2. Probability measures, observables (i.e. preimages of random variables)

and their fuzzy counterparts are morphisms.

3. Basic probability notions and constructions are categorical.

3. Notes on probability

In this section we present some notes about the foundations of probability. We

will put into a perspective CPT and FPT and show why in the category ID
“all goes well”.

A. N. Kolmogorov in his famous “Grundbegriffe” ([22]) has “mathematized”

probability via set-theoretic and maesure-theoretic constructions. Roughly,

random events are “measurable” subsets of the outcomes, and probability is a

measure (normed and σ-additive) on the random events. Observe that
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• Random events form a σ-complete lattice of sets;

• In fact, every random event, as a subset of Ω, is a propositional function

(Boolean logic).

In 1968 L. A. Zadeh ([36]) proposed to extend the classical probability to the

realm of fuzzy mathematics. His idea was to extend classical random events, i.e.

measurable {0, 1}-valued (propositional) functions, to fuzzy random events, i.e.

measurable [0, 1]-valued (propositional) functions, and the probability measure

to the integral with respect to a probability measure.

There are conceptual and theoretical differences and similarities between

randomness and fuzziness (cf. [24]).

• Both systems describe uncertainty with numbers in the unit interval [0, 1]

and both systems combine sets and propositions associatively, commuta-

tively, and distributively;

• The key distinction concerns how the systems deal with a thing A and

its opposite Ac;

• Classical logic and set theory assume that the law of noncontradiction

(the law of excluded middle) is never violated. That is what makes the

classical theory black or white;

• Fuzziness begins where Western logic ends. Fuzziness describes event

ambiguity. It measures the degree to which an event occurs, not whether

it occurs;

• Randomness describes the uncertainty of event occurrence. An event

occurs or not;

• At issue is the nature of the occurring event: whether it is uncertain in

any way, in particular whether it can be unambiguously distinguished

from its opposite.

In order to represent a classical object o

• We choose a set X of attributes;

• We identify o and the set Ao = {x ∈ X; o does have x}.

Observe that, in fact, o can be viewed as a propositional function o ∈ {0, 1}X

and x ∈ Ao iff the proposition o(x) is true. Clearly, x cannot be at the same

time in Ao and in its complement.

In order to represent a fuzzy object o

• We choose a set X of attributes;
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• We identify o and the fuzzy set o ∈ [0, 1]X , where o(x) is the degree to

which o possesses the attribute x.

Observe that, in fact, o can be viewed as a “fuzzy propositional function”

o ∈ {0, 1}X and o(x) tells us how much o is true at x. It can happen, that at

some x both o and its complement oc = 1X − o are “partially true”, i.e., both

o(x) and oc(x) = 1 − o(x) are positive numbers.

Question: Is it possible to build a generalized probability so that the CPT

and FPT are special cases?

Answer: Yes.

• We start with a set X of attributes and the system of potential generalized

random events [0, 1]X carrying the natural pointwise partial order;

• Any minimal model of generalized random events X ⊆ [0, 1]X has to

contain the maximal and minimal random events (constant functions 0X ,

1X) and has to be closed with respect to the relative complementation:

if u, v ∈ X and v ≤ u, i.e. v(x) ≤ u(x) for all x ∈ X, then u − v ∈ X ;

• If we assume that it is a σ-complete lattice (defined pointwise), then

there exists a σ-field A of subsets of X such that A ⊆ X ⊆ M(A), where

M(A) is the family of all measurable functions ranging in [0, 1];

• If we assume that X is divisible, i.e., for each u ∈ X and each natural

number n there exists v ∈ X such that nv = u, and a σ-complete lattice,

then X = M(A).

The last two items are in fact deep results about the structure of “fuzzy

random events” (cf. [27, Theorem 5.1]). To sum up, random events in CPT

and random events in FPT are the minimal models of random events in a

reasonable generalized probability; divisibility characterizes the transition from

random events in CPT to random events in FPT.

4. From extension to epireflection

This section is devoted to bold algebras, distinguished domains of generalized

probability (cf. [33]). First, we recall some notions used in the sequel.

D-posets have been introduced in [23] in order to model events in quantum

probability. They generalize Boolean algebras, MV -algebras and other proba-

bility domains (cf. [4]) and provide a category in which generalized probability

measures, called states, become morphisms. Recall that a D-poset is a par-

tially ordered set X with the greatest element 1X , the least element 0X , and

a partial binary operation called difference, such that a⊖ b is defined iff b ≤ a,

and the following axioms are assumed:
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(D1) a ⊖ 0X = a for each a ∈ X;

(D2) If c ≤ b ≤ a, then a ⊖ b ≤ a ⊖ c and (a ⊖ c) ⊖ (a ⊖ b) = b ⊖ c.

A map h of a D-poset X into a D-poset Y which preserves the D-structure is

said to be a D-homomorphism. Consider the unit interval I = [0, 1] carrying the

natural order, algebraic operations and convergence. Define a partial operation

“⊖” as follows: for a, b ∈ I, b ≤ a, put a⊖b = a−b. Then I carrying the natural

(total) order, together with the partial operation is a D-poset. A sequentially

continuous D- homomorphism of X into I is said to be a state.

Fundamental to applications are D-posets of fuzzy sets, i.e. systems X ⊆
[0, 1]X carrying the coordinatewise partial order, coordinatewise convergence

of sequences, containing the top and bottom elements of IX , and closed with

respect to the partial operation difference defined coordinatewise. We always

assume that X is reduced, i.e., for x, y ∈ X, x 6= y, there exists u ∈ X such

that u(x) 6= u(y). Denote ID the category having (reduced) D-posets of fuzzy

sets as objects and having sequentially continuous D-homomorphisms as mor-

phisms. Objects of ID are subobjects of the powers IX .

Recall ([4, 7]) that a bold algebra is a system X ⊆ [0, 1]X containing the

constant functions 0X , 1X and closed with respect to the usual  Lukasiewicz

operations: for u, v ∈ X put (u ⊕ v)(x) = u(x) ⊕ v(x) = min{1, u(x) + v(x)},

u∗(x) = 1−u(x), x ∈ X. Bold algebras are MV -algebras representable as [0, 1]-

valued functions, MV -algebras generalize Boolean algebras and bold algebras

generalize in a natural way fields of sets (viewed as indicator functions). More

information concerning MV -algebras and probability on MV -algebras can be

found in [33]. If a bold algebra X ⊆ [0, 1]X is sequentially closed in [0, 1]X (with

respect to the coordinatewise sequential convergence), then X is a  Lukasiewicz

tribe (X is closed not only with respect to finite, but also with respect to

countable  Lukasiewicz sums, cf. [7, Corollary 2.8]). Let X ⊆ [0, 1]X be a bold

algebra. Then [0, 1]X is a  Lukasiewicz tribe containing X and the intersection

of all  Lukasiewicz tribes Y ⊆ [0, 1]X such that X ⊆ Y is a  Lukasiewicz tribe;

it will be called the induced  Lukasiewicz tribe and denoted by σ(X ). Each

bold algebra can be considered as on object of ID. Finally, each bold algebra

X ⊆ [0, 1]X is a lattice, where for u, v ∈ X we have (u ∨ v)(x) = u(x) ∨ v(x)

and (u ∧ v)(x) = u(x) ∧ v(x), x ∈ X.

Denote FSD the full subcategory of ID the objects of which are fields of

sets and CFSD its full subcategory consisting of σ-fields. It is known (cf. [32])

that sequentially continuous D-homomorphisms of a field of sets ranging in I
are exactly σ-additive probability measures.

Denote BID the full subcategory of ID whose objects are bold algebras (the

morphisms are exactly sequentially continuous D-morphisms). Let CBID be
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the subcategory of BID consisting of  Lukasiewicz tribes (remember, a bold

algebra X ⊆ IX is a tribe iff X is a sequentially closed in IX).

Theorem 4.1. Let X ⊆ IX be a bold algebra and let σ(X ) ⊆ IX be the induced

 Lukasiewicz tribe. Let h be a sequentially continuous D-homomorphism of X
into a  Lukasiewicz tribe Y. Then h can be uniquely extended to a sequentially

continuous D-homomorphism hσ of σ(X ) into Y.

Proof. Let Y = σ(Y) ⊆ IY . For each y ∈ Y , let pry be the y-th projection

of IY to the factor space I{y}. Then each composition pry ◦ h is a state on

X and (cf. [7, Proposition 2.1]) it can be uniquely extended to a state pry ◦ h
on σ(X ). Since IY is a categorical product, there is a unique ID-morphism

hσ of σ(X ) into IY such that pry ◦ hσ = pry ◦ h. Clearly, for each u ∈ X and

each y ∈ Y we have pry ◦ h(u) = (pry ◦ h)(u). Hence hσ(u) = h(u) for each

u ∈ X . A topological argument shows that hσ maps σ(X ) into Y = σ(Y) and

that hσ is uniquely determined (indeed, the pointwise convergence has unique

limits, X is sequentially dense in σ(X ), hσ is sequentially continuous and hence

hσ(σ(X )) ⊆ σ((h(X )) ⊆ σ(Y) = Y, (cf. [30]).

Remark 4.2. If Y is the unit interval [0,1] carrying the canonical D-structure,

then the previous theorem becomes the usual ”State Extension Theorem” for

bold algebras.

Remark 4.3. Note that the embedding of a bold algebra X into σ(X ) is an

epimorphism (two morphisms on σ(X ) agreeing on X are identical). This is

a standard topological fact following from the uniqueness of limits, sequential

continuity of morphisms, and the sequential density of X in σ(X ) (cf. [30]).

Corollary 4.4. The subcategory CBID is an epireflective subcategory of BID.

Observe ([1]) that an epireflector is (roughly) a nice functor sending each

object having some fundamental properties to the unique object in the subcat-

egory of objects having some extreme properties, its epireflection, and sending

each morphism to the unique morphism of the epireflection of its domain into

the epireflection of its range (e.g. the completion of a metric space is an epire-

flection into complete metric spaces).

Corollary 4.5. The subcategory CFSD is an epireflective subcategory of FSD.

Proof. Let A ⊆ {0, 1}X be a field of subset of X and let σ(A) be the generated

σ-field. Let h be an ID-morphism of A into a σ-field B = σ(B). Clearly,

it suffices to prove that h can be uniquely extended to an ID-morphism hσ

of σ(A) into B. But σ(A) and B are the induced  Lukasiewicz tribes and the

assertion follows from Theorem 4.1.
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As stated earlier, in the category ID the extension of probability measures

on a field of subsets over the generated σ-field becomes a purely categorical

construction. Moreover, the categorical approach leads to a better understand-

ing of the foundations of probability theory (cf. [11, 20, 27]). Finally, observe

that the sequential continuity of morphisms plays an an important role.
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[1] J. Adámek, Theory of Mathematical Structures, Reidel, Dordrecht, 1983.
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Mathematical Institute,
Slovak Academy of Sciences,
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1. Introduction

In this paper we are concerned with the topological and the algebraic entropy

respectively in the setting of continuous endomorphisms of totally disconnected

compact groups and of endomorphisms of locally finite groups. In the abelian

case the correspondence between these two settings - that is between continuous

endomorphisms of totally disconnected compact abelian groups and endomor-

phisms of torsion abelian groups - is given by Pontryagin duality.

In [1] Adler, Konheim and McAndrew introduced the topological entropy for

continuous selfmaps of compact spaces, while later on Bowen in [2] introduced

it for uniformly continuous selfmaps of metric spaces, and this definition was

extended to uniformly continuous selfmaps of uniform spaces by Hood in [9]. As

explained in detail in [4], for continuous endomorphisms of totally disconnected

compact groups the topological entropy can be introduced as follows. It is worth

recalling that a totally disconnected compact group K has as a local base at 1

the family B(K) of all open subgroups of K, as proved by van Dantzig in [14].

Let K be a totally disconnected compact group and ψ : K → K a con-

tinuous endomorphism. For every open subgroup U of K and every positive

integer n let

Cn(ψ,U) = U ∩ ψ−1(U) ∩ . . . ∩ ψ−n+1(U)
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be the n-th ψ-cotrajectory of U , and the ψ-cotrajectory of U is

C(ψ,U) =

∞⋂

n=0

ψ−n(U) =

∞⋂

n=1

Cn(ψ,U).

Note that this is the greatest ψ-invariant subgroup of K contained in U .

The topological entropy of ψ with respect to U is given by the following limit,

which is proved to exist (see also Lemma 3.1 below),

Htop(ψ,U) = lim
n→∞

log[K : Cn(ψ,U)]

n
.

The topological entropy of ψ is

htop(ψ) = sup{Htop(ψ,U) : U ∈ B(K)}.

Using ideas briefly sketched in [1], Weiss developed in [15] the definition

of algebraic entropy for endomorphisms of torsion abelian groups. Moreover,

Peters modified this definition in [12] for automorphisms of abelian groups, and

this approach was extended to all endomorphisms of abelian groups in [3]; in [4]

also the hypothesis of commutativity of the groups was removed. Following [4]

we give here the definition of algebraic entropy for endomorphisms of locally

finite groups, which coincides with the definition given in [1] in the abelian

case.

Let G be a locally finite group and φ : G → G an endomorphism. Denote

by F(G) the family of all finite subgroups of G. For every finite subgroup F of

G and every positive integer n let

Tn(φ, F ) = F · φ(F ) · . . . · φn−1(F )

be the n-th φ-trajectory of F , and the φ-trajectory of F is

T (φ, F ) =

∞⋃

n=1

Tn(φ, F ).

If G is abelian, then T (φ, F ) is the smallest φ-invariant subgroup of G contain-

ing F .

The algebraic entropy of φ with respect to F is the following limit, which

exists as proved in [4],

Halg(φ, F ) = lim
n→∞

log |Tn(φ, F )|

n
.
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The algebraic entropy of φ is

halg(φ) = sup{Halg(φ, F ) : F ∈ F(G)}.

Every locally finite group is obviously torsion, while the converse holds true

under the hypothesis that the group is abelian; on the other hand, the solution

of Burnside’s problem shows that even groups of finite exponent may fail to be

locally finite.

Yuzvinski claims at the end of his paper [17], that for every torsion abelian

group G and every endomorphism φ : G→ G one has

halg(φ) = sup

{
log

∣∣∣∣
T (φ, F )

φ(T (φ, F ))

∣∣∣∣ : F ∈ F(G)

}
. (1)

This formula is false without the assumption that φ is injective, as shown by

Example 2.1 below (see also [7]). The huge gap in Example 2.1 is due to the

special choice of the zero endomorphism. In fact, as noted in [7], Yuzvinski’s

claim is true for injective endomorphisms. A proof of this theorem, based on

a much more general result on multiplicities, was given in [7]. Here we offer a

short multiplicity-free proof of the following more general and precise formula

that obviously implies the theorem. Note that if G is a torsion abelian group

and φ : G → G an endomorphism, then the hypothesis that kerφ ∩ T (φ, F ) is

finite in the following formula is automatically satisfied (see Lemma 4.1).

Algebraic Formula. Let G be a locally finite group, φ : G→ G an endomor-

phism and F a finite normal subgroup of G such that kerφ ∩ T (φ, F ) is finite.

Then

Halg(φ, F ) = log

∣∣∣∣
T (φ, F )

φ(T (φ, F ))

∣∣∣∣− log | kerφ ∩ T (φ, F )|.

The next corollary shows that Yuzvinski’s claim holds true for injective

endomorphisms.

Corollary 1.1. Let G be a locally finite group, φ : G→ G an injective endo-

morphism and F a finite normal subgroup of G. Then

Halg(φ, F ) = log

∣∣∣∣
T (φ, F )

φ(T (φ, F ))

∣∣∣∣ .

Therefore (1) holds true whenever φ is injective.

This formula suggests a similar approach for the topological entropy. In-

deed it is possible to prove the following limit-free formula for the topological

entropy. Also in this case, if the totally disconnected compact group K is
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abelian and ψ : K → K is a continuous endomorphism, then the condition

that K/(Imψ + C(ψ,U)) is finite is automatically satisfied.

Topological Formula. Let K be a totally disconnected compact group, ψ :

K → K a continuous endomorphism and U an open normal subgroup of K
such that K/(Imψ · C(ψ,U)) is finite. Then

Htop(ψ,U) = log

∣∣∣∣
ψ−1(C(ψ,U))

C(ψ,U)

∣∣∣∣− log

∣∣∣∣
K

Imψ · C(ψ,U)

∣∣∣∣ .

Stoyanov in [13] proved that in the compact case for the computation of the

topological entropy one can reduce to surjective endomorphisms ψ, for which

the quotient K/(Imψ · C(ψ,U)) is obviously trivial. The much simpler formula

in this case (practically, the topological counterpart of Corollary 1.1) is given

in Corollary 3.6.

In Section 2 we give a proof of the Algebraic Formula, while in Section 3 we

verify the Topological Formula. Moreover, we note how these two results give

immediately a new proof of Weiss Bridge Theorem connecting the algebraic

and the topological entropy by Pontryagin duality. Note that the Pontryagin

dual of a torsion abelian group is a totally disconnected compact abelian group.

Weiss Bridge Theorem. Let G be a torsion abelian group and φ : G→ G an

endomorphism. Let K = Ĝ be the Pontryagin dual of G and let ψ = φ̂ : K → K
be the dual of φ. Then

halg(φ) = htop(ψ).

Let K be a totally disconnected compact group and ψ : K → K a topolog-

ical automorphism. In [16] Willis defined the pair (K,ψ) to have finite depth

if there exists U ∈ B(K) such that

⋂

n∈Z

ψn(U) = {1}; (2)

we call a subgroup U with this property φ-antistable. One can show that K
must necessarily be metrizable and totally disconnected (see Section 5 for more

details). For a pair (K,ψ) of finite depth, the depth of ψ is

depth(ψ) = [ψ(C(ψ−1, U)) : C(ψ−1, U)]; (3)

as noted in [16] this index is finite and does not depend on the choice of the

φ-antistable subgroup U ∈ B(K).
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In Section 5 an application of the Topological Formula is given in Theo-

rem 5.2, stating that in case (K,ψ) is a pair of finite depth, then

htop(ψ) = log depth(ψ).

A similar result for the measure-theoretic entropy, going into a somewhat dif-

ferent direction, can be found in [10, Theorem 2]. According to Halmos [8], sur-

jective continuous endomorphisms of compact groups are measure preserving,

and in this case the measure theoretic entropy coincides with the topological

entropy as proved by Stoyanov [13].

2. Algebraic entropy

The following example shows that Yuzvinski’s claim (1) is false without the

assumption that the considered endomorphism is injective.

Example 2.1. Let G be a non-zero torsion abelian group, and φ : G → G
be the zero endomorphism. Take any non-zero finite subgroup F of G; then

T (φ, F ) = F and φ(T (φ, F )) = 0. Then

sup

{
log

∣∣∣∣
T (φ, F )

φ(T (φ, F ))

∣∣∣∣ : F ∈ F(G)

}
≥ log

∣∣∣∣
T (φ, F )

φ(T (φ, F ))

∣∣∣∣ = log |F |,

while halg(φ) = 0.

In particular, when G is an infinite torsion abelian group, for every n > 0

we can pick a finite subgroup Fn of G of size ≥ n. Then

sup

{
log

∣∣∣∣
T (φ, F )

φ(T (φ, F ))

∣∣∣∣ : F ∈ F(G)

}
= ∞,

so in this case one has 0 = halg(φ) 6= ∞ in (1).

We are now in position to prove the Algebraic Formula.

Theorem 2.2 (Algebraic Formula). Let G be a locally finite group, φ : G→ G
an endomorphism and F a finite normal subgroup of G such that kerφ∩T (φ, F )

is finite. Then

Halg(φ, F ) = log

∣∣∣∣
T (φ, F )

φ(T (φ, F ))

∣∣∣∣− log | kerφ ∩ T (φ, F )|.

Proof. Let K = kerφ ∩ T (φ, F ), which is finite by hypothesis. We show that

one can assume without loss of generality that F contains K. Indeed let F ′ =

FK ⊆ T (φ, F ). Then T (φ, F ′) = T (φ, F ), and so Halg(φ, F
′) = Halg(φ, F );
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moreover, K = kerφ ∩ F ′ ⊆ F ′. So we assume without loss of generality that

K ⊆ F and we verify that

Halg(φ, F ) = log

∣∣∣∣
T (φ, F )

φ(T (φ, F ))

∣∣∣∣− log |K|.

For the sake of brevity, we write in the sequel Tn and T , for Tn(φ, F ) and

T (φ, F ) respectively.

Arguing as in [6, Lemma 1.1] we have that the index |Tn+1/Tn| stabilizes,

i.e., there exists n0 > 0 such that for all n > n0 one has |Tn+1/Tn| = α,

consequently Halg(φ, F ) = logα. Our aim is to show that also
∣∣∣∣
T

φ(T )

∣∣∣∣ = α · |K|; (4)

obviously this proves the theorem. Since T = F · φ(T ) and (F · φ(T ))/φ(T ) ∼=
F/(F ∩ φ(T )), it follows that (4) is equivalent to

∣∣∣∣
F

F ∩ φ(T )

∣∣∣∣ = α · |K|. (5)

The increasing chain F ∩ φ(Tn) of finite subgroups of F stabilizes, so there

exists n1 > 0 such that F ∩ φ(T ) = F ∩ φ(Tn) for all n ≥ n1. Hence (5) is

equivalent to ∣∣∣∣
F

F ∩ φ(Tn)

∣∣∣∣ = α · |K|

for all n ≥ n1.

As F/(F ∩ φ(Tn)) ∼= (F · φ(Tn))/φ(Tn) = Tn+1/φ(Tn), we conclude that
∣∣∣∣

F

F ∩ φ(Tn)

∣∣∣∣ =
∣∣∣∣
Tn+1

φ(Tn)

∣∣∣∣ . (6)

Since φ(Tn) ∼= Tn/(kerφ ∩ Tn) = Tn/K, we have |φ(Tn)| · |K| = |Tn|. Hence

Lagrange Theorem applied to the group Tn+1 and its subgroups Tn and φ(Tn)

gives ∣∣∣∣
Tn+1

φ(Tn)

∣∣∣∣ =
|Tn+1|

|φ(Tn)|
=

|Tn+1| · |K|

|Tn|
=

∣∣∣∣
Tn+1

Tn

∣∣∣∣ · |K| = α · |K|, (7)

provided n ≥ max{n0, n1}. From (6) and (7) we get (5), and this concludes

the proof.

The next corollary is dedicated to the case of a finite normal subgroup F
with G = T (φ, F ). As noted in [6] this condition is not restrictive for the

computation of the algebraic entropy, since

Halg(φ, F ) = Halg(φ ↾T (φ,F ), F ) = halg(φ ↾T (φ,F )) .

So in the particular case when G = T (φ, F ) we have halg(φ) = Halg(φ, F ).
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Corollary 2.3. Let G be a locally finite group, φ : G→ G an endomorphism

and F a finite normal subgroup of G such that G = T (φ, F ). If kerφ is finite,

then

Halg(φ, F ) = log |cokerφ| − log | kerφ|.

In particular, |cokerφ| ≥ | kerφ|.

3. Topological entropy

The following is the counterpart of [6, Lemma 1.1] for the topological entropy.

Its proof follows the one of [5, Lemma 2.2].

Lemma 3.1. Let K be a compact group, ψ : K → K a continuous endomor-

phism and U an open normal subgroup of K. For every positive integer n let

cn := |K/Cn(ψ,U)|. Then

(a) cn divides cn+1 for every n > 0.

For every n > 0 let αn := cn+1/cn = |Cn(ψ,U)/Cn+1(ψ,U)|. Then

(b) αn+1 divides αn for every n > 0.

(c) Consequently the sequence {αn}n>0 stabilizes, i.e., there exist integers

n0 > 0 and α > 0 such that αn = α for every n ≥ n0.

(d) Moreover, Htop(ψ,U) = logα.

(e) If ψ is a topological automorphism, Htop(ψ
−1, U) = Htop(ψ,U).

Proof. Let n > 0. Since there is no possibility of confusion we denote Cn(ψ,U)

simply by Cn.

(a) Since K/Cn is isomorphic to (K/Cn+1)/(Cn/Cn+1), it follows that

cn+1/cn = |Cn/Cn+1| and in particular cn divides cn+1.

(b) We prove that Cn/Cn+1 is isomorphic to a subgroup of Cn−1/Cn, and

this gives immediately the thesis. First note that

Cn

Cn+1
=

Cn

Cn ∩ ψ−n(U)
∼=
Cn · ψ−n(U)

ψ−n(U)
.

Now (Cnψ
−n(U))/ψ−n(U) is a subgroup of the quotient (ψ−1(Cn−1)ψ

−n(U))/
ψ−n(U). The homomorphism K/ψ−n(U) → K/ψ−n+1(U) induced by ψ is

injective, therefore the quotient (ψ−1(Cn−1) · ψ
−n(U))/ψ−n(U) is isomorphic

to its image

Cn−1 · ψ
−n+1(U)

ψ−n+1(U)
∼=

Cn−1

Cn−1 ∩ ψ−n+1(U)
=
Cn−1

Cn

.
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(c) follows immediately from (b).

(d) By item (c) for n0 > 0 we have cn0+n = αncn0
for every n ≥ 0, and by

the definition of topological entropy

Htop(ψ,U) = lim
n→∞

log cn
n

= lim
n→∞

log(αncn0
)

n
= logα.

(e) Assume that ψ is a topological automorphism. For every positive

integer n let c∗n := |K/Cn(ψ−1, U)|. According to (a)–(c) applied to ψ−1,

Htop(ψ
−1, U) = logα∗, where α∗ is the value at which stabilizes the sequence

α∗

n := c∗n+1/c
∗

n. Hence it suffices to see that c∗n = cn for all n > 0 and this is

obvious since ψn−1(Cn(ψ,U)) = Cn(ψ−1, U).

For the proof of the Topological Formula we need the following folklore fact

that we give with a proof for reader’s convenience.

Lemma 3.2. Let G be a topological group and let T be a closed subset of G.

Then for every descending chain B1 ⊇ B2 ⊇ . . . ⊇ Bn ⊇ . . . of closed subsets

of G the intersection B =
⋂

∞

n=1Bn is non-empty and
⋂

∞

n=1(BnT ) = BT ,

whenever B1 is countably compact.

Proof. That B 6= ∅ is a direct consequence of the countable compactness of B1.

The inclusion
⋂

∞

n=1(BnT ) ⊇ BT is obvious. To verify the converse inclusion

pick an element x ∈
⋂

∞

n=1(BnT ). Then there exist elements bn ∈ Bn, tn ∈
T such that x = bntn for every n > 0. Let Dn be the closure of the set

{bn, bn+1, . . .} for n > 0. Then

Dn ⊆ Bn for each n > 0. (8)

The countable compactness of B1 yields that
⋂

∞

n=1Dn 6= ∅. Fix an element

b of this intersection and note that b ∈ B due to (8). It suffices to prove

that b−1x ∈ T . Since T is closed it suffices to check that b−1x belongs to the

closure of T . To this end let V = V −1 be a symmetric neighborhood of the

neutral element of G. Then bV is a neighborhood of b ∈ D1, so bV ∋ bm for

some m > 0. This yields V b−1 ∋ b−1
m , and consequently V b−1x ∋ b−1

m x = tm.

Therefore V b−1x ∩ T 6= ∅, and so b−1x belongs to the closure of T .

Theorem 3.3 (Topological Formula). Let K be a totally disconnected compact

group, ψ : K → K a continuous endomorphism and U an open normal subgroup

of K such that K/(Imψ · C(ψ,U)) is finite. Then

Htop(ψ,U) = log

∣∣∣∣
ψ−1(C(ψ,U))

C(ψ,U)

∣∣∣∣− log

∣∣∣∣
K

Imψ · C(ψ,U)

∣∣∣∣ .
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Proof. Since there is no possibility of confusion we denote Cn(ψ,U) and C(ψ,U)

simply by Cn and C respectively. Let L = Imψ · C. We can assume without

loss of generality that U ⊆ L. Indeed otherwise one can take U ′ = U ∩ L.

Then U ′ is open since L is open, being a closed subgroup of K of finite index

by hypothesis; moreover, C(ψ,U) = C(ψ,U ′) as ψ−1(U) = ψ−1(U ′) and so

Htop(ψ,U) = Htop(ψ,U
′).

Let us note that our assumption U ⊆ L and the inclusion C ⊆ U imply

L = Imψ · C ⊆ Imψ · Cn ⊆ Imψ · U ⊆ Imψ · C · U ⊆ L · U = L. (9)

The homomorphism K/ψ−1(Cn) → K/Cn induced by ψ is injective and the

image of K/ψ−1(Cn) is Imψ · Cn/Cn. As Imψ · Cn = L by (9), we get

∣∣∣∣
K

ψ−1(Cn)

∣∣∣∣ =
∣∣∣∣
L

Cn

∣∣∣∣ . (10)

By Lemma 3.1 there exist integers n0 > 0 and α > 0 such that αn = α for

every n ≥ n0 and Htop(ψ,U) = logα. So it suffices to prove that

∣∣∣∣
ψ−1(C)

C

∣∣∣∣ = α · |L|. (11)

We start noting that

ψ−1(C)

C
=

ψ−1(C)

ψ−1(C) ∩ U
∼=
ψ−1(C) · U

U
. (12)

The quotient K/U is finite and {(ψ−1(Cn) ·U)/U}n>0 is a descending chain of

subgroups of K/U , hence it stabilizes, that is there exists n1 > 0 such that

ψ−1(Cn) · U = ψ−1(Cn1
) · U for every n ≥ n1;

in other words
⋂

∞

n=1(ψ
−1(Cn) · U) = ψ−1(Cn1

) · U . Lemma 3.2 gives

∞⋂

n=1

(ψ−1(Cn) · U) =

(
∞⋂

n=1

ψ−1(Cn)

)
· U,

and
⋂

∞

n=1 ψ
−1(Cn) = ψ−1(C), therefore

ψ−1(C) · U = ψ−1(Cn) · U for every n ≥ n1. (13)

Let n ≥ max{n0, n1}. Then (12) and (13) give

ψ−1(C)

C
∼=
ψ−1(C) · U

U
=
ψ−1(Cn) · U

U
∼=

ψ−1(Cn)

ψ−1(Cn) ∩ U
=
ψ−1(Cn)

Cn+1
.
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Consequently ∣∣∣∣
ψ−1(C)

C

∣∣∣∣ =
∣∣∣∣
ψ−1(Cn)

Cn+1

∣∣∣∣ =
|K/Cn+1|

|K/ψ−1(Cn)|
. (14)

As |K/Cn| = |K/L| · |L/Cn|, (10) gives

∣∣∣∣
K

ψ−1(Cn)

∣∣∣∣ =
|K/Cn|

|K/L|
. (15)

So using (15) in (14), and recalling that n ≥ n0, we can conclude that

∣∣∣∣
ψ−1(C)

C

∣∣∣∣ =
|K/Cn+1|

|K/Cn|

∣∣∣∣
K

L

∣∣∣∣ =
∣∣∣∣
Cn

Cn+1

∣∣∣∣
∣∣∣∣
K

L

∣∣∣∣ = α

∣∣∣∣
K

L

∣∣∣∣ . (16)

i.e., the wanted equality announced in (11).

As noted in the Introduction, if K is a totally disconnected compact group,

B(K) is a local base at 1. In this case also the subfamily B⊳(K) of B(K) of all

normal open subgroups of K is a local base at 1. Indeed we have the following

property, where for U ∈ B(K), the heart UK of U in K is the greatest normal

subgroup of K contained in U .

Lemma 3.4. Let K be a compact group. If U ∈ B(K), then UK ∈ B⊳(K).

Since for any U, V ∈ B(K), if U ⊆ V , then Htop(ψ, V ) ≤ Htop(ψ,U), by the

definition of topological entropy we immediately derive that it suffices to take

the supremum when U ranges in a local base at 1 of K:

Lemma 3.5. Let K be a totally disconnected compact group, ψ : K → K a

continuous endomorphism and B ⊆ B(K) a local base at 1. Then htop(ψ) =

sup{Htop(ψ,U) : U ∈ B}.

In particular, htop(ψ) = sup{Htop(ψ,U) : U ∈ B⊳(K)}, so we immediately

get Corollary 3.6 of the Topological Formula for continuous surjective endo-

morphism (in particular, for topological automorphisms).

Following Willis [16], when ψ is clear, we denote C(ψ,U) also by the

shorter and more suggestive U−, and we leave U+ denote the ψ−1-cotrajectory

C(ψ−1, U) =
⋂

∞

n=0 ψ
n(U). We start using this notation from (17), where

the first equality follows from Theorem 3.3, while the second one follows from

Lemma 3.1(e) and the first equality.

Corollary 3.6. Let K be a totally disconnected compact group and ψ : K →
K a continuous surjective endomorphism. Then

Htop(ψ,U) = log

∣∣∣∣
ψ−1(U−)

U−

∣∣∣∣ and

∣∣∣∣
ψ−1(U−)

U−

∣∣∣∣ =
∣∣∣∣
ψ(U+)

U+

∣∣∣∣ (17)
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for every U ∈ B⊳(K). In particular,

htop(ψ) = sup

{
log

∣∣∣∣
ψ−1(U−)

U−

∣∣∣∣ : U ∈ B⊳(K)

}
.

The next corollary is dedicated to the case of an open normal subgroup U
with trivial ψ-cotrajectory U− = C(ψ,U).

Corollary 3.7. Let K be a totally disconnected compact group, ψ : K → K
a continuous endomorphism and U ∈ B⊳(K) with trivial ψ-cotrajectory U−. If

cokerψ = K/Imψ is finite, then

Htop(ψ,U) = log |kerψ| − log |cokerψ|.

In particular, | kerψ| ≥ |cokerψ|.

The aim of the next remark is to clarify the significance of the hypothesis

|K/(Imψ · U−)| < ∞ in Theorem 3.3. See also Remark 5.4 for an interesting

consequence of Corollary 3.7.

Remark 3.8. Let ψ : K → K a continuous endomorphism of a totally discon-

nected compact group K and let U an open normal subgroup of K.

(a) Let KU = K/U−, let qU : K → KU be the canonical homomorphism

and let ψU : KU → KU be the induced endomorphism. Clearly, U− is

ψ-invariant (but need not be stabilized by ψ) and qU (U) is ψU -antistable

(actually, q(U)− = C(ψU , q(U)) is trivial). Moreover, K/(Imψ · U−) is

finite precisely when ImψU has finite index in KU . More precisely,

K/(Imψ · U−) ∼= KU/(ImψU · q(U)−) = KU/ImψU = cokerψU ,

as q(U)− is trivial. So

∣∣∣∣
K

Imψ · U−

∣∣∣∣ =
∣∣∣∣
KU

ImψU

∣∣∣∣ = |cokerψU |.

By Corollary 3.7 the triviality of q(U)− gives

Htop(ψU , qU (U)) = log | kerψU | − log |cokerψU |.

(b) Now let N = U− ∩ U+, K(U) = K/NU and let pU : K → K(U) be the

canonical homomorphism. Clearly, NU is stabilized by ψ, the induced en-

domorphism ψ(U) of K(U) is injective and pU (U) is ψ(U)-antistable (one

can see as before that K/(Imψ ·U−) is finite precisely when cokerψ(U) =

K(U)/Imψ(U) is finite, etc.). One can use the pairs (K(U), ψ(U)) of fi-

nite depth to present the pair (K,ψ) as an inverse limit of the pairs

(K(U), ψ(U)) with U ∈ B⊳(K) of finite depth (see [16, Proposition 5.3]).
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4. The abelian case

When the groups are abelian the finiteness conditions in the Algebraic Formula

and in the Topological Formula are automatically satisfied. Indeed we have the

following result, which applies directly for the Algebraic Formula and together

with Lemma 4.3 for the Topological Formula.

Lemma 4.1. Let G be a torsion abelian group, φ : G → G an endomorphism

and F a finite subgroup of G. Then kerφ ∩ T (φ, F ) is finite.

Proof. Since T (φ, F ) is φ-invariant, we can assume without loss of generality

that G = T (φ, F ). This is a finitely generated Z[X]-module. Therefore kerφ is

a finitely generated Z[X]-module as well. Since the action of φ on kerφ sends

kerφ to 0, we have that kerφ is a finitely generated Z-module. Hence kerφ is

finite.

We recall now some definitions and results from Pontryagin duality. For a

topological abelian groupG the Pontryagin dual Ĝ ofG is the group Chom(G,T)

of the continuous characters ofG endowed with the compact-open topology [11].

The Pontryagin dual of a discrete Abelian group is always compact. Moreover,

we recall that a finite abelian group is isomorphic to its dual, and the dual

of a torsion abelian group is a totally disconnected compact abelian group. If

φ : G → G is an endomorphism, its Pontryagin dual φ̂ : Ĝ → Ĝ is defined by

φ̂(χ) = χ ◦ φ for every χ ∈ Ĝ. For a subset H of G, the annihilator of H in Ĝ

is H⊥ = {χ ∈ Ĝ : χ(H) = 0}.

Lemma 4.2. Let G be an abelian group.

(a) If {Hn}n>0 are subgroups of G, then (
∑

∞

n=1Hn)⊥ ∼=
⋂

∞

n=1H
⊥

n .

If H a subgroup of G and φ : G→ G an endomorphism, then:

(b) Ĥ ∼= Ĝ/H⊥;

(c) (φn(H))⊥ = (φ̂)−n(H⊥) for every n ≥ 0;

(d) kerφ⊥ = Imφ̂.

(e) If H ⊆ L are subgroups of G, then H⊥/L⊥ ∼= L̂/H.

Lemma 4.3. Let G be a torsion abelian group, φ : G → G an endomorphism

and F a finite subgroup of G. Let K = Ĝ, ψ = φ̂ and U = F⊥. Then U ∈ B(K)

and

(a) Tn(φ, F )⊥ = Cn(ψ,U) for every n > 0, and T (φ, F )⊥ = C(ψ,U);

(b) kerφ ∩ T (φ, F ) ∼= K/(Imψ + C(ψ,U));
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(c) T (φ, F )/φ(T (φ, F )) ∼= ψ−1(C(ψ,U))/C(ψ,U).

Proof. The conclusions follow from Lemma 4.2.

Applying this lemma, the Algebraic Formula and the Topological Formula,

we can now give a short proof of Weiss Bridge Theorem connecting the algebraic

and the topological entropy.

Corollary 4.4 (Weiss Bridge Theorem). Let G be a torsion abelian group and

φ : G→ G an endomorphism, let K = Ĝ and ψ = φ̂. Then

halg(φ) = htop(ψ).

Proof. Let K = Ĝ and ψ = φ̂. Let U be an open subgroup of K. Then F is a

finite subgroup of G. By Theorem 2.2 and Theorem 3.3 and by Lemma 4.3 we

can conclude that Halg(φ, F ) = Htop(ψ,U), hence halg(φ) = htop(ψ).

Remark 4.5. Applying Pontryagin duality in the abelian case one can also

derive the Topological Formula from the Algebraic Formula. Indeed, let K be

a totally disconnected compact abelian group and ψ : K → K a continuous

endomorphism. Let G = K̂, φ = ψ̂ and F = U⊥. Then F is a finite subgroup

of G. By Lemma 4.3 we have that K/Cn(ψ,U) ∼= Tn(φ, F ) and so

Htop(ψ,U) = Halg(φ, F ).

By Theorem 2.2 Halg(φ, F ) = log |T (φ, F )/φ(T (φ, F ))| − log | kerφ ∩ T (φ, F )|
and again Lemma 4.3 gives

|T (φ, F )/φ(T (φ, F ))| = |ψ−1(C(ψ,U))/C(ψ,U)|

and | kerφ ∩ T (φ, F )| = |K/(Imψ + C(ψ,U))|.

Therefore Htop(ψ,U) = log |ψ−1(C(ψ,U))/C(ψ,U)|−log |K/(Imψ+C(ψ,U))|,
that is the Topological Formula.

5. An application: finite depth and topological entropy

Let K be a totally disconnected compact group and ψ : K → K a topological

automorphism. As recalled in the Introduction, the pair (K,ψ) has finite depth

if there exists a φ-antistable U ∈ B(K) (see (3)). By Lemma 3.4 we can assume

without loss of generality that U is also normal, that is U ∈ B⊳(K). This

definition implies that

the family BU = {Un : n > 0}, where Un := Cn(ψ,U) ∩ Cn(ψ−1, U),
is a local base at 1.

(18)
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In particular, K turns out to be necessarily metrizable and totally disconnected.

Moreover, K is isomorphic to a subgroup G1 of FZ, where F is a finite group;

if σ denotes the left Bernoulli shift of FZ, then G1 is stabilized by σ and under

the identification of G with G1 one has ψ = σ ↾G1
(see also [10, Proposition 2]).

Proposition 5.1 ([16, Proposition 5.5]). Let (K,ψ) be a pair of finite depth.

If U,W ∈ B⊳(K) are φ-antistable, then [ψ(U+) : U+] = [ψ(W+) : W+].

In view of this result one defines the depth of a pair (K,ψ) of finite depth

as

depth(ψ) =

∣∣∣∣
ψ(U+)

U+

∣∣∣∣

for any φ-antistable U ∈ B⊳(K). Moreover, since

∣∣∣∣
ψ(U+)

U+

∣∣∣∣ =
∣∣∣∣
ψ−1(U−)

U−

∣∣∣∣ (19)

according to (17), one can extend this definition to

depth(ψ) =

∣∣∣∣
ψ(U+)

U+

∣∣∣∣ =
∣∣∣∣
ψ−1(U−)

U−

∣∣∣∣ ,

where U ∈ B⊳(K) is any φ-antistable U ∈ B⊳(K).

Theorem 5.2. Let (K,ψ) be a pair of finite depth. Then

htop(ψ) = log depth(ψ).

Proof. Let U ∈ B⊳(K) be φ-antistable. By (18) the family BU is a local base at

1. Moreover, for any n > 0 we have Htop(ψ,Un)=log |ψ−1(C(ψ,Un))/C(ψ,Un)|
by Theorem 3.3, therefore (19) gives

Htop(ψ,Un) = log depth(ψ).

Hence htop(ψ) = log depth(ψ) by Lemma 3.5.

The equality htop(ψ) = htop(ψ
−1) from Lemma 3.1(e) is well known for

the topological entropy of automorphisms of compact groups, we obtain as a

by-product the following fact.

Corollary 5.3. Let (K,ψ) be a pair of finite depth. Then

depth(ψ) = depth(ψ−1).

Theorem 5.2 and Corollary 3.7 have the following consequence. According

to [16, Proposition 5.5], if K is infinite, then depth(ψ) > 1.
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Remark 5.4. Let K be a totally disconnected compact group, ψ : K → K a

continuous endomorphism and U ∈ B⊳(K) with trivial ψ-cotrajectory C(ψ,U).

The triviality of C(ψ,U) implies that U is ψ-antistable. This yields that the pair

(K,ψ) has finite depth, so if K is infinite, we have Htop(ψ,U) = log depth(ψ) >
0 by Theorem 5.2. In particular, Corollary 3.7 gives the non-obvious inequality

log |kerψ| − log |cokerψ| > 0, i.e., ψ is necessarily non-injective and | kerψ| >
|cokerψ|.
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Abstract. We survey two series of results concerning the decidability

of fragments of Tarksi’s elementary algebra extended with one-argument

functions which meet significant properties such as continuity, differen-

tiability, or analyticity. One series of results regards the initial levels of

a hierarchy of prenex sentences involving a single function symbol: in

a number of cases, the decision problem for these sentences was solved

in the positive by H. Friedman and Á. Seress, who also proved that

beyond two quantifier alternations decidability gets lost. The second

series of results refers to merely existential sentences, but it brings into

play an arbitrary number of functions, which are requested to be, over

specified closed intervals, monotone increasing or decreasing, concave,

or convex; any two such functions can be compared, and in one case,

where each function is supposed to own continuous first derivative, their

derivatives can be compared with real constants.

Keywords: decidable theories, Tarski’s elementary algebra, one-variable functions

MS Classification 2010: 03B25, 26A06

Introduction

We will address the decidability issue for various fragments of real analysis.

In the background, we have the fundamental decidability result proved by

Tarski in [17] about the theory, named elementary algebra, where real numbers

only—not functions—come into play. This result refers to the entire first-order

language whose signature consists of the numerical constants 0, 1, −1, the

operators +,−, ·, and the comparators >,<,=. As usual, an adequate basis

of propositional connectives (e.g., ∧,∨,¬) is also available, together with a
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denumerable infinity of variables: these are assumed to range over the reals

and can be quantified by means of the symbols ∃,∀, without restraints. Tarski

produced an algorithm which, given any formula Φ devoid of free variables in

this language, provides the yes/no answer as whether Φ is true or false.

Note that in elementary algebra each variable represents a generic real num-

ber. If there were means to impose that some variables range over integers,

then one would be able to recast in elementary algebra all sentences of elemen-

tary arithmetic, and could thereby decide which of these sentences are true: an

impossible situation, as shown by Church in [4].

A decision algorithm for elementary algebra could become part of a proof

assistant, to wit, of a computerized system offering support to scholars either

by way of autonomous theorem-proving abilities or through verification that

proposed proofs are impeccable [9]. Anyway, for applications of this nature one

must necessarily take into account the computational cost of the algorithm.

It turns out, in particular, that although the procedure proposed by Collins

[5] has doubly exponential complexity relative to the number of variables oc-

curring in the sentence (or just exponential, if the endowment of variables is

finite and fixed), its computational cost is considerably lower than in case of

Tarski’s algorithm. A refinement of this result is achieved with Grigoriev’s al-

gorithm [12] applicable to sentences in prenex normal form, whose complexity

is doubly exponential relative to the number of quantifier alternations.

Even when we merely consider the existential theory of reals,1 consisting

of those sentences ∃x1 · · · ∃xnϑ in Tarksi’s algebra, where ϑ is a quantifier-free

formula (involving no variables distinct from x1, . . . , xn), the known decision

algorithms have a complexity at best exponential relative to the number n of

variables [8]; however, if one fixes the number of variables that can be used,

then an algorithm of polynomial complexity becomes available [14].

As observed by Tarski himself [17], the decidability of elementary alge-

bra entails decidability of various other first-order theories regarding complex

numbers or n-dimensional vectors, as well as decidability of elementary geome-

tries of the plane, of 3-, or of n-dimensional space; of analogous non-Euclidean

geometries, and of projective geometry. It is in fact possible to translate state-

ments of these systems into statements about real numbers, thereby reducing

their decision problems to the analogous problem for elementary algebra.

For instance, a first-order system of elementary plane geometry can be in-

structed [17, 18] over a language endowed with a denumerable infinity of vari-

ables (ranging over the points of Euclidean space), with the familiar dyadic

sign = (identity of points in the plane), with the 3-adic betweenness predicate

1As seen here, we are taking the liberty of calling ‘theory’ a fragment of the language of a
theory proper (cf. [7])—usually of a complete one, so that the distinction between valid and
true sentence becomes immaterial. Such a fragment, to wit, a syntactically delimited family
Θ, does not comprise exclusively true sentences; so, when saying that a ‘theory’ is decidable,
we will actually mean that its true sentences form a decidable subset of Θ.
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symbol B(x, y, z), interpreted as “y lies between x and z on the straight line

xz”, and with the 4-adic equidistance predicate symbol D(x, y; z, t), interpreted

as “the distance from x to y equals the distance from z to t”. To get a decision

method for this system:

• one associates with each sentence Φ of elementary plane geometry a sen-

tence Φ∗ of elementary algebra, by mapping each variable x of Φ into two

real-valued variables x, x which represent its coordinates, so that to any

two distinct point-variables x and y there correspond four distinct real

variables x, x, y, y;

• one translates B(-, -, -) and D(-, -; -, -), inside Φ∗, into algebraic relations

involving the coordinates of points.

One can achieve that the sentence Φ be true if and only if Φ∗ is true; thus

a decision problem for geometry gets reduced to elementary algebra. (Tarski

proposes also a complete axiomatization for elementary plane geometry and,

more generally, for n-dimensional Euclidean geometries [18, 19]).

A first limitation to extensions of Tarski’s theories by real functions stems

from the fact that by extending elementary algebra with the function sinx one

disrupts its decidability [17] (in fact, by resorting to the periodicity of that

function, one can define within Tarski’s theory the predicate “x is an integer”).

The existential theory of reals, extended with the numbers log 2, π and with

the functions ex and sinx turns out to be, by itself, undecidable (Richard-

son, [15]).

In fact, let E∗ be a set of real-valued functions (at least partially defined)

of one real argument, which is closed relative to addition, subtraction, multi-

plication, and function composition, and which contains the identity function

and all rational numbers (seen, here, as constant functions). Moreover, let E
be a set of formal expressions, each one representing a function belonging to

E∗ so that every function in E∗ is represented by at least one expression in

E (if A ∈ E, we indicate by A(x) the corresponding function in E∗). Sup-

pose, also, that through an effective procedure one can, given expressions A
and B in E, find expressions in E which represent the functions A(x) +B(x),
A(x)−B(x), A(x)·B(x), and A(B(x)). Richardson proves that if E∗ comprises

the functions ex, sinx and the constant functions log 2, π, then the negative

value problem “given an expression A in E, determine whether or not there

is a real number x such that A(x) < 0” is undecidable. Let us suppose, for

the sake of contradiction, that the existential theory of reals extended with the

numbers log 2, π and with the functions ex, sinx is decidable. Then, in partic-

ular, one could decide of any given sentence (∃x)ϑ, where ϑ is a quantifier-free

formula of elementary algebra extended with the numbers log 2, π and with

the functions ex, sinx, whether (∃x)ϑ is true or false. This could be done, in

particular, for sentences of the form (∃x)f(x) < 0, where f is a real function
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of the real variable x, built from x, log 2, π, ex, sinx and rational constants, by

means of addition, subtraction, multiplication, and function composition. In

other words, the negative-value problem would be decidable that refers to the

smallest collection E∗ including {x, log 2, π, ex, sinx}∪Q and closed relative to

addition, subtraction, multiplication, and function composition; but this would

conflict with what was stated earlier.

Richardson also proves, under suitable assumptions about E∗, that the

identity problem “given an expression A in E, establish whether or not A(x) ≡
0” (where 0 is the everywhere null function over R) and the integration problem

“given an expression A in E, establish whether or not there is a function f in

E∗ such that f ′(x) ≡ A(x)” are undecidable (the symbol ≡ indicates that the

functions coincide, i.e., they share the same domain, over which they take,

corresponding to the same value for the argument, equal value).

In order to prove the undecidability of these problems, Richardson exploits

the existence [6] of a function of type

P (y, x1, . . . , xn) = ay + b1x1 + . . .+ bnxn + c12
x1 + . . .+ cn2xn + d ,

with a, b1, . . . , bn, c1, . . . , cn, d ∈ Z, such that the problem “given y ∈ N, estab-

lish whether or not there exist x1, . . . , xn ∈ N such that P (y, x1, . . . , xn) = 0”

turns out to be undecidable. In fact, arguing by contradiction, he shows that

if the negative value problem, the identity problem, or the integration prob-

lem were decidable, then through the construction of suitable “intermediate

problems” the said problem could be decided too.

In what follows we will present two series of decidability (and undecidability)

results about fragments of real analysis, one series having been obtained by

Friedman and Seress [10, 11] (concerning what we will simply designate as

FS theory), and the other by Cantone, Cincotti, Ferro, Gallo, Omodeo, and

Schwartz in [2, 3] (RMCF, RMCF+, and RDF theories).

The FS theory consists of sentences of type (∀f ∈ F )ϕ, where F is a family

of monadic functions from R to R (respectively, from I = [0, 1] to I) and ϕ is a

first-order sentence involving, besides the function symbol f , variables ranging

over R (resp., over I), the comparison signs >,<, and =, the usual connectives

∧,∨,¬, and ∃/∀–quantifiers.

As for RMCF, RMCF+, and RDF, these are unquantified theories involving

real-valued variables (and constants), additional variables (and constants) to

be interpreted as real-valued functions of a real argument, also involving op-

erations between numbers and between functions, the ordering relations and

predicate symbols for comparing functions, for comparing function derivatives

and real numbers, predicates stating (strict and non-strict) function mono-

tonicity, and predicates stating (strict and non-strict) convexity and concavity

of functions over real intervals.

The style of our presentation will be rather casual; in the sense that it

will privilege conceptual aspects over technical ones—without neglecting the
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latter whenever deemed necessary. We will strive to bring into evidence the

expressiveness of the theories presented by casting inside them various theorems

of elementary analysis; thus, in the case of decidable theories, our examples will

entail the possibility of proving certain theorems automatically.

1. The FS theory

To begin our discussion on the FS theory, we must recall a common classification

of quantified sentences (i.e., formulae devoid of free variables) in a first-order

theory. One defines a sentence ϕ to be Σk when it is either of the prenex type

(∃x1,1 · · · ∃x1,m1
)(∀x2,1 · · · ∀x2,m2

) · · ·

· · · (∀xk−1,1 · · · ∀xk−1,mk−1
)(∃xk,1 · · · ∃xk,mk

)ϕ0

(where ϕ0 is quantifier-free) with k an odd number, or of the prenex type

(∃x1,1 · · · ∃x1,m1
)(∀x2,1 · · · ∀x2,m2

) · · ·

· · · (∃xk−1,1 · · · ∃xk−1,mk−1
)(∀xk,1 · · · ∀xk,mk

)ϕ0

(where ϕ0 is devoid of quantifiers again) with k an even number; that is, if

the prenex normal form of ϕ, in which all quantifiers have been brought to the

beginning, alternates k − 1 times between batches of existential and universal

quantifiers and shows an ∃-quantifier at its very start. The definition of Πk

sentences is analogous, but in this case a ∀-quantifier occurs first.

1.1. Decidability of Σ1 sentences, of Π1 sentences, and of

Π2 separated sentences of FS

As already recalled, the sentences in the FS theory are of type

(∀f ∈ F )ϕ ,

where F is a family of functions from R to R (respectively, from I to I) and

ϕ is a first-order sentence involving the monadic function symbol f , individual

variables ranging over R (resp., over I), the dyadic comparators >, <, =, the

propositional connectives ∧,∨,¬, and ∃/∀–quantifiers.

In our study on decidability, we first address the case in which ϕ is Σ1 (to

wit, ϕ is of type ∃x1 · · · ∃xnϕ0, where ϕ0 is quantifier-free). We will see, in

particular, that if F is formed by all continuous functions from R to R (or

from I to I), then the Σ1 sentences are decidable; but the same is known to

hold for the family of all functions from R to R (or from I to I) which are

differentiable, for those which are of class C∞, and for the analytic functions.

Observe, in the first place, that the Σ1 sentences admit an equivalent nor-

malized form, according to the following lemma:
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Lemma 1.1 ([10, Section 1, Lemma 1.1]). Let ϕ be the Σ1 sentence ∃x1· · ·∃xnϕ0,

where ϕ0 is quantifier-free. Then ϕ is equivalent to a sentence ψ of the form

∃x1 · · · ∃xp




m∨

i=1






ki−1∧

j=1

(xj < xj+1)


 ∧ ψi




 ,

where each ψi has the form
∧ℓi

j=1(f(xaj
) = xbj

) with

(a) 1 6 aj 6 ki and 1 6 bj 6 ki for each j,

(b) every variable xc (1 6 c 6 ki) occurs at least once as either xaj
or xbj

,

(c) every variable xc occurs at most once as xaj
.

Moreover, by means of a suitable algorithm it is possible to get ψ from ϕ in

a finite number of steps. The case m = 0 reflects the impossibility of having a

coherent ordering for the variables of ϕ.

The algorithm is based on techniques such as transformation into disjunctive

normal form, introduction of new variables, review of all possible orderings of

the variables, and renumbering of variables.

As regards complexity, let us observe that, at least in principle, the appli-

cation of this lemma could lead to a combinatorial explosion. Suffice it to say

that, given r variables x1, ..., xr, the number of possible chains with the order-

ing <, with possible identifications of some variables through the equivalence

relation =, is of order r! · r · er ([2, p. 775]).

The following holds for the sentences on which we are focusing, when F is

the family of all continuous functions from R to R:

Proposition 1.2 (Characterization theorem, cf. [10, Section 1, Theorem 1.3]).

Let F be the set of all continuous functions from R to R and let ϕ be a Σ1

sentence. Let, moreover, ψ be a Σ1 sentence, equivalent to ϕ, of the form

∃x1 · · · ∃xp




m∨

i=1






ki−1∧

j=1

(xj < xj+1)


 ∧ ψi






meeting all conditions stated in Lemma 1.1. Then (∀f ∈ F )ϕ is true if and

only if each one of the following types of formula occurs among the ψi’s:

(1)
∧k

j=1(f(xj) = xj);

(2) a subset of
∧k

j=1(f(xj) = xk+1−j) meeting condition (b) of Lemma 1.1

(here and below, if Y is a conjunction of literals, by the locution “subset of

Y” we informally refer to a conjunction of some of the literals in Y );
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(3)
∧ℓ

j=1(f(xaj
) = xbj

) meeting, in addition to (b) and (c) of Lemma 1.1, the

conditions

(3.a) if f(xaj
) = xbj

then xaj
< xbj

,

(3.b) if f(xaj
) = xbj

, f(xaj′
) = xbj′

, and xaj
< xaj′

, then xbj
< xbj′

;

(4)
∧ℓ

j=1(f(xaj
) = xbj

) meeting, in addition to (b) and (c) of Lemma 1.1, the

conditions

(4.a) if f(xaj
) = xbj

then xaj
> xbj

,

(4.b) if f(xaj
) = xbj

, f(xaj′
) = xbj′

, and xaj
< xaj′

, then xbj
< xbj′

;

(5) either one of the types
∧k

j=1(f(xj) = xn),
∧k

j=1,j 6=n(f(xj) = xn), for some

n with 1 6 n 6 k;

(6) a subset of
∧k

j=1(f(xj) = xgj
) meeting condition (b) of Lemma 1.1 along

with the following conditions: for some n, with 1 6 n 6 k,

(6.a) either gn = n and

∀j[((1 6 j 6 n− 1) ⇒ (n+ 1 6 gj 6 k))

∧ ((n+ 1 6 j 6 k) ⇒ (1 6 gj 6 n− 1))]

hold, or

∀j[((1 6 j 6 n) ⇒ (n+ 1 6 gj 6 k))

∧ ((n+ 1 6 j 6 k) ⇒ (1 6 gj 6 n))]

holds,

(6.b) if 1 6 j < h 6 k then gh < gj,

(6.c) if 1 6 j 6 n < s 6 gj and f(xs) = xℓ, then j < ℓ,

(6.d) if gj 6 s 6 n < j 6 k and f(xs) = xℓ, then j > ℓ;

(7) a subset of
∧k

j=1(f(xj) = xgj
) meeting condition (b) of Lemma 1.1 along

with the following conditions: for some n, with 1 6 n 6 k,

(7.a) either gn = n and

∀j[((1 6 j 6 n− 1) ⇒ (n+ 1 6 gj 6 k))

∧ ((n+ 1 6 j 6 k) ⇒ (1 6 gj 6 n− 1))]
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hold, or

∀j[((1 6 j 6 n) ⇒ (n+ 1 6 gj 6 k))

∧ ((n+ 1 6 j 6 k) ⇒ (1 6 gj 6 n))]

holds,

(7.b) if 1 6 j < h 6 k then gh < gj,

(7.c) if 1 6 j 6 n, gj 6 s 6 k, and f(xs) = xℓ, then j > ℓ
(where equality can hold only if j = gj = s = ℓ = n),

(7.d) if n+ 1 6 j 6 k, 1 6 s 6 gj, and f(xs) = xℓ, then j < ℓ;

(8) for some n with 1 6 n 6 k, a subset of

n∧

j=1

(f(xj) = xn) ∧
k∧

j=n+1

(f(xj) = xgj
)

meeting condition (b) of Lemma 1.1 along with the conditions

(8.a) if n+ 1 6 j 6 k then 1 6 gj < n,

(8.b) if n+ 1 6 j < h 6 k then gj > gh;

(9) for some n with 1 6 n 6 k, a subset of

n−1∧

j=1

(f(xj) = xgj
) ∧

k∧

j=n

(f(xj) = xn)

meeting condition (b) of Lemma 1.1 along with the conditions

(9.a) if 1 6 j 6 n− 1 then n < gj 6 k,

(9.b) if 1 6 j < h 6 n− 1 then gj > gh.

Notice that a ψi can belong to more than one type. For instance, the

formula f(x1) = x1 is of types (1), (2), (5), (6), (7), (8), (9).

Here we offer some clues about the necessity of the above conditions. If ϕ
is true of all continuous functions from R to R, then, since ψ is equivalent to ϕ,

ψ is true of all continuous functions from R to R. Therefore ψ will be satisfied,

in particular, by the function f(x) = x; this implies that there must be a ψi of

type (1). Likewise ψ must be true, in particular, of the function f(x) = −x;
this implies that there must be a ψi of type (2). By choosing suitable functions

for the remaining types, in the same fashion, one proves that the ψi’s must

include at least one formula of each type.
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The proof that the above conditions are also sufficient is more intricate.

To show that if ψ encompasses all nine types then ψ is true of all continuous

f (from R to R), one takes into account all possibilities about the number of

fixpoints which a given f can own (none, exactly one, a finite number greater

than one, infinitely many). One proves that in each case f falls under at least

one of the nine types, and hence it satisfies ψ. Consider, e.g., the simplest

case, namely the one of an f with infinitely many fixpoints: then, given a

positive integer k, there must exist x1, · · · , xk ∈ R such that x1 < · · · < xk and

f(x1) = x1, . . . , f(xk) = xk; therefore f satisfies the ψi’s of type (1) and the

sentence ψ.

Let us observe that through application of the preceding lemma and propo-

sition one can decide by means of an algorithm whether each given sentence

(∀f ∈ F )ϕ is true or false; otherwise stated, these results provide an automatic

proof-procedure for statements of this nature.

To illustrate application of the preceding proposition, let us examine a sim-

ple example:

Example 1.3. Consider the sentence

(∀f ∈ F )∃x ∃y(f(x) = y) ,

which can be interpreted as claiming “for every continuous function f from R

to R there exist x, y ∈ R such that f(x) = y”. In this case ϕ is the Σ1 sentence

∃x ∃y(f(x) = y) ,

equivalent to

∃x1 ∃x2[(x1 < x2 ∧ f(x1) = x2) ∨ (f(x1) = x1) ∨ (x1 < x2 ∧ f(x2) = x1)] .

The formula (x1 < x2∧f(x1) = x2) matches type (3), the formula (f(x1) = x1)

matches types (1), (2), (5), (6), (7), (8), (9), and the formula (x1 < x2 ∧
f(x2) = x1) matches type (4). Hence all of the nine types are encompassed,

which amounts to saying that the sentence (∀f ∈ F )∃x, y(f(x) = y) is true.

The following example formalizes another lemma expressible by means of a

Σ1 sentence.

Example 1.4. Consider the claim “for each continuous function f from R to

R there exist x, y, z ∈ R, with x < y < z, such that either f(x) 6 f(y) 6 f(z)
or f(x) > f(y) > f(z) holds”. This can be formalized as

(∀f ∈ F )∃x∃y∃z(x < y < z ∧ (f(x) 6 f(y) 6 f(z) ∨ f(x) > f(y) > f(z)))

and hence it can be proved automatically thanks to the preceding results.
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The above-seen characterization theorem concerning the family of the con-

tinuous functions (from R to R) holds, with the same conditions (1) through (9),

for the family of the differentiable functions (from R to R), as well as for the

ones of class C∞ (from R to R); this tells us, as a consequence, that if a Σ1

sentence holds for all functions of class C∞ from R to R then it holds, more

generally, for all continuous functions from R to R.

A similar characterization theorem holds for the analytic functions from R

to R; but in this case the claim involves only conditions (1) through (7).

Yet an analogous theorem holds for the functions (continuous, differentiable,

of class C∞, or analytic) from I to I. In this case the characterization is

exactly the same for all of the four collections of functions; consequently, if

a Σ1 sentence holds for all analytic functions from I to I then it holds, more

generally, for all continuous functions from I to I.

What said so far enables us to state the following decidability result:

Proposition 1.5 (Decidability of the Σ1 sentences of FS, cf. [10, Section 1,

Theorems 1.3 through 1.6]). The validity problem for Σ1 sentences is solvable,

relative to each one of the following families of functions from R to R: contin-

uous, differentiable, C∞, and analytic. The same holds for the corresponding

families of functions from I to I.

Otherwise stated: let F be the family of all continuous functions (or the

one of the differentiable functions, or of the functions of class C∞, or of the

analytic functions) from R to R. Then an algorithm exists which, given any

sentence (∀f ∈ F )ϕ, where ϕ is Σ1, establishes whether it is true or false. The

same holds about I.

Let us now address the decidability problem for the (∀f ∈ F )ϕ sentences

of FS where ϕ is a Π1 sentence (namely, ϕ is of the form ∀x1 · · · ∀xnϕ0, with

ϕ0 quantifier-free). Focusing, for the time being, on the case when F is the

family of all continuous functions from R to R, we have:

(∀f ∈ F )∀x1 · · · ∀xn ϕ0

is true if and only if its negation

(∃f ∈ F )∃x1 · · · ∃xn χ0 ,

where χ0 = ¬ϕ0, is false. This happens if and only if the sentence, to be

referred below as γ,

(∃f ∈ F )∃x1 · · · ∃xn




m∨

i=1






ki−1∧

j=1

(xj < xj+1)


 ∧ ψi




 ,

which results from application of Lemma 1.1 to χ0, is false. This happens if and

only if m = 0. In fact, if m = 0 then, as already said in the claim of Lemma 1.1,
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the variables of χ0 do not admit a coherent ordering, and therefore γ is false.

If, on the opposite, m > 1 holds, then it is possible (by assigning suitable values

to the variables and by choosing a suitable interpolation polynomial f as f)

to determine x1, . . . ,xn and f so that they satisfy (
∧k1−1

j=1 (xj < xj+1)) ∧ ψ1;

in particular, it suffices to assign values xi = i (i = 1, . . . , n) to the variables

and to choose as f a polynomial f such that f(aj) = bj whenever f(xaj
) = xbj

occurs in ψ1. Therefore, if m > 1, then γ is true.

What said so far entails a decision procedure for the case of the Π1 sentences.

Analogous considerations can be made if F , instead of being the family of all

continuous functions from R to R, is either the family of all differentiable

functions (from R to R), the one of all functions of class C∞ (from R to R), or

the one of all analytic functions (from R to R). The same considerations can

be made again for the corresponding families of functions from I to I.

We hence get the following decidability result:

Proposition 1.6 (Decidability of the Π1 sentences of FS, cf. [10, Section 1,

Theorem 1.7]). The validity problem for Π1 sentences is solvable, relative to

each one of the following families of functions: continuous, differentiable, C∞,

and analytic. The same holds for the corresponding families of functions from

I to I.

Otherwise stated: let F be the family of all continuous functions (or the

one of the differentiable functions, or of the functions of class C∞, or of the

analytic functions) from R to R. Then an algorithm exists which, given any

sentence (∀f ∈ F )ϕ, where ϕ is Π1, establishes whether it is true or false. The

same holds for I.

Notice also that, since the characterization for all of them is the same (m = 0

in the sentence obtained from ¬ϕ0 through application of Lemma 1.1), it turns

out that these families of functions are indistinguishable relative to the Π1

sentences; among others, a Π1 sentence is true for all continuous functions

from R to R if and only if it is true for all analytic functions from I to I.

The following example formalizes a lemma (good definition of a function)

expressible by means of a Π1 sentence.

Example 1.7. Consider the theorem “let f be a continuous function from R

to R and let x, y, z ∈ R; if f(x) = y and f(x) = z, then y = z”. This can be

formalized as

(∀f ∈ F )∀x∀y∀z((f(x) = y ∧ f(x) = z) → y = z)

and therefore it can be proved automatically, thanks to the preceding results

(recall that the derived connective →, exploited in the formalization of this

sentence, can be eliminated, e.g., through the rewriting a→ b ≡ ¬(a ∧ ¬b)).
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Let us now introduce the notion of separated formula. Intuitively speaking,

we are talking about formulae in which the elements of the domain of f are

not compared with those of its range. To state this more accurately:

Definition 1.8. Let ϕ0 be a quantifier-free formula involving a monadic func-

tion f along with variables ranging over R (resp., over I), the comparators >,

<, =, and the usual connectives ∧,∨,¬.

We will say that ϕ0 is a separated formula if it meets the following

conditions:

(a) The terms of ϕ0 are of either the form x or the form f(x), where x is a

variable (i.e., no composition of f with itself occurs in ϕ0).

(b) There are two sets, formed by variables of ϕ0 and to be called set of the

domain variables and of the range variables, respectively, such that:

(b1) every variable of ϕ0 belongs to exactly one of the two sets;

(b2) if the term f(x) occurs in ϕ0, then x is a domain variable;

(b3) when f(x) > y, f(x) < y, or f(x) = y occurs as a subformula in ϕ0,

then y is a range variable;

(b4) when x > y, x < y, or x = y occurs as a subformula in ϕ0, then x
and y are either both domain variables or both range variables (that

is, a domain variable is never compared with a range variable).

To end, we will say that a sentence ϕ in prenex form is separated when

its unquantified part is a separated formula.

For instance, the sentence ∃x(f(x) = x) is not separated (if it were such

then, due to the conditions (b2) and (b3), x would be both domain variable

and range variable, which would conflict with condition (b1)).

The sentence ∃x∃y(f(x) = y) is, instead, separated (with x domain variable

and y range variable).

For the (∀f ∈ F )ϕ sentences of the theory FS, when ϕ is a Π2 separated

sentence (i.e., a sentence of the form ∀x1 · · · ∀xn∃xn+1 · · · ∃xmϕ0, with ϕ0 de-

void of quantifiers and separated), then the following decidability result holds:

Proposition 1.9 (Decidability of the separated Π2 sentences of FS, cf. [10,

Section 2]). The validity problem for separated Π2 sentences is solvable, relative

to the following families of functions from R to R: continuous, differentiable,

C∞, and analytic. The same holds for the corresponding families of functions

from I to I.

Otherwise stated: let F be the family of all continuous functions (or the

one of all differentiable functions, or the one of all functions of class C∞, or

the one of all analytic functions) from R to R. Then there is an algorithm
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which, given any sentence (∀f ∈ F )ϕ, where ϕ be a separated Π2 sentence,

establishes whether it is true or false. The same holds for I.

Also in this case, the decidability of sentences is obtained through a nor-

malization lemma with the aid of characterization theorems.

The following example shows how the intermediate value theorem can be

formalized by means of a separated Π2 sentence.

Example 1.10. Consider the (intermediate value) theorem:

“Let f be a continuous function from R to R and let x1, x2, y1, y2, t ∈ R be such

that f(x1) = y1, f(x2) = y2 and y1 6 t 6 y2. Then there is a z ∈ R such that

x1 6 z 6 x2 and f(z) = t”.
This claim can be formalized as

(∀f ∈ F )∀x1∀x2∀y1∀y2∀t∃z
(
(f(x1) = y1 ∧ f(x2) = y2 ∧ y1 6 t 6 y2)

→ (x1 6 z 6 x2 ∧ f(z) = t)
)

and hence it can be proved automatically.

1.2. Undecidability of Σ4 sentences

Indicate, as usual, by ω = {0, 1, . . . , n, n + 1, . . .} the set of all finite ordinal

numbers (where 0 = ∅ and n + 1 = {0, . . . , n}); also let n ∈ ω. A dyadic

antireflexive and symmetrical relation (on n) is a subset R of n × n which

meets the following conditions (where aRb stands for (a, b) ∈ R):

antireflexivity if aRb then a 6= b;

symmetry if aRb then bRa.

The first-order theory of antireflexive and symmetrical relations with finite

models (finite graph theory, to be indicated as GSF) is the set of all sentences

ϕR, constructed from the variables (now ranging over natural numbers), by

means of the dyadic predicate symbol R (to be interpreted as an antireflexive

and symmetric relation), the identity relator =, the propositional connectives

∧,∨,¬, and the ∃/∀–quantifiers.

The validity problem for the Σ2 sentences of this theory is undecidable [13].

Specifically, there cannot be any algorithm which, given a generic sentence

of type (∀R)ϕR (where ϕR is a Σ2 sentence of the GSF theory), establishes

whether it is true or false.

As a matter of fact, there is an algorithm which associates with every Σ2

sentence ϕR of the GSF theory a separated Σ4 sentence ϕ of the FS theory so

that (∀R)ϕR is true if and only if (∀f ∈ F )ϕ is true about the family F of all

continuous functions from R to R.
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Consequently, if the truth problem for (∀f ∈ F )ϕ sentences (where ϕ is a

separated Σ4 sentence in FS and F is the family of all continuous functions

from R to R) were decidable, then the analogous problem for (∀R)ϕR sentences

(where ϕR is a Σ2 sentence of GSF) would also be decidable, which is not the

case as just recalled above.

Therefore the truth problem for (∀f ∈ F )ϕ sentences, where ϕ is a sepa-

rated Σ4 sentence of FS and F is the family of all continuous functions from

R to R, turns out to be undecidable. This result can be generalized, much by

the same method, into the following theorem:

Proposition 1.11 (Undecidability of separated Π4 sentences of FS, cf. [10,

Section 4, Theorem 4.2] and [11, Section 4, Theorem 4.2] ). The set {ϕ|(∀f ∈
F )ϕ is true} of sentences turns out to be undecidable in the following cases

(where we say that a separated sentence of FS is weak if it has no subformulae

of type f(x) < y, y < f(x), f(x) < f(t), or y < z, with y, z range variables;

that is, if the ordering relation is not used, in it, to compare elements of the

range of f).

(a) F is the family of all continuous functions from R to R and ϕ ranges over

all separated Σ4 sentences of FS;

(b) more generally, F is a family of functions from R to R comprising all

analytic functions and ϕ ranges over the separated, weak Σ4 sentences of

FS;

(c) F is the family of all continuous functions from I to I and ϕ ranges over

all separated Σ4 sentences of FS;

(d) more generally, F is a family of functions from I to I comprising all poly-

nomials and ϕ ranges over all separated, weak Σ4 sentences of FS.

On the other hand, the said set {ϕ|(∀f ∈ F )ϕ is true} of sentences, where

F is the family of all polynomials from R to R (resp., from I to I) and ϕ ranges

over all sentences of FS, turns out to be co-recursively enumerable (cf. [11,

Section 4, Theorem 4.7]). Otherwise stated, there exists a computing procedure

which eventually halts if and only if a sentence of the said type is submitted to

it which happens to be false.

1.3. Decidability and undecidability of sentences about

families of monotone functions

Let us now consider the sentences (∀f ∈ F )ϕ of the FS theory, where F is the

family of all functions (from R to R) which are continuous, monotone strictly

increasing, and unlimited below as well as above. The following lemma reduces
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the decidability issue for sentences of this type to the analogous issue regarding

sentences of type (∀A1, A2, A3, A4, A5)ϕ
+, where A1, A2, A3, A4, A5 ⊆ R and

ϕ+ is a sentence involving real-valued variables, the comparators <,=, the

usual connectives ∧,∨,¬, ∃/∀–quantifiers, and predicates of type x ∈ Ai. The

latter was solved in the positive, cf. [1].

Lemma 1.12 ([10, Section 3, Lemma 3.5] ). To each sentence ϕ there corre-

sponds a sentence ϕ+ for which the following sentences are logically equivalent.

(a) (∀f ∈ F )ϕ, where F is the family of all functions (from R to R) which

are continuous, monotone strictly increasing and unlimited below as well

as above.

(b) (∀A1, A2, A3, A4, A5)ϕ
+, where A1, A2, A3, A4, A5 ⊆ R and ϕ+ is a sen-

tence that involves variables ranging over R, the comparators <,=, the

propositional connectives ∧,∨,¬, ∃/∀–quantifiers, and predicates of type

x ∈ Ai.

Such a ϕ+ can be obtained from ϕ through a suitable algorithm.

Here we will content ourselves with providing the intuitive idea, lying behind

this lemma, that the first-order properties of a function f (which is continuous,

monotone strictly increasing, and unlimited below as well as above) can be

expressed as properties of sets, which are defined starting from the function

(for instance, the set α(f) of all fixpoints of f and the set β(f) of all left

endpoints of the intervals of R\α(f) ).

This lemma yields, in view of the decidability of (∀A1, A2, A3, A4, A5)ϕ
+

sentences, decidability of the (∀f ∈ F )ϕ sentences of the FS theory (where F is

the family of all functions from R to R which are continuous, monotone strictly

increasing and unlimited below as well as above). This decidability result can

be enhanced, much by the same method, into the following proposition:

Proposition 1.13 ([10, Section 3]; [11, Sections 2 and 3]). The set {ϕ|(∀f ∈
F )ϕ is true} of sentences turns out to be decidable in the following cases.

(a) F is the family of all functions from R to R which are continuous, mono-

tone strictly increasing and unlimited below as well as above.

(b) F is the family of all functions from R to R which are continuous and

monotone strictly increasing.

(c) F is the family of all functions from R to R which are continuous and

monotone strictly decreasing.

(d) F is the family of all functions from R to R which are continuous and

strictly monotone.
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(e) F is the family of all functions from R to R which are monotone nonde-

creasing, such that there are at most n intervals on which each of them is

constant, and each of them has at most n discontinuity points (where n is

a fixed number in N).

(f) F is the family of all functions from I to I which are monotone nonde-

creasing, such that there are at most n intervals on which each of them is

constant, and each of them has at most n discontinuity points (where n is

a fixed number in N).

(g) F is the family of all functions from R to R which are monotone and ϕ is

a separated sentence (as by the definition seen earlier).

The following example formalizes the property of a function from R to R,

continuous and monotone strictly decreasing, of having exactly one fixpoint.

Example 1.14. Consider the claim:

“Let f be a function from R to R, continuous and monotone strictly decreasing.

Then there exists exactly one x ∈ R such that f(x) = x.”
This claim can be formalized as

(∀f ∈ F )∃x∀y[f(x) = x ∧ (f(y) = y → y = x)] ,

where F is the family of all functions from R to R which are continuous and

monotone strictly decreasing. Therefore this theorem can be proved automati-

cally.

On the opposite, decidability gets lost if one takes, as F , the family of

all functions from R to R which are continuous and monotone and have an

arbitrarily large finite number of intervals on which they are constant.

As a matter of fact, given a Turing machine T endowed with symbols

{a0, . . . , ah} (where a0 stands for the blank) and states {q0, q1, . . . , qk} (where

q0 is the initial state and q1 is the final state), it is possible to construct a

sentence ϕ(T ) such that (∃f ∈ F )ϕ(T ) is true if and only if the machine

T , starting with an empty tape, halts after a finite number of steps. Since

(∃f ∈ F )ϕ(T ) is true if and only if (∀f ∈ F )¬ϕ(T ) is false, if the truth of

the (∀f ∈ F )ϕ sentences were decidable, then the truth of the (∃f ∈ F )ϕ(T )

sentences would also be decidable, and therefore the problem “T will halt”

would turn out to be such; however, as is well-known, the halting problem is

undecidable [20].

This argument can be adjusted to all families of functions F (either from

R to R or from I to I) which include all nondecreasing monotone functions of

class C∞ and have any finite number of intervals where they are constant. The

same holds for the family of all functions from R to R which are monotone,

continuous on the left, and have an arbitrary finite number of discontinuity

points. Hence we have the following undecidability result:
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Proposition 1.15 ([11, Section 1]). The set of all {ϕ|(∀f ∈ F )ϕ is true}
sentences has, in each of the following cases, an unsolvable decision problem

(case (b) generalizes case (a)).

(a) F is the family of all functions from R to R (resp., from I to I) which are

continuous and monotone and have an arbitrary, though finite, number of

intervals over which they are constant.

(b) F is a family of functions from R to R (resp., from I to I) containing

all nondecreasing monotone functions of class C∞ which have an arbitrary

finite number of intervals over which they are constant.

(c) F is the family of all functions from R to R which are strictly monotone,

continuous on the left, and have an arbitrary finite number of discontinuity

points.2

Nevertheless, the set {ϕ|(∀f ∈ F )ϕ is true} of sentences, where F is the

family of all functions from R to R (resp., from I to I) which are monotone

nondecreasing and have an arbitrary finite number of intervals over which they

are constant and an arbitrary finite number of discontinuity points, turns out

to be co-recursively enumerable (cf. [11, Section 3, Corollary 3.6]). In other

words, there exists a computing procedure which eventually halts if and only

if a sentence of the said type is initially submitted to it which happens to be

false.

2. The theories RMCF, RMCF
+
, and RDF

As said in the introduction, Tarski’s elementary algebra is decidable; i.e., there

is an algorithm telling one, of any given closed formula Φ of this theory, whether

Φ is true or false. As recalled there, Tarski’s elementary algebra is the first-order

theory supplying a denumerable infinity of real-valued variables, the numerical

constants 0, 1, −1 (interpreted as the corresponding real numbers), the opera-

tions +, −, and · (designating the familiar arithmetic operations over R), the

standard comparators >, <, and =, the propositional connectives ∧, ∨, and ¬,

and the quantifiers ∃ and ∀.

The decidability of Tarski’s elementary algebra readily entails the decid-

ability of its own existential sub-theory, consisting of all statements of the form

∃x1∃x2 · · · ∃xnϑ ,

where ϑ is quantifier-free and involves only variables from among x1, x2, . . . , xn.

2With regard to item (c), [11] does not discuss the case of functions from I to I.



330 D. CANTONE ET AL.

The existential theory of reals can be thought of as a quantifier-free lan-

guage. For, a prenex sentence ∃x1∃x2 · · · ∃xnϑ is true if and only if its unquan-

tified matrix ϑ is satisfiable, and hence any truth-decision algorithm for the

existential theory of reals can be used also to solve the satisfiability problem

for the corresponding theory devoid of quantifiers.

The fragments of real analysis RMCF, RMCF+, and RDF, which will be re-

viewed in this section, are in quantifier-free form. They extend the quantifier-

free theory of reals with various predicates over real functions of a real vari-

able. More specifically, the theories RMCF and RMCF+ deal with continuous

functions, whereas the theory RDF refers to differentiable functions with a con-

tinuous derivative.

We begin with a brief description of the theory RMCF. Later we will review

in some detail RMCF+, and will also give a brief outline of the theory RDF.

The theory RMCF (of Reals with Monotone and Convex Functions) [3] in-

volves predicates for function comparison, and predicates about monotonicity

of functions (strict and non-strict), and about concavity and convexity of func-

tions (only non-strict). The atomic formulae of RMCF are of these forms:

t1 = t2 , t1 > t2 ,
F1 = F2 , F1 > F2 ,
Up(F )[t1,t2] , Strict Up(F )[t1,t2] ,
Down(F )[t1,t2] , Strict Down(F )[t1,t2] ,
Convex(F )[t1,t2] , Concave(F )[t1,t2] .

Here t1, t2 are numerical expression (involving real variables, the real constants

0, 1, function images of numerical expressions, and the arithmetic operations)

and F1, F2 are functional expressions (involving function variables and con-

stants and the operations of sum and difference between functional expres-

sions). The functional constants are 0, 1, interpreted as the functions with

fixed values 0 and 1, respectively. Function symbols are interpreted as con-

tinuous real functions of a real variable having as their domain the whole real

axis R. The predicate F1 = F2 (resp., F1 > F2) states that the real functions

f1 and f2 interpreting the expressions F1 and F2 coincide over the whole real

axis (resp., f1(x) > f2(x) holds for all x ∈ R). The predicate symbols express

monotonicity (strict or non-strict), non-strict convexity, and non-strict concav-

ity of functions; each of them refers to a closed bounded interval [t1, t2]. The

formulae of RMCF result from propositional combinations of atomic formulae

by means of the connectives ¬, ∧, ∨, →, ↔. As said, explicit quantification is

not allowed in RMCF formulae.

The above considerations could easily be formalized in a definition of the

(RMCF) interpretations of formulae of RMCF. We say that an RMCF formula ϑ
is satisfiable if there exists an RMCF interpretation (real model) of the symbols

of ϑ which makes ϑ true. We say that an RMCF formula ϑ is valid (or is a

theorem) if ϑ is true in all RMCF interpretations.
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As shown in [3], there is a decision procedure which determines, for any

given RMCF formula, whether it is satisfiable or not. Such a procedure is

achieved through satisfiability-preserving transformations which reduce the sat-

isfiability problem for RMCF to the satisfiability problem for Tarski’s theory

of reals.3 To prove the correctness of these formula transformations, function

variables are interpreted as piecewise linear functions. In addition, since a for-

mula is valid if and only if its negation is unsatisfiable, the same algorithm

tells one whether a given RMCF formula is valid or not; hence one can fully

mechanize recognition of any theorem expressible in RMCF.

In [3], a variant of the theory RMCF in which function variables are inter-

preted as multivariate continuous real functions is also studied and a decision

procedure is provided for it.

As an ending remark, note that Proposition 1.6 about the Π1-decidability

of FS, to the extent to which it refers to continuous real functions of one real

variable defined all over R, readily follows from the decidability of RMCF.

2.1. The theory RMCF
+

The theory RMCF+ [2] (cf. also [16, pp. 165–177]) is an extension of RMCF
with predicates on strict convexity and concavity of real continuous functions

of a real variable. In addition, most of the predicates on functions apply both

to bounded and unbounded intervals.

2.1.1. Syntax of RMCF+

The language of RMCF+ contains

• a denumerable infinity of individual variables, called numerical variables,

which are denoted by x, y, z, . . .;

• two numerical constants 0, 1;

• a denumerable infinity of function variables, denoted by f, g, h, . . .;

• two functional constants 0, 1.

The language of RMCF+ also includes two distinguished symbols, −∞,+∞,

which are restricted to occur only within range defining parameters, as stated

in the definition of atomic RMCF+-formulae below.

Numerical terms are recursively defined as follows:

(a) numerical variables and the constants 0, 1 are numerical terms;

3We will be a bit more specific on this, and also about syntax and semantics matters, in
the next section, in the context of the extension RMCF+ of RMCF.
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(b) if t1, t2 are numerical terms, so are (t1 + t2), (t1 − t2), and (t1 · t2);

(c) if t is a numerical term and f is a function variable, then f(t) is a numerical

term.

Functional terms are recursively defined as follows:

(a) function variables and the functional constants 0, 1 are functional terms;

(b) if F1, F2 are functional terms, so are (F1 + F2) and (F1 − F2).

In the following, the expression numerical variable will be used also to

denote the constants 0, 1. Likewise, the expression function variable will be

used also to denote the functional constants 0, 1

By extended numerical variable we mean a numerical variable or one of the

symbols −∞,+∞. Likewise, by extended numerical term we mean a numerical

term or one of the symbols −∞,+∞.

An atomic RMCF+-formula is an expression having one of the following

forms:
t1 = t2 , t1 > t2 ,
(F1 = F2)A , (F1 > F2)[t1,t2] ,
Up(F )A , Strict Up(F )A ,
Down(F )A , Strict Down(F )A ,
Convex(F )A , Strict Convex(F )A ,
Concave(F )A , Strict Concave(F )A ,

where A stands for any of the following interval terms

[t1, t2], [t1,+∞[, ] −∞, t2], ] −∞,+∞[ ,

t1, t2 are numerical terms, and F, F1, F2 are functional terms.4

The formulae of RMCF+ are propositional combinations of atomic formulae

by means of the usual connectives ¬,∧,∨,→,↔. Let us stress again that

explicit quantification is not admitted.

To ease readability, occasionally we will use abbreviations. For instance, if

t1, t2, t3 are numerical terms, then t1 = t2/t3 is a shorthand for the conjunction

(t2 = t1 · t3) ∧ (¬(t3 = 0)) .

4Notice that literals of type F1 > F2 are admitted in RMCF+-formulae only if restricted
to finite closed intervals, rather than to possibly infinite closed intervals, as is the case for all
remaining literals involving functional terms. This is due to the facts that (a) the satisfiability
test for RMCF+-formulae is based on the property that any satisfiable RMCF+-formula admits
a canonical model M sending function variables to piecewise linear functions with small

quadratic perturbations on finite internal intervals and small exponential perturbations on
the two external infinite intervals; (b) there are problems in satisfying literals of type F1 > F2

on the two external infinite intervals using linear functions with exponential perturbations
in the presence of literals of the remaining types, involving functional terms.
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Likewise, t1 > t2/t3 is a shorthand for the formula

(
(t1 · t3 > t2) ∧ (t3 > 0)

)
∨
(
(t2 > t1 · t3) ∧ (0 > t3)

)
.

And so on.

2.1.2. Semantics of RMCF+

An RMCF interpretation for the language RMCF+ is a map M defined over

terms and formulae of RMCF+ as follows:

(a) for every numerical variable x distinct from 0, 1, Mx is a real number;

(b) the numerical constants 0, 1 are interpreted as the real numbers 0, 1, re-

spectively;

(c) the functional constants 0, 1 are interpreted as the constant functions with

values 0 and 1, respectively, defined over the whole real axis R;

(d) for each function variable f distinct from 0, 1, Mf is a continuous real

function of a real variable over the whole axis R;

(e) for each numerical term t1 ⊗ t2, with ⊗ ∈ {+,−, ·}, M(t1 ⊗ t2) is the real

number Mt1 ⊗Mt2;

(f) for each numerical term f(t), M(f(t)) is the real number (Mf)(Mt);

(g) for each functional term F1 ⊕ F2, with ⊕ ∈ {+,−}, M(F1 ⊗ F2) is the

function MF1 ⊕MF2;

(h) let t1, t2 be numerical terms, F , G functional terms, and A an interval term

of the form

[t1, t2], [t1,+∞[, ] −∞, t2], ] −∞,+∞[ .

Let MA be the interpretation of the interval term A, namely

MA =





[Mt1,Mt2] if A = [t1, t2] ,

[Mt1,+∞[ if A = [t1,+∞] ,

] −∞,Mt2] if A =] −∞, t2] ,

] −∞,+∞[ if A =] −∞,+∞] .

(h.1) M(t1 = t2) (resp., M(t1 > t2)) is true if and only if Mt1 = Mt2
(resp., Mt1 > Mt2);
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(h.2) M
(
(F > G)[t1,t2]

)
is true if and only if (MF )(x) > (MG)(x) for all

x ∈ [Mt1,Mt2] (thus M
(
(F > G)[t1,t2]

)
is vacuously true whenever

Mt1 > Mt2; a similar observation applies to the cases below);

(h.3) M((F = G)A) is true if and only if (MF )(x) = (MG)(x) for all

x ∈MA;

(h.4) M(Up(F )A) (resp., M(Strict Up(F )A)) is true if and only if the func-

tion MF is monotonically nondecreasing (resp., strictly increasing)

in the interval MA;

(h.5) M(Down(F )A) (resp., M(Strict Down(F )A)) is true if and only if the

function MF is monotonically nonincreasing (resp., strictly decreas-

ing) in the interval MA;

(h.6) M(Convex(F )A) (resp., M(Strict Convex(F )A)) is true if and only if

the function MF is convex (resp., strictly convex) in the interval

MA;

(h.7) M(Concave(F )A) (resp., M(Strict Concave(F )A)) is true if and only

if the function MF is concave (resp., strictly concave) in the interval

MA.

2.1.3. A decision procedure for RMCF+ formulae: an overview

We briefly review below a decision procedure for the satisfiability problem for

RMCF+ formulae, namely an algorithm which given any RMCF+ formula ϕ
tells one whether or not ϕ is satisfiable by a real model.

Phase 1: The first phase of the algorithm consists in transforming the input

formula ϕ into an equisatisfiable formula of the form
∨n

i=1 ϕi, where each ϕi,

for i = 1, . . . , n, is in standard ordered form, i.e.,

(a) ϕi is a conjunction of literals of the following simple types

x = y + w , x = y · w ,
x > y , y = f(x) ,
(f = g + h)A , (f > g)[x1,x2] ,
Up(f)A , Strict Up(f)A ,
Convex(f)A , Strict Convex(f)A ,

(1)

where A is an interval term of any of the following types

[x1, x2] , [x1,+∞[ , ] −∞, x2] , ] −∞,+∞[ ,

x, y, w, x1, x2 are numerical variables, and f, g, h are function variables.
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(b) Let x1, . . . , xn be the domain variables of ϕi, namely the numerical vari-

ables x which appear in ϕi either within a functional term of the form f(x)
or as one of the two extremes wb (other than ±∞) in an interval term of the

form [w1, w2]. Then there exists a permutation π of 〈1, . . . , n〉 such that ϕi

contains the literals xπ(j+1) > xπ(j), for j = 1, . . . , n − 1 (the conjunction

of such literals yields a strict ordering of the domain variables).

For instance, the formula

Down(f)[x,y] ∧ y = f(x)

is transformed into the equisatisfiable formula

(
(0 = f + g)[x,y] ∧ Up(g)[x,y] ∧ y = f(x) ∧ x > y

)

∨
(
(0 = f + g)[x,y] ∧ Up(g)[x,y] ∧ y = f(x) ∧ (x = y + 0)

)

∨
(
(0 = f + g)[x,y] ∧ Up(g)[x,y] ∧ y = f(x) ∧ y > x

)
.

Since ϕ is satisfiable if and only if at least one of the ϕi is satisfiable, Phase 1

allows one to reduce the satisfiability problem for general RMCF+ formulae to

the satisfiability problem for RMCF+ conjunctions of simple atomic formulae

of the types (1) in standard ordered form.

As we have noted for Lemma 1.1, in this phase a combinatorial explosion

can take place, which should be counteracted by suitable measures in the im-

plementation of the algorithm (cf. [2, p. 775]).

The subsequent phases of the algorithm will therefore address the satisfia-

bility problem for RMCF+ conjunctions in standard ordered form.

Thus, let ϕi be a RMCF+ conjunction in standard ordered form (for in-

stance, one of the conjuncts resulting from Phase 1).

Phase 2: In this phase all function variables present in ϕi are evaluated over

the domain variables of ϕi. In other words, for each domain variable vj of ϕi

and each function variable f occurring in ϕi, the conjunct

yf
j = f(vj) ,

where yf
j is a freshly introduced numerical variable, is added to ϕi.

In addition, for each literal x = f(vj) initially present in ϕi, the literal

x = yf
j

is added to ϕi.

Let ψ be the resulting formula. Plainly, ψ and ϕi are equisatisfiable.
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For instance, the formula

Convex(f)[x,y] ∧ y > x

is transformed into the equisatisfiable formula

Convex(f)[x,y] ∧ y > x ∧ z = f(x) ∧ t = f(y) .

Phase 3: During this phase, all literals involving function variables, namely

those of the form

y = f(x) , (f = g + h)A , (f > g)[x1,x2] ,
Up(f)A , Convex(f)A ,
Strict Up(f)A , Strict Convex(f)A ,

are removed from the formula ψ resulting from Phase 2 and are replaced by

suitable RMCF+ conjuncts not involving function variables. Thus, the result-

ing conjunction is a quantifier-free formula, which can be readily tested for

satisfiability by any decider for Tarski’s theory of reals.

This is the most critical phase of the algorithm, from the correctness point

of view. Indeed, while it is not difficult to eliminate function symbols from ψ
in such a way that the resulting RMCF+ formula ψ1 is satisfiable whenever so

is the input formula ψ, particular care must be taken in order that the reverse

implication holds too, namely that ψ is satisfiable whenever so is ψ1.

Let us see in detail the steps of Phase 3. Let V = {v1, . . . , vr} be the

collection of the domain variables of ψ and assume that ψ contains the literals

vi+1 > vi, for i = 1, . . . , r−1 (see (b) in Phase 1). Let ind : V ∪{−∞,+∞} −→
{1, 2, . . . , r} be the index function of V , where

• ind(vi) = i, for i = 1, . . . , r,

• ind(−∞) = 1 and ind(+∞) = r.

Also, for each function variable f in ψ, let us introduce the new numerical

variables γf
0 , γf

r , and αf
j , for j = 0, 1, . . . , r.

We perform the following six transformation steps (five addition steps and

one, the last, elimination step).

1. For each literal of the type (f = g + h)[w1,w2] in ψ, where f, g, h are

function variables and w1, w2 are extended numerical variables, we add

the following literals:

yf
i = yg

i + yh
i , αf

j = αg
j + αh

j ,

for every i such that ind(w1) 6 i 6 ind(w2) and for every j such that

ind(w1) 6 j 6 ind(w2) − 1.
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In addition, if w1 = −∞, we add also the following two literals:

αf
0 = αg

0 + αh
0 , γf

0 = γg
0 + γh

0 .

Likewise, if w2 = +∞, we add also the following two literals:

αf
r = αg

r + αh
r , γf

r = γg
r + γh

r .

2. For each literal of the type (f > g)[w1,w2] present in ψ, where f, g are func-

tion variables and w1, w2 are numerical variables, we add the following

literals:

yf
j − yg

j > |αf
j | + |αg

j | , yf
j+1 − yg

j+1 > |αf
j | + |αg

j | ,

for every j such that ind(w1) 6 j 6 ind(w2) (here and in the following

it is to be understood that literals containing the absolute value function

are to be considered as shorthands for equivalent RMCF+ formulae with

no occurrence of the absolute value).

3. For each literal of the form Up(f)[w1,w2] in ψ, where f is a function vari-

able and w1, w2 are extended numerical variables, we add the following

literals:

yf
j+1 − yf

j > 4|αf
j | ,

for every j such that ind(w1) 6 j 6 ind(w2) − 1.

In addition, if w1 = −∞, we add also the following two literals:

γf
0 > 0 , γf

0 > αf
0 .

Likewise, if w2 = +∞, we add also the following two literals:

γf
r > 0 , αf

r + γf
r > 0 .

For literals of the form Strict Up(f), we proceed much in the same way,

but using the strict inequality > in place of >.

4. For each literal of the type Convex(f)[w1,w2] in ψ, where f is a function

variable and w1, w2 are extended numerical variables, we add the follow-

ing literals:

0 > αf
i , αf

j >
1

4

[
yf

j − yf
j+1 + (yf

j − yf
j−1 − 4αf

j−1)
vj+1 − vj

vj − vj−1

]
,

for every i such that ind(w1) 6 i 6 ind(w2) − 1 and every j such that

ind(w1) < j < ind(w2).
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In addition, if w1 = −∞, we add also the following literal

0 > αf
0

and, provided that w2 6= v1, also the literal

yf
2 − yf

1 + 4αf
1

v2 − v1
> γf

0 − αf
0 .

Likewise, if w2 = +∞, we add also the following literal

0 > αf
r

and, provided that w1 6= vr, also the literal

αf
r + γf

r >
yf

r − yf
r−1 − 4αf

r−1

vr − vr−1
.

5. For each literal of the type Strict Convex(f)[w1,w2] in ψ, where f is a

function variable and w1, w2 are extended numerical variables, we add

the following literals:

0 > αf
i , αf

j >
1

4

[
yf

j − yf
j+1 + (yf

j − yf
j−1 − 4αf

j−1)
vj+1 − vj

vj − vj−1

]
,

for every i such that ind(w1) 6 i 6 ind(w2) − 1 and every j such that

ind(w1) < j < ind(w2).

In addition, if w1 = −∞, we add also the following literal

0 > αf
0

and, provided that w2 6= v1, also the literal

yf
2 − yf

1 + 4αf
1

v2 − v1
> γf

0 − αf
0 .

Likewise, if w2 = +∞, we add also the following literal

0 > αf
r

and, provided that w1 6= vr, also the literal

αf
r + γf

r >
yf

r − yf
r−1 − 4αf

r−1

vr − vr−1
.
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6. Finally, we drop from ψ all literals involving function variables.

For instance, the formula

(f = g + h)[x,y] ∧ y > x ∧ z1 = f(x) ∧ z2 = f(y)

∧ t1 = g(x) ∧ t2 = g(y) ∧ s1 = h(x) ∧ s2 = h(y)

is transformed into the equisatisfiable formula

y > x ∧ z1 = f(x) ∧ z2 = f(y)

∧ t1 = g(x) ∧ t2 = g(y) ∧ s1 = h(x) ∧ s2 = h(y)∧

(z1 = t1 + s1) ∧ (z2 = t2 + s2) ∧ (αf = αg + αh) .

Let ψ1 be the resulting formula, after the execution of the steps 1–6 above.

As already remarked, it can easily be shown that if ψ is satisfiable, so is ψ1.

On the other hand, if ψ1 is satisfied by a real model M , then for each function

variable f thanks to the constraints introduced during the first five addition

steps above, it can be shown that there exists a function Mf which can be

obtained by perturbing quadratically and exponentially a piecewise linear func-

tion through the points (Mvj ,Myf
j ), for j = 1, . . . , r. It turns out that the

real assignment M so extended over the function variables of ψ is a model for

all literals of ψ. Since ψ1 is a quantifier-free formula of Tarski’s theory of reals,

its satisfiability can be tested algorithmically.

As a universally closed RMCF+ statement is valid if and only if its negation

is unsatisfiable, the satisfiability test for RMCF+ outlined above can also be

used to test the validity (i.e., theoremhood) of the universal closure of formulae

of RMCF+. Thus we have the following result.

Proposition 2.1 ([2, Section 3, Theorem 1]). The validity problem for uni-

versally closed RMCF+ statements is decidable. In other words, one can test

algorithmically whether any universally closed RMCF+ statement is a theorem

or not.

2.1.4. Formalization in RMCF+ of elementary lemmas in real analysis

We show by way of some examples that the theory RMCF+ is expressive enough

to allow the formulation of some elementary lemmas in real analysis, which can

be proved automatically by the decision procedure outlined above.

Example 2.2. Consider the claim:

“Let f and g be two real functions defined over a closed bounded interval [a, b],
such that f(a) = g(a) and f(b) = g(b). If f is strictly convex and g is concave,

then f(x) < g(x) for each x ∈]a, b[.”
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This can be formalized by the universal closure of the RMCF+ formula

(
Strict Convex(f)[a,b] ∧ Concave(g)[a,b] ∧ f(a) = g(a)

∧ f(b) = g(b) ∧ b > x ∧ x > a
)
→ (g(x) > f(x)) . (2)

To show that (2) is valid, it is sufficient to prove that its negation

Strict Convex(f)[a,b] ∧ Concave(g)[a,b] ∧ f(a) = g(a)

∧ f(b) = g(b) ∧ b > x ∧ x > a ∧ ¬(g(x) > f(x))

is unsatisfiable. After the normalization phase (Phase 1), we obtain

[
Strict Convex(f)[a,b] ∧ Convex(h)[a,b] ∧ (0 = g + h)[a,b]

∧ f(a) = g(a) ∧ f(b) = g(b) ∧ b > x ∧ x > a ∧ (f(x) > g(x))
]

∨
[
Strict Convex(f)[a,b] ∧ Convex(h)[a,b] ∧ (0 = g + h)[a,b]

∧ f(a) = g(a) ∧ f(b) = g(b) ∧ b > x ∧ x > a ∧ (f(x) = g(x))
]
.

Then, after executing the subsequent phases of the decision algorithm, we obtain

the inequalities

(f(b) − f(x)) · (x− x1) > (f(x) − f(a)) · (x2 − x1)

(−g(b) + g(x)) · (x− x1) > (−g(x) + g(a)) · (x2 − x1)

which, together with f(a) = g(a) e f(b) = g(b), imply f(x) < g(x), contradict-

ing both f(x) > g(x) and f(x) = g(x).

Having proved that the negation of (2) is unsatisfiable, it follows that (2) is

valid, thus proving that our claim expresses a theorem.

A second example is the following.

Example 2.3. Consider the claim:

“Let f and g be two real functions defined over a closed bounded interval [a, b],
such that f is strictly convex and g is concave in [a, b]. Then there exist at

most two distinct points x, y ∈ [a, b] such that f(x) = g(x) and f(y) = g(y)
(i.e., the graphs of f and g meet in at most two points in [a, b]).”

Observe that it can be formalized as the universal closure of the following
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RMCF+ formula

[
Strict Convex(f)[a,b] ∧ Concave(g)[a,b]

∧ (a 6 x1 6 b) ∧ (a 6 x2 6 b) ∧ (a 6 x3 6 b)

∧ f(x1) = g(x1) ∧ f(x2) = g(x2) ∧ f(x3) = g(x3)
]

→
[
(x1 = x2) ∨ (x1 = x3) ∨ (x2 = x3)

]

and therefore it can be proved automatically.

2.2. An overview of the theory RDF

The theory RDF (of Reals with Differentiable Functions) is an unquantified

first-order theory involving various predicates on real functions of class C1 of

one real variable, namely functions with continuous first derivative. Predicates

of RDF concern comparison of functions, strict and non-strict monotonicity,

strict and non-strict convexity (and concavity), and comparison of first deriva-

tives with real constants. Specifically, the atomic formulae of RDF are:

t1 = t2 , t1 > t2 ,
(f = g)A , (f > g)[t1,t2] ,
Up(f)A , Strict Up(f)A ,
Down(f)A , Strict Down(f)A ,
Convex(f)A , Strict Convex(f)A ,
Concave(f)A , Strict Concave(f)A ,
(D[f ] > t)A , (D[f ] > t)A ,
(D[f ] 6 t)A , (D[f ] < t)A ,
(D[f ] = t)A ,

where A stands for any of the following interval terms

[t1, t2], [t1,+∞[, ] −∞, t2], ] −∞,+∞[ ,

t1, t2 are numerical terms, and f, g stand for function variables or the functional

constants 0 and 1. Numerical terms are arithmetic expressions involving real

variables, the real constants 0, 1, functional expressions of the form f(t), and

the arithmetic operators.

Formulae of RDF are propositional combinations of atomic RDF-formulae

with the usual logical connectives ¬,∧,∨,→,↔. Again, explicit quantification

is not allowed.

Function variables are interpreted by real functions of a real variable, de-

fined on the whole real axis R, differentiable over R and with continuous deriva-

tive. The functional constants 0 and 1 are interpreted as the constant functions
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with values 0 and 1, respectively. Predicates of type (f > g)[t1,t2] assert that

the function f strictly dominates g in the closed bounded interval [t1, t2]. The

remaining atomic formulae on functions can refer also to closed half-bounded

intervals [t1,+∞[ and ] −∞, t2] and to the whole real axis ] −∞,+∞[.

Based on the above indications and in analogy with what has been done in

the preceding section, one can give a precise definition of RDF-interpretations.

Then, satisfiable RDF-formulae are those which admit at least one satisfying

interpretation (real model), and valid RDF-formulae (RDF-theorems) are those

which are satisfied by all interpretations.

Domenico Cantone and Gianluca Cincotti have proved in recent years that:

• An RDF-formula ϕ is satisfiable if and only if it admits a canonical real

model M which interprets the function variables of ϕ as piecewise linear

real functions with small quadratic and exponential perturbations.

• Canonical models can be encoded by finitely many parameters satisfying

suitable arithmetical conditions. These can be tested for satisfiability by

any decision procedure for the existential Tarski’s theory of reals.

• Thereby one gets the solvability of the satisfiability problem for RDF-

formulae; consequently, solvability of the validity problem for RDF-for-

mulae, because a formula is valid if and only if its negation is unsatisfiable.

The results on which we are reporting can be summarized as follows:

Proposition 2.4. RDF has solvable satisfiability and validity problems.5

Before outlining the decision algorithm for RDF, we illustrate the expres-

siveness of this theory by formalizing in it some simple lemmas of elementary

real analysis.

Example 2.5. Consider the claim:

“Let f be a real function of class C1 on the closed interval [a, b], with constant

first derivative. Then f is linear in [a, b].”

Plainly, this claim can be formalized by the RDF-formula

(D[f ] = t)[a,b] →
(
Convex(f)[a,b] ∧ Concave(f)[a,b]

)

and therefore it can be verified automatically by a decision procedure for RDF.

5A communication—as yet unpublished—of these results, “Decision algorithms for frag-

ments of real analysis. II. A theory of differentiable functions with convexity and concavity

predicates” was offered by D. Cantone and G. Cincotti at the Italian conference “Convegno
italiano di Logica Computazionale” (CILC’07), 21–22 June 2007, Messina.

A continuation, due to D. Cantone and G.T. Spartà, of that study is in progress: “De-

cision algorithms for fragments of real analysis. III. A theory of differentiable functions

with (semi-) open intervals”. Motivations for extending RDF so as to overcome some of its
expressive limitations will emerge from the discussion of Examples 2.6 and 2.7 below.
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Another example is the following.

Example 2.6 (Weak form of Rolle’s theorem). Consider the claim:

“Let f be a real function of class C1 on the closed interval [a, b] such that

f(a) = f(b), f ′(a) 6= 0, and f ′(b) 6= 0. Then there exists c ∈]a, b[ such that

f ′(c) = 0.”

In view of the continuity of the first derivative f ′, this claim can be formalized

by the following RDF-formula

(
a < b ∧ f(a) = f(b) ∧D[f ](a) 6= 0 ∧D[f ](b) 6= 0

)

→ ¬
(
(D[f ] > 0)[a,b] ∨ (D[f ] < 0)[a,b]

)

and therefore it can be verified automatically by a decision procedure for RDF.

A final example is the following.

Example 2.7 (Weak form of the mean-value theorem). Consider the claim:

“Let f be a real function of class C1 on the closed interval [a, b] such that

f ′(a) 6=
f(b) − f(a)

b− a
, and f ′(b) 6=

f(b) − f(a)

b− a
. Then there exists c ∈]a, b[ such

that f ′(c) =
f(b) − f(a)

b− a
.”

Note that this claim generalizes that of the preceding example. Thus, again by

the continuity of the first derivative f ′, it can be formalized in RDF as follows:

(
a < b ∧ x =

f(b) − f(a)

b− a
∧D[f ](a) 6= x ∧D[f ](b) 6= x

)

→ ¬
(
(D[f ] > x)[a,b] ∨ (D[f ] < x)[a,b]

)
.

In Example 2.6 we had to exclude the cases in which either f ′(a) = 0 or

f ′(b) = 0, because (D[f ] > 0)[a,b]∨(D[f ] < 0)[a,b] expresses thatD[f ] is nonzero

in the closed interval [a, b], rather than in the open interval ]a, b[. A similar

remark applies to Example 2.7, where we had to assume the extra assumptions

f ′(a) 6= f(b)−f(a)
b−a

, and f ′(b) 6= f(b)−f(a)
b−a

. If we could express literals of the

forms (D[f ] < t)]a,b[ and (D[f ] > t)]a,b[, relative to open intervals, in both

cases we could get rid of those extra assumptions.

Such remarks have motivated the study—just mentioned in a footnote—of

the extension RDF+ of RDF with literals of any of the forms

(f > g)A , (D[f ] > t)B , (D[f ] < t)B , (D[f ] 6= t)B ,

where A stands for an open or semi-open bounded interval and B stands for

an open or semi-open interval which is not necessarily bounded.
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2.2.1. The decision algorithm for RDF, in outline

Much like the decision algorithm for RMCF+, the one for RDF begins with a

normalization phase which transforms the input formula ϕ into an equisatis-

fiable disjunction
∨n

i=1 ϕi, where each ϕi is a conjunction in standard ordered

form. While the ordering condition concerning the domain variables of each

ϕi is as before (but here we include among the domain variables also every x
appearing in a term D[f ](x) within ϕi), the forms of the literals constituting

ϕi are, for the theory at hand:

x = y + w , x = y · w ,
x > y , y = f(x) ,
(f = g)A , (f > g)[x1,x2] ,
y = D[f ](x) , (D[f ] ⊲⊳ y)A ,
Strict Up(f)A , Strict Down(f)A ,
Convex(f)A , Strict Convex(f)A ,
Concave(f)A , Strict Concave(f)A ,

(3)

where ⊲⊳ ∈ {=, >,>, <,6}, A is an interval term of any of the following types

[x1, x2] , [x1,+∞[ , ] −∞, x2] , ] −∞,+∞[ ,

x, y, w, x1, x2 are numerical variables, and f, g are function variables. Notice

that all negative literals are eliminated by the transformation rules exploited

in this phase (all of which are, conceptually, rather simple).

In order to determine whether or not ϕ is satisfiable, we must check one

by one its disjuncts ϕi until either one of them turns out to be satisfiable, or

all disjuncts have been examined without success. In preparation for this, we

explicitly evaluate all function variables present in each ϕi over the domain

variables of ϕi. The way to do this is closely analogous to the one discussed

earlier for RMCF+: we associate new variables yf
j , t

f
j with each combination of

a domain variable vj of ϕi with a function variable f also appearing in ϕi, and

conjoin the literals

yf
j = f(vj) , tfj = D[f ](vj)

with ϕi. For each literal x = f(vj) occurring in ϕi, we then insert the literal

x = yf
j into ϕi; likewise, for each literal x = D[f ](vj) in ϕi, we introduce

the equality x = tfj . Each ϕi produced by the normalization phase is thereby

transformed by the present phase into an equisatisfiable conjunction ψi.

We will now describe the main phase, which eliminates from each ψi all

literals that involve function variables.

Let V = {v1, v2, . . . , vr} be the collection of the domain variables of ψi with

their implicit ordering, and let the index function ind : V ∪ {−∞,+∞} −→
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{1, 2, . . . , r} be defined as follows:

ind(x) =
Def





1 if x = −∞,

l if x = vl, for some l ∈ {1, 2, . . . , r},

r if x = +∞.

For each function symbol f occurring in ψi, introduce new numerical vari-

ables γf
0 , γ

f
r and proceed as follows:

1. For each literal of type (f=g)[z1,z2] occurring in ψi, add the literals:

yf
i = yg

i , tfi = tgi ,

for i ∈ {ind(z1), . . . , ind(z2)}; moreover, if z1 = −∞, add the literal:

γf
0 = γg

0 ;

likewise, if z2 = +∞, add the literal:

γf
r = γg

r .

2. For each literal of type (f>g)[w1,w2] occurring in ψi, add the literal:

yf
i > yg

i ,

for i ∈ {ind(w1), . . . , ind(w2)}.

3. For each literal of type (D[f ]⊲⊳y)[z1,z2] occurring in ψi, where ⊲⊳∈ {=, <,
6, >,>}, add the formulae:

tfi ⊲⊳ y ,

yf
j+1 − yf

j

vj+1 − vj

⊲⊳ y,

for i, j ∈ {ind(z1), . . . , ind(z2)}, j 6= ind(z2). Moreover, if ⊲⊳∈ {6,>} also

add the implication:

(
yf

j+1 − yf
j

vj+1 − vj

= y

)
−→ (tfj = y ∧ tfj+1 = y);

moreover, if z1 = −∞, add the formula:

γf
0 ⊲⊳ y,

and if z2 = +∞, add the formula:

γf
r ⊲⊳ y.
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4. For each literal of type Strict Up(f)[z1,z2] (resp. Strict Down(f)[z1,z2])

occurring in ψi, add the formulae:

tfi > 0 (resp. tfi 6 0),

yf
j+1 > yf

j (resp. yf
j+1 < yf

j ),

for i, j ∈ {ind(z1), . . . , ind(z2)}, j 6= ind(z2). Moreover, if z1 = −∞, add

the formula:

γf
0 > 0 (resp. γf

0 < 0),

and if z2 = +∞, add the formula:

γf
r > 0 (resp. γf

r < 0).

5. For each literal of type Convex(f)[z1,z2] (resp. Concave(f)[z1,z2]) occurring

in ψi, add the following formulae:6

tfi 6
yf

i+1 − yf
i

vi+1 − vi

6 tfi+1 (resp. >),

(
yf

i+1 − yf
i

vi+1 − vi

= tfi ∨
yf

i+1 − yf
i

vi+1 − vi

= tfi+1

)
−→ (tfi = tfi+1),

for i ∈ {ind(z1), . . . , ind(z2)−1}; moreover, if z1 = −∞, add the formula:

γf
0 6 tf1 (resp. γf

0 > tf1 ),

and if z2 = +∞, add the formula:

γf
r > tfr (resp. γf

r 6 tfr ).

6. For each literal of type Strict Convex(f)[z1,z2] (resp.Strict Concave(f)[z1,z2])

occurring in ψi, add the following formulae:

tfi <
yf

i+1 − yf
i

vi+1 − vi

< tfi+1 (resp. >),

for i ∈ {ind(z1), . . . , ind(z2)−1}; moreover, if z1 = −∞, add the formula:

γf
0 < tf1 (resp. γf

0 > tf1 ),

and if z2 = +∞, add the formula:

γf
r > tfr (resp. γf

r < tfr ).

6Observe that this group of formulae implicitly forces the relations
y

f
j
−y

f
j−1

vj−vj−1
6

y
f
j+1

−y
f
j

vj+1−vj

for each j ∈ {ind(z1) + 1, . . . , ind(z2) − 1}. Geometrically, the point of coordinates (vj , y
f

j
)

does not lie above (resp. lies below) the straight line joining the two points (vj−1, y
f

j−1
) and

(vj+1, y
f

j+1
).
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7. Withdraw all literals where function variables appear.

In conclusion, the formula χi resulting from ψi through the function variable

removal phase just described only involves literals of the following types:

t1 6 t2 , t1 < t2 , t1 = t2 ,

where t1 and t2 are terms involving only real variables, the real constants 0

and 1, and the arithmetic operators + and · (and their counterparts − and /),
so that the formula χi belongs to the decidable (existential) Tarski’s theory

of reals. Showing that our theory RDF has a solvable satisfiability problem

simply amounts to showing that the main phase leading from ψi to χi preserves

satisfiability. The proof of this fact, albeit not particularly deep, requires a

somewhat technical and lengthy proof, which we omit here.
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Abstract. Let X be a compact, connected complex manifold, and let

ξ ∈ H i(X,Q) be a non-trivial class. The paper deals with the possibility

to construct a topological cycle Γ on X, whose class is the Poincaré dual

of ξ , which is closely related in a precise sense to the complex struc-

ture of X. The desired properties of Γ allow to define a differentiable

relation into a suitable space of 1-jets. This relation shows that there is

a preliminary topological obstruction to construct such a Γ. The main

result of the paper is that, in a relevant particular case, this obstruction

disappears.

Keywords: cohomology class, support, complex manifold, differential relation

MS Classification 2010: 32Q55

1. Introduction

Throughout the paper X will denote a compact, connected complex manifold

of dimension n .

Let ξ ∈ H i(X,Q) be non zero. By a classical theorem of Thom [5] there

is an integer N > 0 such that the Poincaré dual PD(N ξ) ∈ Hk(X,Q) is the

fundamental class of an oriented differentiable submanifold Γ ⊂ X, of dimension

k = 2n−i ( by the way, the symbol ⊂ will denote nonstrict inclusion throughout

the paper ). The set Γ is closed in X, hence compact. For our purposes the

relevant property is

ξ|
X−Γ

= 0 . (1)

To prove this, let T be an open tubolar neighborhood of Γ inside X. Then

Z := X −T is a deformation retract of X −Γ , and it is sufficient to prove that

1Dario Portelli was supported by MIUR funds, PRIN project “ Geometria delle varietà al-
gebriche e dei loro spazi di moduli ” (cofin 2008), and by Università di Trieste - Finanziamento
di Ateneo per progetti di ricerca scientifica - FRA 2011.
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ξ|
Z

= 0 . Denote the inclusion Z ⊂ X by h , and assume that h∗(ξ) = ξ|
Z
6= 0 .

Therefore, since the Kronecker pairing

〈 , 〉 : H i(Z,Q) ×Hi(Z,Q) → Q

is non degenerate, there is u ∈ Hi(Z,Q) such that 〈h∗(ξ) , u 〉 6= 0 . But

〈h∗(ξ) , u 〉 = 〈 ξ , h∗(u) 〉

and it is well known that the right hand side agrees with the intersection

number of the k-cycles PD(ξ) = [Γ] and h∗(u) on X. Since these cycles can be

represented by disjoint chains, we conclude 〈 ξ , h∗(u) 〉 = 0 , contradiction.

Relation (1) implies also that for any subset S of X containing Γ we have

ξ|
X−S

= 0 .

We will say that such a subset of X is a support for ξ . Actually, we are

interested to the possibility that Γ is contained into a complex subspace Y ⊂ X,
i.e. that ξ has supports which are of some interest from the point of view of

the Complex Geometry. Let us give a necessary condition for this.

By restricting the scalars, the complex n-dimensional vector space T
P
X

can be thought as a real 2n-dimensional vector space. This real vector space

is nothing but the tangent space at P of the differentiable manifold underlying

X. Recall that multiplication by i =
√
−1 defines on T

P
X a complex structure

J : T
P
X → T

P
X, and a real subspace of T

P
X corresponds to a complex

subspace of the complex space T
P
X if and only if it is left invariant by J.

Now assume that Γ is contained into some complex subspace Y ( X. For

any point P ∈ Γ which is smooth for Y there is a chain of real tangent vector

spaces

T
P
Γ ⊂ T

P
Y ( T

P
X .

But T
P
Y is a complex subspace of T

P
X, hence

T
P
Γ + J(T

P
Γ ) ⊂ T

P
Y ( T

P
X .

Note that T
P
Γ+J(T

P
Γ ) is in any case the smallest complex subspace of T

P
X

containing T
P
Γ. If the codimension of Y into X is assumed to be ≥ p , then at

any point P ∈ Γ ∩ Ysm we have

dim
C

(
T

P
Γ + J(T

P
Γ )

)
≤ n− p . (2)

Notice that by semi-continuity this relation is actually satisfied at every point

of Γ.
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To try to construct such a support Y for ξ , the idea is to start from a

Γ obtained by Thom’s theorem, and then to deform somehow the inclusion

i : Γ → X to get, say, an immersion f : Γ → X, which satisfies condition (2) at

any point, and moreover satisfies

f∗µΓ
= i∗µΓ

= [Γ] = PD(Nξ) ∈ Hk(X,Q) , (3)

where µ
Γ
∈ Hk(Γ,Q) is the fundamental class of Γ ( recall that Γ is oriented,

see [5, p. 28], where, however, this assumption is implicit ). Since (2) involves

tangent spaces to Γ and X, the natural ambient to study how to deform the

inclusion Γ ⊂ X is the space J 1(Γ, X) of 1-jets of germs of maps Γ → X,
of class C 1 at least. This space consists of all linear maps L : T

c
Γ → T

x
X

for all possible choices of c ∈ Γ and of x ∈ X. There are canonical maps

s : J 1(Γ, X) → Γ and b : J 1(Γ, X) → X defined respectively by

s(L) := c and b(L) := x .

Moreover, every map f : Γ → X, of class C k with k ≥ 1 , lifts to the map

J 1
f : Γ −→ J 1(Γ, X)

c 7→ d fc

J 1(Γ, X)

b

��
Γ

J 1
f

::
u

u
u

u
u

u
u

u
u

u

f
// X

(4)

of class C k−1 , which makes the diagram on the right commutative. Note that

J 1
f is always an embedding when k ≥ 2 , even if f is not. We set

R := {L ∈ J
1(Γ, X) | dim

C

(
L(T

c
Γ) + J(L(T

c
Γ))

)
≤ n− p } . (5)

In Gromov language ( see e.g. [3] ) such a R is called a differential relation.

Condition (2) translates nicely into this new set-up, because, if f : Γ → X is

an immersion, it amounts to require that J 1
f (Γ) ⊂ R .

All this makes apparent that there is a priori a topological obstruction in

order to find a deformation f : Γ → X of the inclusion i : Γ → X which

satisfies (2) and (3). In fact, assume that there is such a f, and let us simply

denote by ϕ its lifting to J 1(Γ, X) ; then ϕ(Γ) ⊂ R . Hence, formally the map

ϕ factorizes through the inclusion u : R ⊂ J 1(Γ, X) , namely we have the

commutative diagram of topological spaces and continuous maps

R
�

� u // J 1(Γ, X)

b

��
Γ

ψ

OO

ϕ

::
t

t
t

t
t

t
t

t
t

t

f
// X
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which yields in homology ( the fundamental class µ
Γ

of Γ was already introduced

above )

PD(N ξ) = [Γ] = f∗ µΓ
= b∗(ϕ∗ µΓ

) = b∗u∗ψ∗ µΓ
= b∗ ◦ [u∗(ψ∗ µΓ

)] .

Therefore, in order that the inclusion Γ ⊂ X can be deformed to satisfy (2), a

necessary condition is that the class [Γ] is the image via b∗ of a class supported

on R .

In this paper we discuss this topological obstruction in the simplest possible

case, namely when p = 1 ( recall that p was introduced as the codimension into

X of a complex subspace Y of X containing Γ ). In this case condition (2)

specializes to

dim
C

(
L(T

c
Γ) + J(L(T

c
Γ) )

)
≤ n− 1 (6)

and the differential relation R involved becomes

R = {L ∈ J
1(Γ, X) | dim

C

(
L(T

c
Γ) + J(L(T

c
Γ))

)
≤ n− 1 } .

To justify a further restriction in the statement of the main theorem below, let

me say that the paper arose from an attempt to understand from a differential

geometric point of view some aspects of the Hodge Conjecture. It is well known

that Hodge (p, p)-conjecture can be reduced to the case when dim(X) = 2p .
Therefore, it was natural for a first exploration to consider only the case when

i = dim(X) = k .
The main result of the paper is that in the particular case when p = 1 and

i = dim(X) = k , the topological obstruction mentioned above disappears.

More precisely, we have

Theorem 1.1. For X of arbitrary dimension n , let R ⊂ J 1(Γ, X) be defined

by (6) in the particular case i = dim(X) = k . Then R is a deformation retract

of J 1(Γ, X) .

Following some pioneering work of Thom [6], Gromov, Eliashberg and sev-

eral other people developed the theory of differential relations ( see e.g. [3] ).

This theory provides technical tools which should allow, in principle, to decide

whether the inclusion Γ ⊂ X can be deformed as desired, or not.

However, it is well known that on a general smooth, projective hypersur-

face X ⊂ P
4, of degree 5 , there are non-trivial ξ ∈ H 3(X,Q) which are not

supported by a divisor of X ( see e.g. [7], Ch. 18 ). It would be of the highest

interest to understand from the point of view of the differential relations why

a 3-cycle Γ corresponding to such a class ξ cannot be deformed in the desired

way in this case.

Theorem 1.1 is proved in § 4. The few, elementary facts about jets we will

need are recalled for the reader’ s convenience in the second section. The study
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of the basic properties of R used to prove Theorem 1.1 is the content of § 3.

Finally, the last section contains some details on the restriction of R to the

fibres of (s, b) : J 1(Γ, X) → Γ×X, which perhaps are of independent interest.

From now on we will assume without further mention that k = dim(X) = n .

2. Some basic fact on 1-jets

We will consider only 1-jets, so we will always write in the sequel J for

J 1(Γ, X) , and J (U, V ) for J 1(U, V ) . For the basic definitions and prop-

erties of the spaces of jets the interested reader is referred e.g. to [2].

Let Γ and X be differentiable varieties of class C r, where r ≥ 1 is an

integer, or r = ω , namely Γ and X are real analytic varieties; we will mantain

this convention about r throughout the paper.

A structure of differential variety on the set J (Γ, X) is given by the fol-

lowing atlas. Let (U, u1, u2, . . . , un) and (V, x1, x2, . . . , x2n) be as above; then

we can represent L by a 2n× n matrix with respect to the bases

∂

∂ u1
,
∂

∂ u2
, . . . ,

∂

∂ un
of T

c
Γ and

∂

∂ x1
, . . . ,

∂

∂ x2n
of T

x
X

canonically associated to the given coordinate charts. To represent the entries

of this matrix we introduce new coordinates pij , where 1 ≤ i ≤ 2n and 1 ≤
j ≤ n . Therefore, if we consider the canonical map

(s, b) : J (Γ, X) → Γ ×X (7)

on the subset J (U, V ) := (s, b)−1(U × V ) of J (Γ, X) we have the local

coordinates

u1, u2, . . . , un, x1, x2, . . . , x2n, pij , 1 ≤ i ≤ 2n , 1 ≤ j ≤ n . (8)

We will need in the sequel the explicit expression for the change of local coor-

dinates in J . For this, consider coordinate charts (U ′, v1, v2, . . . , vn) on Γ and

(V ′, y1, . . . , y2n) on X, such that U ∩ U ′ 6= ∅ and V ∩ V ′ 6= ∅ . It is clear than

that

J (U, V ) ∩ J (U ′, V ′) = J (U ∩ U ′, V ∩ V ′) 6= ∅ .

On J (U ′, V ′) the local coordinates are

v1, . . . , vn, y1, . . . , y2n, qhk , 1 ≤ h ≤ 2n , 1 ≤ k ≤ n ,
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and the change of local coordinates is given by the maps

vk = vk(u1, . . . , un) , 1 ≤ k ≤ n , (9)

yh = yh(x1, . . . , x2n) , 1 ≤ h ≤ 2n , (10)

qhk =
∑

1≤i≤2n

1≤j≤n

∂ yh

∂ xi
∂ uj

∂ vk
pij , 1 ≤ h ≤ 2n , 1 ≤ k ≤ n . (11)

In particular, notice that, for fixed c ∈ U ∩ U ′ and x ∈ V ∩ V ′, relations (11)

define a linear map. This implies that the map (7) realizes J (Γ, X) as a real

vector bundle over Γ×X, of rank 2n2 ( by the way, if we consider higher order

jets, i.e. J r(Γ, X) with r > 1 , we can only say that (s, b) : J r(Γ, X) → Γ×X
is an affine bundle ). It is clear how this vector bundle trivializes; in fact, if

M denotes the real vector space of 2n × n matrices, then J (U, V ) can be

identified with U × V ×M, and then (s, b) : J (U, V ) → U × V corresponds to

the projection U × V ×M → U × V.

Define the rank of the 1-jet (c, x, L) as the rank of L. The map ρ which

associates to every 1-jet its rank is easily seen to be lower semicontinuous.

Hence, for any integer r , with 0 ≤ r ≤ n , the set Jr := { j ∈ J | ρ(j) ≤ r }
is closed in J . We will mostly restrict in the sequel to work on the open subset

Y of J of the jets of rank n .

3. The differential relation R

Let us now introduce some more standard notation which will be used freely

throughout the paper.

Consider coordinate charts (U, u1, u2, . . . , un) for Γ and (V, x1, x2, . . . , x2n)

for X. More precisely, we will always assume that V is a domain of holomorphic

coordinates (z1, . . . , zn) ∈ C
n on X, and that zh = xh + ixn+h is the decom-

position of zh into its real and imaginary parts. Then the complex structure J
is given by

J : (x1, . . . , xn, xn+1, . . . , x2n) 7→ (−xn+1,−xn+2, . . . ,−x2n, x1, . . . , xn) . (12)

Now assume that we have an immersion f : U → V ; we can write it in

coordinates. For any c ∈ U the image Tc := d fc(Tc
Γ) of the differential map

d fc is generated inside T
f(c)

X by the columns of the jacobian matrix

J
c

=
∂ (x1, x2, . . . , x2n )

∂ (u1, u2, . . . , un )
(c) ,

which is a 2n× n matrix. We write J
c

in block form

J
c

=

(
A
B

)
, (13)



ON THE SUPPORTS FOR COHOMOLOGY CLASSES 355

where both A,B are n × n real matrices, whose entries depend on c. Then

by (12) the subspace Tc + J(Tc ) of T
P
X is generated by the columns of the

matrix (
A −B
B A

)

and relation (6) is verified at all points of U if and only if on U

det

(
A −B
B A

)
≡ 0 . (14)

(13) and (14) suggest to organize the matrix ( pij ) in block form

(
pij

)
i,j

=

(
A
B

)
(15)

and to set

M :=

(
A −B
B A

)
. (16)

The determinant DUV of M is a homogeneous polynomial, with coefficients in

Z , in the indeterminates pij , of degree 2n .

We will check now that the loci defined on the various charts J (U, V ) by

the corresponding equations DUV = 0 patch toghether to define a closed subset

of J (Γ, X) , which is the differential relation R .
The key point is to understand how the various maps DUV behave under a

change of coordinates. So, let U ′ ⊆ Γ and V ′ ⊆ X denote as usual coordinate

charts such that U ∩ U ′ 6= ∅ and V ∩ V ′ 6= ∅ . Then on J (U ∩ U ′, V ∩ V ′)

we have the restrictions of both DUV and DU ′V ′ .
To simplify notations we will denote the jacobian matrices involved by

U =
∂ ( y1, . . . , y2n )

∂ (x1, . . . , x2n )
and V =

∂ (u1, . . . , un )

∂ ( v1, . . . , vn )
.

Moreover, let us write the matrix M in block form as

M =
(
P |SP

)
, (17)

where the size of each block is 2n× n , and

S :=

(
0 −In
In 0

)

is the matrix of the complex structure J ( note that this matrix is the same

on every chart of X ). Finally, arrange the various qhk appearing in (11) in a

2n× n matrix Q. Equations (11) tell us that P and Q are related by

Q = U P V .
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Then (
Q |SQ

)
=

(
U P V |SU P V

)
.

Since X is a complex manifold, we can restrict to the case when all the changes

of coordinates (10) are holomorphic, hence their differentials are C-linear. In

matrix terms this is SU = U S , which yields

(
U P V |SU P V

)
=

(
U P V |U SP V

)
= U

(
P |SP

) (
V 0

0 V

)
.

Taking determinants we get

det
(
Q |SQ

)
= det(U ) det(M ) det(V )2 .

In terms of the functions D this relation becomes

DU ′V ′ = λDUV , (18)

where

λ := det(U ) det(V )2 : J (U ∩ U ′, V ∩ V ′) → R> . (19)

In fact, det(U ) > 0 because X is canonically oriented. It is a simple exercise

to check that the functions λ satisfy the cocycle condition.

Therefore R can be defined coherently by the vanishing of the functions D
on the coordinate charts of J (Γ, X) .

Let us analyze more closely the functions D. Elementary operations on the

matrix M in the block form (16) transform it into



A + iB 0

i
2 (A − iB) A − iB


 and finally into




A + iB 0

0 A − iB


 .

Note that the rank of the first n columns in the above matrices changes only

when the last group of elementary operations is performed. Note also that

A + iB and A − iB have the same rank, hence

rk(M ) = 2 rk(A + iB) . (20)

Moreover, det (A +iB ) is a homogeneous polynomial in the indeterminates

pij , with complex coefficients, of degree n . It is convenient to write it in the

form

E := det (A + iB ) = R+ iI , (21)

where R and I are both homogeneous polynomials with real coefficients, of

degree n . Therefore

DUV = det




A + iB 0

0 A − iB


 = (R+ iI ) (R− iI ) = R 2 + I 2 . (22)
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Corollary 3.1. DUV is a homogeneous polynomial with real coefficients, in

the indeterminates pij , of degree 2n . Moreover, as a function, DUV ≥ 0 .

For future use we have also to analyze the behaviour of the maps D outside

R. For this, set

F := J (U, V ) − R .

The restriction of D = DUV to F is a smooth map ( actually, an algebraic one,

hence real-analytic ) F → R> . It is elementary to check that such a D is a

surjective submersion.

Corollary 3.2. For any a > 0 the set D−1(a) is a smooth hypersurface of

F .

Assume now that U,U ′ and V, V ′ are domains of coordinate charts for Γ

and X respectively, such that U ∩ U ′ 6= ∅ and V ∩ V ′ 6= ∅ . We have the

restrictions of both DUV and DU ′V ′ on J (U ∩ U ′, V ∩ V ′) . But the map

λ : J (U ∩ U ′, V ∩ V ′) → R> defined in (19) is not constant in general, hence

the hypersurfaces D−1
UV (a) and D−1

U ′V ′(a′) of F do not glue, however a, a′ are

choosen.

The throubles with λ disappear if we restrict to a fiber of (s, b) . In fact,

take any c ∈ U ∩ U ′ and x ∈ V ∩ V ′, and set

Φ := (s, b)−1(c, x) .

Because of (18) we then have

Φ ∩ D−1
U ′V ′

(
λ(c, x) a

)
= Φ ∩ D−1

UV (a) . (23)

Hence these hypersurfaces of Φ ≃ R
2n2

are independent from the system of

local coordinates on J used to define them. They will play an important

role in the sequel, mainly bacause of the following proposition, quite similar to

Corollary 3.2. From now on we will denote by D both the restriction to Φ of

the map DUV , and the homogeneous polynomial which is the determinant of

the matrix (16).

Proposition 3.3. For any a > 0 the subsets

Da := D−1(a)

of Φ are smooth hypersurfaces, and Φ−R is foliated by them when a runs into

R> .
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Proof. Take any P ∈ Φ , such that D(P ) > 0 . Since D is homogeneous, of

degree 2n , by Euler formula we have

∑

i,j

pij(P )
∂ D

∂ pij
(P ) = 2nD(P ) > 0 .

Hence the various
∂ D

∂ pij
(P )

cannot be all zero.

4. Proof of Theorem 1.1

The outline of the construction of a retraction map r : J → R is rather simple.

In fact, recall that J has a structure of real vector bundle over Γ ×X, given

by the map (s, b) , as was already remarked in § 2. Hence r can be constructed

fiberwise. In any fiber Φ there are the level hypersurfaces of the maps D.
Though the “ levels ” actually depend on the function D, hence on the local

coordinates used to define it, the hypersurfaces themselves do not because

of (18), and we can therefore consider the corresponding normal directions

field, with respect to some metric on Φ . This metric will be supplyied by

a Riemannian structure on J , namely a smoothly varying positive definite

symmetric bilinear form on each fiber. It is well known that any vector bundle

over a smooth base can be endowed with such a structure.

The directions field mentioned above corresponds to several ( nowhere van-

ishing ) vector fields, e.g. the gradient of D. The integral curves of any of

these vector fields foliate Φ−R, and the key point is that every integral curve

“ ends ” on R. Then, given any P ∈ Φ − R, there is exactly one integral curve

containing it, and we can define r(P ) to be the limit point of this curve into

R.

Let us fix on J a Riemannian structure M . On Φ = (s, b)−1(c, x) we fix

an ortonormal basis with respect to the metric M(c, x) . On Φ we will use the

coordinates qij given by the dual basis, instead of the pij introduced previously,

to simplify somewhat the computations. In the new coordinates the function

D has still the form (22), namely

D = R̃ 2 + Ĩ 2 , (24)

where R̃ and Ĩ are both homogeneous polynomials of degree n in the variables

qij . Therefore, D is homogeneous, of degree 2n . Moreover, the set C = Φ∩R

is defined into Φ by the equation D = 0 .
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We are interested to the family of ortogonal curves to the level hypersurfaces

of the function D . Hence, by definition, the more general system of differential

equations with integral curves the family of curves we want is

d qij
d t

= ν∇D , (25)

where ∇D denotes the gradient vector field of D, and ν is a nowhere vanishing

real function defined in a suitable open set of Φ , to be determined in order

that any solution of (25) satisfies some desired property.

Notice that ∇D vanishes exactly along C . In fact, (24) implies that ∇D
vanishes along C , and at any point where ∇D vanishes, D vanishes as well by

Euler formula. This allows us to consider the following specialization of (25)

on Φ − C
d qij
d t

=
∇D

‖ ∇D ‖2
. (26)

The reason for (26) is that the relation of our integral curves with the level

hypersurfaces of D makes reasonable to try to parametrize the integral curves,

at least locally, by the “ level ” itself. More precisely, if ϕ(t) is a function

R → Φ whose image is an integral curve, then we want the following relation

to be identically satisfied

D(ϕ(t) ) ≡ t . (27)

To determine the function ν in (25) such that (27) will be satisfied, we

differentiate (27), where ϕ(t) is assumed to be a solution of (25), thus getting

ν ‖ ∇D ‖2 ≡ 1 .

Conversely, let ϕ(t) be a solution of (26). Then,

d

d t
D(ϕ(t) ) =

∑

i,j

∂ D

∂ qij

(
ϕ(t)

)
ϕ′

ij(t) ≡ 1

and there is a real constant C such that

D(ϕ(t) ) ≡ t+ C .

But the system (26) is autonomous, and we can safely assume that C = 0 .

Lemma 4.1. Every solution ϕ of (26) is maximally defined on (0,+∞) . More-

over, the function t 7→‖ ϕ(t) ‖2 is strictly increasing, and

lim
t→+∞

‖ ϕ(t) ‖= ∞ . (28)
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Proof. Take any P ∈ Φ not in C , and set t0 = D(P ) . Moreover, let ϕ(t) be

the solution of (26) such that ϕ(t0) = P. It is customary to consider ∇D as a

column vector; if P is considered as a row vector, then by Euler formula we get

P · ∇D(P ) = 2nD(P ) = 2n t0 > 0

and Schwarz inequality yields

2n t0 = |P · ∇D(P ) | ≤ ‖ P ‖ ‖ ∇D(P ) ‖ .

Hence ∥∥∥∥
∇D(P )

‖ ∇D(P ) ‖2

∥∥∥∥ =
1

‖ ∇D(P ) ‖
≤

1

2n t0
‖ P ‖ .

Therefore, if a is any real number such that 0 < a < t0 , then for every P ′ ∈
Φ − C such that D(P ′) ≥ a , the following inequality is satisfied

∥∥∥∥
∇D(P ′)

‖ ∇D(P ′) ‖2

∥∥∥∥ ≤
1

2na
‖ P ′ ‖ .

This shows that ϕ(t) is defined on any [t1, t2] ⊆ R , where a < t1 < t0 < t2 ,
hence on [t1,∞) . Since a > 0 is arbitrary, we conclude that every solution

of (26) is defined on (0,+∞) .

Moreover, we have by Euler formula and (26) ( here tϕ(t) denotes the trans-

posed of the column vector ϕ(t) )

d

d t
‖ ϕ(t) ‖2 = 2 tϕ(t) ·

∇D(ϕ(t))

‖ ∇D(ϕ(t)) ‖2
= 4n

D(ϕ(t))

‖ ∇D(ϕ(t)) ‖2
> 0 ,

for every t, hence t 7→‖ ϕ(t) ‖2 is a strictly increasing function.

Finally, set Da := D−1(a) for every a > 0 . Note that, if b > 0 is another

real number, then the ubiquitous Euler formula yields also the diffeomorphism

Da → Db given by P 7→

(
b

a

) 1
2n

P .

Therefore, if we set µa := inf { ‖ P ‖ |P ∈ Da } ( clearly µa > 0 ), then µa and

µb are related by

µb =

(
b

a

) 1
2n

µa

and (28) follows because ϕ(t) ∈ Dt for any t > 0 by (27), hence

‖ ϕ(t) ‖≥ µt .
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It remains to analyze the behaviour of the solutions of (26) when t → 0+ .
The key point is disposed by the following result ( for the proof see [4] ).

Theorem 4.2. Let D : Φ → R be a real-analytic function ≥ 0 . Then, for every

P ∈ C there is a neighborhood WP of P inside Φ such that for every Q ∈ W
P

the solution q
Q

of the Cauchy problem q
Q
(0) = Q for the system of first order

ODE (
qij

)′
= −∇D (29)

is defined in [0,∞) , has finite length, and converges uniformly to a point of C

when t→ ∞ . Moreover, if Q ∈W
P

then q
Q
(t) ∈W

P
for every t ≥ 0 .

Remark 4.3. To keep close to [4] we stated the above theorem with the orienta-

tion of the integral curves reversed with respect to our conventions. Moreover,

notice for future use that this result is local, namely it is sufficient to consider

the restriction of D to any neighborhood L of a given P ∈ C . In this case the

solution q
Q

will converge to a point of C ∩ L when t→ ∞ .

Consider, now, an arbitrary solution ψ of (26). Since t 7→‖ ψ(t) ‖ is a

strictly increasing function, for every fixed b > 0 we have ‖ ψ(t) ‖≤‖ ψ(b) ‖
whenever t ≤ b . Let K denote the intersection of C with the closed ball B of

vectors with norm ≤‖ ψ(b) ‖ ; then K is compact and there are finitely many

points P1, . . . , Ps ∈ K such that

K ⊂ WP1
∪ . . . ∪WPs

,

where any WPi
is an open neighborhood of Pi like in Theorem 4.2.

The functionD has a minimum on B−(WP1
∪. . .∪WPs

) , and this minimum

is > 0 , because this set is compact and disjoint from C . Then, for a > 0

sufficiently small ( and a < b ), we get

Da ∩B ⊂ WP1
∪ . . . ∪WPs

. (30)

But every hypersurface Da of Φ can be used to assign the initial condition

for the solutions of (26), uniformly with respect to the time t . In fact, we have

the straightforward consequence of (27).

Corollary 4.4. For any fixed real number a > 0 , every solution ϕ of (26)

intersects Da in exactly one point.

Therefore (30) implies that ψ(a) ∈ WPi
for a suitable i . Then Theorem 4.2

applied to ψ ( cum grano salis ! ) yields

lim
t→ 0+

ψ(t) ∈ C .
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We are in position now to define a map ρ : Φ − C → C , the first step

toward the retraction r : J → R . In fact, if Q ∈ Φ− C is arbitrary, let ϕ be

the unique solution of (26) such that ϕ(D(Q)) = Q . We set

ρ(Q) := lim
t→ 0+

ϕ(t) .

Lemma 4.5. The map ρ is continuous.

Proof. For the proof we need another lemma. To state it, let us introduce a

small piece of notation. If P is any point of Φ − C , and D(P ) = a , we will

denote by ϕ
P

the unique solution of (26) such that ϕ
P
(a) = P.

Lemma 4.6. For any fixed real number c > 0

χ : (0,+∞) × Dc → Φ − C given by χ(t, P ) = ϕ
P
(t)

is a homeomorphism. It follows, in particular, that for any two strictly positive

real numbers a, b , the hypersurfaces Da and Db of Φ are homeomorphic via

P 7→ ϕ
P
(b) for every P ∈ Da .

Proof. Corollary 4.4 implies that χ is bijective. Moreover, χ is the restriction

to (0,+∞) × Dc of

(0,+∞) × ( Φ − C ) → ( Φ − C ) , defined by (t, P ) 7→ ϕ
P
(t) , (31)

which gives the flow of the vector field at the R.H.S. of (26), and it is well

known that this map is continuous. Finally, χ−1 : Φ − C → (0,+∞) × Dc is

given by

P 7→ (D(P ) , ϕ
P
(c) )

and to show that it is continuous it is sufficient to check that P 7→ ϕ
P
(c) is

such. But this is a standard consequence of the theorem of the continuous

dependence of solutions on initial data.

To conclude the proof of Lemma 4.5, for an arbitrary P ∈ Φ−C , set Q = ρ(P ) .
Here we use the fact that Theorem 4.2 is of local nature. In fact, for any

neighborhood L of Q , we can consider the neighborhood W
Q

⊂ L as in the

statement of Theorem 4.2, referred now to D|
L
. Then, for b > 0 sufficiently

small we have ϕ
P
(b) ∈W

Q
. Fix one of such b .

Let M denote an open neighborhood of ϕ
P
(b) into Db , such that

M ⊂W
Q
. (32)

If D(P ) = a and 0 < η < a is real, then Lemma 4.6 tells us that

L = {R ∈ Φ − C | a− η < D(R) < a+ η and ϕ
R
(b) ∈M }

is an open neighborhood of P inside Φ − C . Then ρ(L ) ⊆ L by Theorem 4.2

because of (32), and the proof of Lemma 4.5 is complete.
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Remark 4.7. I believe that ρ : Φ − C → C is surjective, but I don’ t know

how to prove this. Notice however that, as a straightforward consequence of

Theorem 4.2, the set ρ(Φ − C ) is dense inside C .

Lemma 4.8. The map ρ : Φ − C → C can be extended to a continuous map

ρ0 : Φ → C by setting ρ0(P ) = P when P ∈ C .

Proof. It remains to check the continuity at the points of C . But this follows

immediately from Theorem 4.2.

The next step is the extension of ρ0 to a coordinate neighborhood of J .
For this, let U and V be the usual coordinate neighborhoods for Γ and X
respectively. Then we can define

ρ1 : J (U, V ) → J (U, V ) ∩ R

by assuming that it acts fiberwise ( the fibres are those of (s, b) ) like the map

ρ0 defined above. Since the restriction of J (Γ, X) to U × V is a trivial vector

bundle, ρ1 is continuous.

To extend ρ1 to the desired map r : J → R, the only delicate point

is the following verification. Assume that U ′ and V ′ are other coordinate

neighborhoods for Γ and X such that U ∩ U ′ 6= ∅ and V ∩ V ′ 6= ∅ . Then we

have also

ρ′
1

: J (U ′, V ′) → J (U ′, V ′) ∩ R

and we have to check that

ρ1|J (U∩U′,V ∩V ′)
= ρ′

1
|
J (U∩U′,V ∩V ′)

. (33)

Here we exploit the fact that both ρ1 and ρ′
1

are defined fiberwise. So, let

Φ = (s, b)−1(c, x) be an arbitrary fiber contained into J (U ∩ U ′, V ∩ V ′) .
The two coordinate neighborhoods of J containing Φ give us the two maps

D,D′ : Φ → R related by

D′ = λ0D

because of (18), where λ0 = λ(c, x) ( see (19) ). Therefore

∇D′ = λ0 ∇D and
∇D′

‖ ∇D′ ‖2
=

1

λ0

∇D

‖ ∇D ‖2
. (34)

The system of ODE (26) for the local coordinates corresponding to U ′ and V ′

is then
d q′ij
d t

=
1

λ0

∇D

‖ ∇D ‖2
. (35)
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Now, let Q ∈ Φ−C , ad assume that D(Q) = a , hence D′(Q) = λ0 a . With the

notation introduced in the proof of Lemma 4.5, let ϕ′

Q
be the solution of (35)

such that ϕ′

Q
(λ0 a) = Q . It is easily checked that the map

ϕ(t) := ϕ′

Q
(λ0 t) : (0,+∞) → Φ − C

satisfies identically (26) thanks to the (34). Moreover, since ϕ(a) = Q , we can

conclude

ϕ
Q
(t) = ϕ′

Q
(λ0 t) for every t > 0 . (36)

Hence,

ρ1(Q) = lim
t→0+

ϕ
Q
(t) = lim

t→0+
ϕ′

Q
(t) = ρ′

1
(Q)

and the equality (33) is completely proved.

Therefore, by (33) we can define a map r : J → R by just requiring that its

restriction to any coordinate neighborhood J (U, V ) of J is the corresponding

ρ1 . It is clear that such an r is continuous, and that, if the inclusion R ⊂ J

is denoted by u , then r ◦ u = idR.

To complete the proof of Theorem 1.1 it remains to show that u◦r is homo-

topic to idJ . Since r was substantially defined fiberwise, it seems reasonable

to try to construct in this way also an homotopy

H : [0, 1] × J → J (37)

between u ◦ r and idJ .
Then, let Φ , C and ρ0 be as usual, and denote by i the inclusion C ⊂ Φ .

For every P ∈ Φ−C we have ϕ
P

: (0,+∞) → Φ−C . This map can be extended

to a continuous map

ϕ̃
P

: [0,+∞) → Φ by setting ϕ̃
P
(0) = ρ(P ) .

Moreover, if P ∈ C we will define ϕ̃
P

: [0,+∞) → Φ to be the constant map

with value P. After these preparations, we set

h : [0, 1] × Φ → Φ where h(τ, P ) := ϕ̃
P
( τ D(P ) ) . (38)

The relations

h(1,− ) = idPhi , h(0,− ) = i ◦ ρ0 ,

follow from the definition. It remains to check that h is continuous. Only the

continuity at a point (τ0, P ) where τ0 > 0 and P ∈ C deserves some comment.

In this case h(τ0, P ) = P , so let U be an arbitrary neighborhood of P. As usual,

we will consider a neighborhood W
P

of P like in the statement of Theorem 4.2,
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and such that W
P
⊂ U . Moreover, let a > 0 be such that τ0 − a > 0 . Finally,

let b > 0 such that L := W
P
∩ Db 6= ∅ . We set

V :=
{
Q ∈ Φ | Q ∈W

P
, D(Q) <

b

τ0 + a
, if Q /∈ C then ϕ

Q
(b) ∈ L

}
.

Thanks to Lemma 4.6, V is an open neighborhood of P. Assume, now, that

τ ∈ (τ0 − a, τ0 + a) , and Q ∈ V. If Q ∈ C , then

h(τ,Q) = Q ∈ W
P
⊂ U .

If Q /∈ C , then h(τ,Q) = ϕ
Q
(τ D(Q)) . Therefore, the definition of V yields

both the relations τ D(Q) < b and ϕ
Q
(b) ∈ L ⊂W

P
. Hence h(τ,Q) ∈W

P
⊂

U by the last sentence of Theorem 4.2, and we conclude that the map h in (38)

is continuous.

As with the definition of the retraction r , the key point to define the ho-

motopy (37) is the verification that the map (38) actually does not depend on

the choice of the local coordinate system J (U, V ) of J containing the fiber

Phi . In fact, with the usual notations,

h′(τ, P ) = h(τ, P )

holds trivially true if τ = 0 or P ∈ C . Otherwise, by (36),

h′(τ, P ) = ϕ′

Q
(τ D′(P )) = ϕ′

Q
(τ λ0D(P )) = ϕ

Q
(τ D(P )) = h(τ, P ) .

Therefore we can define fiberwise the map (37), and it is continuous.

The proof of Theorem 1.1 is now complete.

5. Some geometric property of R

To understand R it is useful to first focus on the geometry of

C := Φ ∩ R

where, as usual, Phi is any fibre of the map (s, b) : J 1(Γ, X) → Γ × X. In

particular, we are interested in the dimension of C , and in the structure of

its singular locus. To this aim, it is easier to first study the affine variety CC

defined in C
2n2

by the same equations than C , namely

R = 0 I = 0 (39)

because of (21). Then one can investigate the set of real points of CC , which

is in fact C .
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The geometry of CC becomes perfectly clear if we replace the equations (39)

used to define it, by those we get from the following change of variables in the

ring of polynomials B := C[ pij | 1 ≤ i ≤ 2n , 1 ≤ j ≤ n ] . For every pair of

integers h, k such that 1 ≤ h, k ≤ n , set

Zhk := phk+iph+n,k , Whk := iphk+ph+n,k = i(phk−iph+n,k) = i Zhk . (40)

Under this change of variables B becomes C[Z11, . . . , Znn,W11, . . . ,Wnn] .
By (40) the generic n× n matrices

Z := (Zij ) and W := (Wij )

are related to the matrices A , B introduced in (16) by the obvious relations

Z = A + iB and − iW = A − iB .

Hence by (21) ( possibly up to a constant factor 6= 0 for the second case )

det (Z ) = det (A + iB ) = E and det (W ) = E .

The meaning of these relations is as follows. The change of variables (40)

induces a change of coordinates

ω : C
2 n2

pij
−→ C

2 n2

zw . (41)

Let ω(P ) =
(
(z), (w)

)
. Then the coordinates (pij) of P ∈ C

2 n2

satisfy the

equation E = 0 if and only if

rk(Z (z)) < n .

Therefore, if we set

Y :=
{

(z) ∈ C
n2

z

∣∣ rk(Z (z)) < n
}

Y ′ :=
{

(z) ∈ C
n2

w

∣∣ rk(W (w)) < n
} (42)

we can conclude that

CC = Y × Y ′ . (43)

In fact, DUV = E · E because of (22). Moreover, if P ∈ J (U, V ) annihilates

E, i.e. if E(P ) = 0 , then we have also E(P ) = 0 , and conversely.

Moreover, Y and Y ′ are generic determinantal varieties by (42), so that

they are irreducible and reduced ( see e.g. [1], Ch. II, § § 2 and 3 ). Hence CC

is also irreducible and reduced, of dimension 2n2 − 2 because Y, Y ′ are both

hypersurfaces of C
n2

.
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Finally, from (43) it is also easily seen that

Sing(CC) = Sing(Y ) × Y ′ ∪ Y × Sing(Y ′) , (44)

where ( see e.g. [1] )

Sing(Y ) =
{

(z) ∈ C
n2

z

∣∣ rk(Z (z)) < n− 1
}

(45)

and similarly for Y ′. We can summarize all this as

Theorem 5.1. The variety CC is irreducible and reduced, of dimension 2n2−2 .
Its singular locus is given by (44), and has codimension 2 inside CC .

We are ready to start the study of the set C of real points of CC . We will

use (39) as equations for both C and CC , inside R
2 n2

and C
2 n2

respectively.

Then, the jacobian criterion yields

Sing(C ) = C ∩ Sing(CC) or, equivalently Csm = C ∩
(
CC

)
sm
. (46)

To get a better understanding of the above relations, and to exploit them, we

have to be able to detect real points of CC when they are given in the coordinates

z, w . For this, consider the following set-up, where γ is the conjugation map,

and ω was defined in (41)

R
n2

⊆ C
n2

pij

γ

��

ω //
C

n2

zw
⊇ CC

R
n2

⊆ C
n2

pij ω
//
C

n2

zw
⊇ CC .

Then set

δ := ω ◦ γ ◦ ω−1 : C
n2

zw
−→ C

n2

zw
.

It is clear that, for every P ∈ C
n2

pij
, we have

P = P ⇐⇒ δ
(
ω(P )

)
= ω(P ) . (47)

It is easily checked that the map δ is given in coordinates by

δ : (z11, . . . , znn, w11, . . . , wnn) 7→ (i w11, . . . , i wnn, i z11, . . . , i znn) . (48)

This allows us to write condition (47) explicitly, namely a point Q = ω(P ) =

(z11, . . . , znn, w11, . . . , wnn) is such that Q = δ(Q) if and only if all the follo-

wing conditions are satisfied




z11 = i w11

...

znn = i wnn ,





w11 = i z11

...

wnn = i znn .

(49)
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Note that the conditions of one block are equivalent to those of the other block.

At this point we are able to describe explicitly the points of C by means of

the map

u : Y → C given by (z) 7→ ( (z) | i (z) ) . (50)

In fact, by (49) the matrix ( (z) | i (z) ) represents a real point of CC , hence

a point of C . Notice that the restriction p to C of the canonical projection

CC = Y × Y ′ → Y is such that

p ◦ u = idY . (51)

Now, if (z) ∈ Ysm , i.e. by (42) and (45), if rk(Z (z)) = n − 1 , then

u((z)) ∈ (CC)sm . Hence u((z)) ∈ Csm because of (46).

On the other hand, if P = ( (z) | i (z) ) ∈ Csm then it is also a point of

(CC)sm , hence rk(Z (z)) = n − 1 and p( ( (z) | i (z) ) ) ∈ Ysm . By (51) the

point P of Csm then comes via u from a smooth point of Y.

To summarize, we have constructed a real-analytic, bijective map

u : Ysm → Csm

with real-analytic inverse. Since Y is an integral variety over C , of dimension

n 2 − 1 , we can conclude

Proposition 5.2. Csm is a real-analytic variety, of dimension 2 (n 2 − 1) .
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et analytiques. Fascicule de résultats (Paragraphes 8 à 15), Actualités Scien-
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vol. 10, Société Mathématique de France, Paris, 2002.

Author’s address:

Dario Portelli
Dipartimento di Matematica e Geoscienze
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Abstract. The existence of mild solutions is obtained, for a semilin-

ear multivalued equation in a reflexive Banach space. Weakly compact

valued nonlinear terms are considered, combined with strongly contin-

uous evolution operators generated by the linear part. A continuation

principle or a fixed point theorem are used, according to the various

regularity and growth conditions assumed. Applications to the study of

parabolic and hyperbolic partial differential equations are given.

Keywords: semilinear multivalued evolution equation, mild solution, evolution system,

compact operator, continuation principle
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1. Introduction

The paper deals with the initial value problem associated to a semilinear mul-

tivalued evolution equation
{
x′(t) ∈ A(t)x(t) + F (t, x(t)), for a.a. t ∈ [a, b],
x(0) = x0 ∈ E

(1)

in a reflexive Banach space (E, ‖ · ‖) where

(A) {A(t)}t∈[a,b] is a family of linear, not necessarily bounded, operators with

A(t) : D(A) ⊂ E → E, D(A) dense in E, which generates a strongly

continuous evolution operator U : ∆ → L(E) (see Section 2 for details);

(F1) F (·, x) : [a, b] ⊸ E has a measurable selection for any x ∈ E and F (t, x)
is nonempty, convex and weakly compact for any t ∈ [a, b] and x ∈ E.

1Supported by the national research project PRIN 2009 “Ordinary Differential Equations
and Applications”.
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When E is a separable Banach space, the measurability of F (·, x) for any x ∈ E
implies the existence of a selection as in (F1) (see the Theorem of Kuratowski-

Ryll-Nardzewski [6, Theorem A]). Sufficient conditions are given in [6] in order

to obtain the existence of a strongly measurable selection for the multivalued

map (multimap for short) F (·, x) in a not necessarily separable Banach space.

Two different sets of regularity and growth assumptions on F are assumed,

which cause the use of different techniques for studying (1). In Section 3 we

treat the case when the evolution operator U(t, s) is compact for t > s and we

assume that

(F2) F (t, ·) : E ⊸ Eσ is upper semicontinuous (u.s.c. for short) for a.a.

t ∈ [a, b].

We denote with Xσ the topological space obtained when X ⊆ E is equipped

with the weak topology.

If we further impose the growth condition

(F3) sup
x∈Ω

‖F (t, x)‖ ≤ ηΩ(t) for a.a. t ∈ [a, b], with Ω ⊂ E bounded and

ηΩ ∈ L1([a, b]; R),

which allows the nonlinearity F to have a superlinear growth, we make use

of a classical continuation principle for compact multivalued fields (see Theo-

rem 2.3).

In Section 4 we allow U(t, s) to be non-compact, but we replace (F2) with

the stronger regularity condition

(F2 ′) F (t, ·) : Eσ → Eσ is u.s.c. for a.a. t ∈ [a, b]

and we use a recent continuation principle in Frechét spaces due to the same

authors (see Theorem 2.4). To this aim we also need the following condition

(F2 ′′) F (t, ·) is locally compact for a.a. t ∈ [a, b].

Moreover, in Sections 3 and 4 we also show that, if we restrict the growth

condition on F to

(F3 ′) ‖F (t, x)‖ ≤ α(t)(1 + ‖x‖) for a.a. t ∈ [a, b], every x ∈ E and some

α ∈ L1([a, b]; R),

then Ky Fan fixed point Theorem (see Theorem 2.5) can be used in both

regularity assets and the solution set is compact in the appropriate topology.

We always investigate the existence of mild solutions of problem (1).

Definition 1.1. A continuous function x : [a, b] → E is said to be a mild

solution of the problem (1) if there exists a function f ∈ L1([a, b];E) such that

f(t) ∈ F (t, x(t)) for a.a. t ∈ [a, b] and

x(t) = U(t, a)x0 +

∫ t

a

U(t, s)f(s) ds, ∀ t ∈ [a, b].
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We refer to [5, 10] for the study of problem (1) when F (t, ·) : E ⊸ E is

u.s.c. for a.a. t ∈ [a, b] and it has compact values. Instead, the case when the

linear part A(t) is defined and bounded on all the space E was treated in [2, 12]

under different regularity conditions. Nonlocal boundary value problems asso-

ciated to the evolution equation in (1) are investigated in [4, 13] respectively

in the case when F satisfies (F2 ′) and (F2). Many differential operators sat-

isfy condition (A) and frequently they generate a compact evolution operator

(see e.g. [14, 16]; see also Example 2.1). The introduction of a multivalued

equation is often motivated by the study of a control problem. In Sections 5

we propose an application of our theory to the study of a parabolic partial

differential inclusion, hence generating a compact evolution operator. In Sec-

tion 6 we investigate a feedback control problem associated to an hyperbolic

partial differential equation, and thus with a non-compact associated evolution

operator. Section 2 contains some preliminary results.

2. Preliminary results

This part contains some preliminary results, of different types, which are useful

in the sequel.

Throughout the paper we denote with B the closed unit ball of E centered at

0. Given the measure space (S,Σ, µ) and the Banach space X, we denote with

‖ · ‖p the norm of the Lebesgue space Lp(S;X).

Let ∆ = {(t, s) ∈ [a, b] × [a, b] : a ≤ s ≤ t ≤ b}. A two parameter

family {U(t, s)}(t,s)∈∆, where U(t, s) : E → E is a bounded linear operator

and (t, s) ∈ ∆, is called an evolution system if the following conditions are

satisfied:

1. U(s, s) = I, a ≤ s ≤ b ; U(t, r)U(r, s) = U(t, s), a ≤ s ≤ r ≤ t ≤ b;

2. (t, s) 7−→ U(t, s) is strongly continuous on ∆, i.e. the map (t, s) →
U(t, s)x is continuous on ∆ for every x ∈ E.

For every evolution system, we can consider the respective evolution operator

U : ∆ → L(E), where L(E) is the space of all bounded linear operators in E.

Since the evolution operator U is strongly continuous on the compact set ∆,

by the uniform boundedness theorem there exists a constant D = D∆ > 0 such

that

‖U(t, s)‖L(E) ≤ D , (t, s) ∈ ∆. (2)

An evolution operator is said to be compact when U(t, s) is a compact operator

for all t − s > 0, i.e. U(t, s) sends bounded sets into relatively compact sets.

We refer to [14] for details on this topic.
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Example 2.1. Let Ω ⊂ R
n be a bounded domain with a smooth boundary ∂Ω

and consider the linear elliptic partial differential operator in divergence form

A : W 2,2 (Ω; R) ∩W 1,2
0 (Ω; R) → L2 (Ω; R) given by

(Aℓ)(x) =

n∑

i,j=1

∂

∂xi

(
aij(x)

∂ℓ(x)

∂xi

)
,

under the following conditions

(i) aij ∈ L∞(Ω), aij = aji for i, j = 1, 2, .., n;

(ii) c‖ξ‖2 ≤
n∑

i,j=1

aij(x)ξiξj a.e. for every ξ ∈ R
n with c > 0.

It is known that A (see e.g. [16]) generates a strongly continuous semigroup of

contractions S(t) with S(t) compact for t > 0. Notice that, whenever aij = 0

for i 6= j and aii = 1 for i = 1, 2, ...n, then Aℓ = ∆ℓ.

Given q ∈ C([a, b];E), let us denote with

Sq = {f ∈ L1([a, b];E) : f(t) ∈ F (t, q(t)) a.a. t ∈ [a, b]}.

Proposition 2.2. For a multimap F : [a, b] × E ⊸ E satisfying properties

(F1), (F2) and (F3), the set Sq is nonempty for any q ∈ C([a, b];E).

Proof. Let q ∈ C([a, b];E); by the uniform continuity of q there exists a se-

quence {qn} of step functions, qn : [a, b] → E such that

sup
t∈[a,b]

‖qn(t) − q(t)‖ → 0, for n→ ∞. (3)

Hence, by (F1), there exists a sequence of functions {wn} such that wn(t) ∈
F (t, qn(t)) for a.a. t ∈ [a, b] and wn : [a, b] → E is measurable for any n ∈ N.

From (3) there exists a bounded set Ω ⊂ E such that qn(t), q(t) ∈ Ω for any

t ∈ [a, b] and n ∈ N and by (F3) there exists ηΩ ∈ L1([a, b]; R) such that

‖wn(t)‖ ≤ ‖F (t, qn(t))‖ ≤ ηΩ(t) ∀n ∈ N, and a.a. t ∈ [a, b].

Hence {wn} ⊂ L1([a, b];E), {wn} is bounded and uniformly integrable and

{wn(t)} is bounded in E for a.a. t ∈ [a, b]. According to the reflexivity of the

space E and by the Dunford-Pettis Theorem (see [7, p. 294]), we have the

existence of a subsequence, denoted as the sequence, such that

wn ⇀ w ∈ L1([a, b];E).



SEMILINEAR EVOLUTION EQUATIONS 375

By Mazur’s convexity Theorem we obtain a sequence

w̃n =

kn∑

i=0

λn,iwn+i, λn,i ≥ 0,

kn∑

i=0

λn,i = 1

such that w̃n → w in L1([a, b];E) and, up to a subsequence, w̃n(t) → w(t) for

a.a. t ∈ [a, b].
To conclude we have only to prove that w(t) ∈ F (t, q(t)) for a.a. t ∈ [a, b].
Indeed, let N0 with Lebesgue measure zero be such that F (t, ·) : E ⊸ Eσ is

u.s.c., wn(t) ∈ F (t, qn(t)) and w̃n(t) → w(t) for all t ∈ [a, b] \ N0 and n ∈ N.

Fix t0 /∈ N0 and assume by contradiction that w(t0) /∈ F (t0, q(t0)).
Since F (t0, q(t0)) is closed and convex, from the Hahn Banach Theorem there

is a weakly open convex set V ⊃ F (t0, q(t0)) satisfying w(t0) /∈ V . Since

F (t0, ·) : E ⊸ Eσ is u.s.c., we can find a neighborhood U of q(t0) such

that F (t0, x) ⊂ V for all x ∈ U . The convergence qn(t0) → q(t0) implies

the existence of n0 ∈ N such that qn(t0) ∈ U for all n > n0. Therefore

wn(t0) ∈ F (t0, qn(t0)) ⊂ V for all n > n0. Since V is convex we also have

that w̃n(t0) ∈ V for all n > n0 and, by the convergence, we arrive to the

contradictory conclusion that w(t0) ∈ V . We conclude that w(t) ∈ F (t, q(t))
for a.a. t ∈ [a, b].

We propose now the two continuation principles (see Theorems 2.3 and 2.4)

that we use, respectively in Sections 3 and 4, and recall Ky Fan fixed point

Theorem (see Theorem 2.5).

Theorem 2.3 ([1]). Let Q be a closed, convex subset of a Banach space Y with

nonempty interior and H : Q× [0, 1] ⊸ Y be such that

(a) H is nonempty convex valued and it has closed graph;

(b) H is compact;

(c) H(Q, 0) ⊂ Q;

(d) H(·, λ) is fixed points free on the boundary of Q for all λ ∈ [0, 1).

Then there exists y ∈ Q such that y ∈ H(y, 1).

A metric space X is contractible if the identity map on it, i.e. idX : X → X
is homotopic to a constant map. A compact nonempty metric space X is called

an Rδ-set if there exists a decreasing sequence {Xn} of compact, contractible

sets Xn such that X = ∩{Xn : n ∈ N}. Every convex compact subset of a

metric space is an Rδ-set (see e.g. [1] for details).
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Theorem 2.4 ([3, Theorem 2.1]). Let F be a Hausdorff locally convex topologi-

cal vector space, X ⊂ F be a convex metrizable set, Z ⊂ X be an open set in X
and H : Z × [0, 1] ⊸ F be a compact u.s.c. multimap with Rδ values satisfying

if {xn} ⊂ Z converges to x ∈ H(x, λ), for some λ ∈ [0, 1) , there is n0

such that H({xn} × [0, 1]) ⊂ X, for all n ≥ n0
(4)

and such that

(1) H(·, 0)(Z) ⊂ X;

(2) there exists a compact u.s.c. multimap with Rδ values H ′ : X ⊸ X such

that H ′⌊Z= H(·, 0) and Fix(H ′) ∩X \ Z = ∅.

Then there exists x ∈ Z such that x ∈ H(x, 1).

When making use of a continuation principle it is often very delicate to

show the so called transversality condition, i.e. condition (d) in Theorem 2.3

and condition (4) in Theorem 2.4. In both cases we assume here, to this aim,

the existence of R > ‖x0‖ satisfying

D
[
‖x0‖ + ‖ηRB\‖x0‖B‖1

]
≤ R (5)

with D given in (2) and η appearing in (F3).

Theorem 2.5. Let X be a Hausdorff locally convex topological vector space, V
be a compact convex subset of X and G : V ⊸ V an u.s.c. multimap with

closed, convex values. Then G has a fixed point.

We finally propose a useful compactness result for semicompact sequences (see

Theorem 2.7).

Definition 2.6. We say that a sequence {fn} ⊂ L1([a, b];E) is semicompact

if it is integrably bounded and the set {fn(t)} is relatively compact for a.a.

t ∈ [a, b].

Theorem 2.7 ([10, Theorem 5.1.1]). Let S : L1([a, b];E) → C([a, b];E) be an

operator satisfying the following conditions

(i) there is L>0 such that ‖Sf−Sg‖C ≤ L‖f−g‖1 for all f, g ∈ L1([a, b];E);

(ii) for any compact K ⊂ E and sequence {fn} ⊂ L1([a, b];E) such that

{fn(t)} ⊂ K for a.a. t ∈ [a, b] the weak convergence fn ⇀ g implies

Sfn → Sg.

Then for every semicompact sequence {fn} ⊂ L1([a, b];E) the sequence {Sfn}
is relatively compact in C([a, b];E) and, moreover, if fn ⇀ f0 then Sfn → Sf0.
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3. The case of a compact evolution operator

In this Section we assume that the family {A(t)} generates a compact evolution

operator and that the nonlinear term F satisfies the regularity condition (F2)

and, when not explicitly mentioned, the growth condition (F3).

First we introduce the solution multioperator T : C([a, b];E) × [0, 1] ⊸

C([a, b];E) defined as

T (q, λ)=





x ∈ C([a, b];E) : x(t) = U(t, a)x0 + λ

∫ t

a

U(t, s)f(s) ds,

for all t ∈ [a, b] and f ∈ Sq



 (6)

which is well-defined according to Proposition 2.2 and we investigate its regu-

larity properties. Notice that the fixed points of T (·, 1) are mild solutions of

the problem (1).

Proposition 3.1. The multioperator T has a closed graph.

Proof. Since C([a, b];E) is a metric space, it is sufficient to prove the sequential

closure of the graph. Let {qn}, {xn} ⊂ C([a, b];E) and {λn} ⊂ [0, 1] satisfying

xn ∈ T (qn, λn) for all n and qn → q, xn → x in C([a, b];E), λn → λ in [0, 1].

We prove that x ∈ T (q, λ).

The fact that xn ∈ T (qn, λn) means that there exists a sequence {fn}, fn ∈ Sqn
,

such that

xn(t) = U(t, a)x0 + λn

∫ t

a

U(t, s)fn(s) ds, ∀ t ∈ [a, b]. (7)

Let Ω ⊂ E be such that qn(t), q(t) ∈ Ω for all t ∈ [a, b] and n ∈ N. Since

qn → q in C([a, b];E), it follows that Ω is bounded and according to (F3) there

is ηΩ ∈ L1([a, b]; R) satisfying ‖fn(t)‖ ≤ ηΩ(t) for a.a. t and every n, implying

that {fn} is bounded and uniformly integrable in L1([a, b];E) and {fn(t)} is

bounded in E for a.a. t ∈ [a, b]. Hence, by the reflexivity of the space E and

by the Dunford-Pettis Theorem (see [7, p. 294]), we have the existence of a

subsequence, denoted as the sequence, and a function g such that fn ⇀ g in

L1([a, b];E). It is also easy to show that U(t, ·)fn ⇀ U(t, ·)g in L1([a, t];E) for

all t ∈ [a, b]. Since λn → λ, we obtain that

xn(t) ⇀ x0(t) := U(t, a)x0 + λ

∫ t

a

U(t, s)g(s) ds (8)

for all t ∈ [a, b]. By the uniqueness of the weak limit in E, we get that x0(t) =

x(t) for all t ∈ [a, b]. Finally, reasoning as in the second part of the proof of

Proposition 2.2 it is possible to show that g(t) ∈ F (t, q(t)) for a.a. t ∈ [a, b].
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Proposition 3.2. T (Q × [0, 1]) is relatively compact, for every bounded Q ⊂
C([a, b];E).

Proof. Let Q ⊂ C([a, b];E) be bounded. Since C([a, b];E) is a metric space it is

sufficient to prove the relative sequential compactness of T (Q×[0, 1]). Consider

{qn} ⊂ Q, {xn} ⊂ C([a, b];E) and {λn} ⊂ [0, 1] satisfying xn ∈ T (qn, λn) for

all n. By the definition of the multioperator T , there exist a sequence {fn},
fn ∈ Sqn

, such that xn satisfies (7). Let Ω ⊂ E be such that qn(t) ∈ Ω for all t
and n. SinceQ is bounded, we have that Ω is bounded too and according to (F3)

there exists ηΩ ∈ L1([a, b]; R) such that ‖fn(t)‖ ≤ ηΩ(t) for a.a. t ∈ [a, b] and

all n.
According to (2) and the compactness of the evolution operator U , the sequence

{U(t, ·)fn} is semicompact in [a, t] for every fixed t ∈ (a, b] (see Definition 2.6).

Since the operator S : L1([a, t];E) → C([a, t];E) defined by Sf(τ) =
∫ τ

a
f(s) ds

for τ ∈ [a, t] satisfies conditions (i) and (ii) in Theorem 2.7 we obtain that the

sequence

τ 7→

∫ τ

a

U(t, s)fn(s) ds, τ ∈ [0, t], n ∈ N

is relatively compact in C([a, t];E); in particular
{∫ t

a
U(t, s)fn(s) ds

}
is a rel-

atively compact set in E for all t ∈ [a, b].
Now consider a < t0 < t ≤ b. For every σ ∈ (0, t0 − a) we have that

∥∥∥∥
∫ t

a

U(t, s)fn(s) ds−

∫ t0

a

U(t0, s)fn(s) ds

∥∥∥∥

≤

∥∥∥∥
∫ t0−σ

a

[U(t, s) − U(t0, s)] fn(s) ds

∥∥∥∥

+

∥∥∥∥
∫ t0

t0−σ

[U(t, s) − U(t0, s)] fn(s) ds

∥∥∥∥ +

∥∥∥∥
∫ t

t0

U(t, s)fn(s) ds

∥∥∥∥ .

(9)

Since it is known that t → U(t, s) is continuous in the operator norm

topology, uniformly with respect to s such that t − s is bounded away from

zero (see e.g. [13]), for each ǫ > 0 there is δ ∈ (0, t0 − a) satisfying
∥∥∥∥∥

∫ t0−δ

a

[U(t, s) − U(t0, s)] fn(s) ds

∥∥∥∥∥ ≤ ǫ

∫ t0−δ

a

ηΩ(s) ds;

whenever t− t0 < δ; hence, according to (9), we obtain that

∥∥∥∥
∫ t

a

U(t, s)fn(s) ds−

∫ t0

a

U(t0, s)fn(s) ds

∥∥∥∥ ≤ ǫ

∫ t0−δ

a

ηΩ(s) ds+ 2D

∫ t

t0−δ

ηΩ(s) ds.

Thanks to the absolute continuity of the integral function, it implies that the

sequence {
∫ t

a
U(t, s)fn(s) ds} is equicontinuous in [a, b]. Consequently, passing
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to a subsequence, denoted as the sequence, such that λn → λ ∈ [0, 1] and using

Arzelá-Ascoli theorem, we obtain that {xn} is relatively compact in C([a, b];E)

and the proof is complete.

Proposition 3.3. The multioperator T has convex and compact values.

Proof. Fix q ∈ C([a, b];E) and λ ∈ [0, 1], since F is convex valued, the set

T (q, λ) is convex from the linearity of the integral and of the operator U(t, s)
for all (t, s) ∈ ∆. The compactness of T (q, λ) follows by Propositions 3.1

and 3.2.

Theorem 3.4. Problem (1) under conditions (A) (F1), (F2), (F3), (5) and

with {A(t)}t∈[a,b] generating a compact evolution operator has at least one so-

lution.

Proof. Consider the set Q = C([a, b];RB) with R defined in (5). We show that

the solution multioperator T defined in (6), when restricted to Q, satisfies the

assumptions of Theorem 2.3. In fact Q is closed, convex, bounded and with

a nonempty interior. According to Propositions 3.1, 3.2 and 3.3, T satisfies

conditions (a) and (b) in Theorem 2.3.

Notice that T (Q×{0}) ⊂ D‖x0‖B ⊂ int Q, hence condition (c) in Theorem 2.3

holds and T (·, 0) is fixed point free on ∂Q. Let us now prove that T satisfies

condition (d) also for λ ∈ (0, 1). Let q ∈ Q and λ ∈ (0, 1) be such that

q ∈ T (q, λ) and assume, by contradiction, the existence of t0 ∈ (a, b] such

that q(t0) ∈ ∂Q which is equivalent to ‖q(t0)‖ = R. Since q is continuous and

q ∈ T (q, λ), from ‖x0‖ < R it follows that there exist t̂0, t̂1 ∈ (a, t0] with t̂0 < t̂1
such that ‖q(t̂0)‖ = ‖x0‖, ‖x0‖ < ‖q(t)‖ < R for t ∈ (t̂0, t̂1) and ‖q(t̂1)‖ = R.

Moreover there exists f ∈ Sq such that q(t) = U(t, t̂0)q(t̂0)+λ
∫ t

t̂0
U(t, s)f(s) ds

for t ∈ [t̂0, t̂1]. According to (F3), ‖f(t)‖ ≤ ηRB\‖x0‖B(t) for t ∈ (t̂0, t̂1); so we

arrive to the contradiction R = ‖q(t̂1)‖ ≤ D[‖x0‖ + λ‖ηRB\‖x0‖B‖1] < R, and

also condition (d) in Theorem 2.3 is satisfied.

Hence T (·, 1) has a fixed point in Q which is a mild solution of problem (1).

When the nonlinear term F has an at most linear growth, i.e. when it

satisfies (F3′) instead of condition (F3), then the transversality condition (5)

can be eliminated and the compactness of the solution set can be obtained too.

Theorem 3.5. Under conditions (A), (F1), (F2), (F3 ′) and with {A(t)}t∈[a,b]

generating a compact evolution operator, the solution set of problem (1) is

nonempty and compact.

Proof. Consider the set Q defined as

Q =
{
q ∈ C([a, b];E) : ‖q(t)‖ ≤ ReLt a.a. t ∈ [a, b]

}
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where L and R are such that

max
t∈[a,b]

D

∫ t

a

eL(s−t)α(s)ds := β < 1,

R ≥ e−LaD(‖x0‖ + ‖α‖1)(1 − β)−1

and α was given in (F3′). Define the operator Γ := T (·, 1). According to

Propositions 3.1, 3.2 and 3.3, it is easy to see that Γ is locally compact, with

nonempty convex compact values and it has a closed graph. Hence it is also

u.s.c. (see e.g. [10, Theorem 1.1.5]). We prove now that Γ maps the set Q into

itself.

Indeed if q ∈ Q and x ∈ Γ(q) there exists a function f ∈ Sq such that

x(t) = U(t, a)x0 +

∫ t

a

U(t, s)f(s) ds.

By hypothesis (F3′) we have that

‖x(t)‖ =

∥∥∥∥∥U(t, a)x0 +

∫ b

a

U(t, s)f(s) ds

∥∥∥∥∥ ≤ D

(
‖x0‖ +

∫ t

a

α(s)(1 +ReLs)ds

)

≤ D (‖x0‖ + ‖α‖1) +D

∫ t

a

α(s)ReLsds ≤ D (‖x0‖ + ‖α‖1) +ReLtβ

≤ ReLa(1 − β) +ReLtβ ≤ ReLt.

Then Γ(Q) ⊆ Q. Let V = Γ(Q) and W = co(V ), where co(V ) denotes the

closed convex hull of V . Since V is a compact set, W is compact too. Moreover

from the fact that Γ(Q) ⊂ Q and that Q is a convex closed set we have that

W ⊂ Q and hence

Γ(W ) = Γ(co(Γ(Q))) ⊆ Γ(Q) = V ⊂W.

Hence, according to Theorem 2.5, Γ has a fixed point, which is a solution of

(1).

We prove now that the solution set is compact. Indeed a solution of the problem

(1) is a fixed point of the operator Γ. If x ∈ Γ(x), by the definition of Γ and

(F3′) we have the existence of f ∈ Sx and reasoning as above

‖x(t)‖ ≤ ‖U(t, s)x0‖ +

∫ t

0

‖U(t, s)f(s)‖ ds

≤D

(
‖x0‖ + ‖α‖1 +

∫ t

0

α(s)‖x(s)‖ ds

)
.

By the Gronwall’s inequality it holds

‖x(t)‖ ≤ D(‖x0‖ + ‖α‖1)e
D‖α‖1 := n.
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Hence Fix Γ is a bounded set and so Γ(Fix Γ) is relatively compact. Since

Fix Γ ⊂ Γ(Fix Γ), then Fix Γ is relatively compact too. Finally, according to

the closure of the graph of Γ, Fix Γ is also closed and hence compact.

4. The case of a non-compact evolution operator

If we drop the assumption that the family {A(t)} generates a compact evo-

lution operator, we need stronger regularity hypotheses on F to consider the

richer class of evolution operators which we discuss now. We take, precisely, F
satisfying (F2′); moreover, when not explicitly mentioned, we always assume

the growth restriction (F3).

Since an u.s.c. multimap from Eσ to Eσ is u.s.c. from E to Eσ, the Proposi-

tion 2.2 is still true under the condition (F2′). Hence the set Sq 6= ∅ for any

q ∈ C([a, b];E) and the solution operator T : C([a, b];E)× [0, 1] ⊸ C([a, b];E)

can be defined as in (6) and it has nonempty convex values. With a similar

reasoning as in Proposition 3.1 it is also possible to prove that T has a weakly

sequentially closed graph. Now we show that T is locally weakly compact.

Proposition 4.1. T (Q× [0, 1]) is weakly relatively compact for every bounded

Q ⊂ C([a, b];E).

Proof. Let Q ⊂ C([a, b];E) be bounded. We first prove that T (Q × [0, 1]) is

weakly relatively sequentially compact.

Consider {qn} ⊂ Q, {xn} ⊂ C([a, b];E) and {λn} ⊂ [0, 1] satisfying xn ∈
T (qn, λn) for all n. By the definition of T , there exist a sequence {fn}, fn ∈ Sqn

such that xn satisfies (7). Passing to a subsequence, denoted as the sequence,

we have that λn → λ ∈ [0, 1]. Moreover, reasoning as in the proof of Proposi-

tion 3.1, we obtain that there exists a subsequence, denoted as the sequence,

and a function g such that fn ⇀ g in L1([a, b];E), implying that xn(t) satisfies

(8) for all t ∈ [a, b]. Furthermore, by (2) and the weak convergence of {fn} we

have

‖xn(t)‖ ≤ D‖x0‖ +D‖fn‖1 ≤ N

for all n ∈ N, t ∈ [a, b], and for some N > 0. Hence xn ⇀ x0 in C([a, b];E).
Thus T (Q × [0, 1]) is weakly relatively sequentially compact, hence weakly

relatively compact by the Eberlein-Smulian Theorem (see [11, Theorem 1,

p. 219]).

Remark 4.2. Notice that, since T has weakly sequentially closed graph and

according to Proposition 4.1, T has also weakly compact values.

Theorem 4.3. Assume conditions (A), (F1), (F2′), (F2′′), (F3) and (5). If

E is separable, then problem (1) has at least one solution.
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Proof. Put R̂ := D‖x0‖+ ‖ηRB‖1 + 1 with R defined in (5) and η in (F3) and

define Q = C([a, b]; R̂B). The set Q is closed, convex and bounded. Since

E is separable, C([a, b];E) is separable too and then Q is also metrizable.

Consider the solution operator T defined in (6). Now we prove that it sat-

isfies Theorem 2.4 with F = (C([a, b];E))σ and X = Z = Qσ. According

to Proposition 4.1, T (Q × [0, 1]) is weakly relatively compact so, in partic-

ular, T (Q × [0, 1]) is bounded and then (T (Q× [0, 1]))σ is metrizable. Since

T : Q×[0, 1] ⊸ C([a, b];E) is weakly sequentially closed then it has weakly com-

pact values and hence it is Rδ-valued. Moreover, according to Eberlein-Smulian

Theorem and [10, Theorem 1.1.5], T is u.s.c. when both Q and C([a, b];E) are

endowed with the weak topology. Reasoning as in the proof of Theorem 3.4, it

is also possible to show that condition (1) in Theorem 2.4 is satisfied; while con-

dition (2) is trivially true. It remains to prove (4). So take qn ⇀ q ∈ T (q, λ0)

for some λ0 ∈ [0, 1). Let xn ∈ T (qn, λn) for some λn ∈ [0, 1] and all n; then

xn satisfies (7) for some fn ∈ Sqn
and according to (F3) ‖fn(t)‖ ≤ η

R̂B
(t)

for a.a. t ∈ [a, b]. Reasoning as in the proof of Proposition 3.1 we obtain

a subsequence, denoted as the sequence, such that fn ⇀ g ∈ L1([a, b];E).

Up to a subsequence we also have that λn → λ ∈ [0, 1]. Moreover, since

{fn(t)} ⊂ F (t, R̂B), according to (F2′′) we have that {fn(t)} is relatively com-

pact for a.a. t. Let G : L1([a, b];E) → C([a, b];E) be the generalized Cauchy

operator associated to U , i.e. let Gf(t) =
∫ t

a
U(t, s)f(s) ds for t ∈ [a, b]. It

satisfies condition (i) in Theorem 2.7 and according to [5, Theorem 2], it also

satisfies condition (ii) in Theorem 2.7. Hence xn → x in C([a, b];E) where

x(t) := U(t, a)x0 + λ
∫ t

a
U(t, s)g(s) ds for t ∈ [a, b]. Since T has sequentially

weakly closed graph, we obtain that x ∈ T (q, λ). According to (5) and with a

similar reasoning as in the proof of Theorem 3.4, we can show that ‖q(t)‖ < R
for all t ∈ [a, b]. Condition (F3) then implies that ‖g(t)‖ ≤ ηRB(t) a.e. in [a, b]
and hence ‖x(t)‖ ≤ D‖x0‖+D‖ηRB‖1 < R̂ for all t ∈ [a, b] and we can find n0

such that xn ∈ Q for every n ≥ n0. All the assumptions of Theorem 2.4 are

then satisfied and hence T (·, 1) has a fixed point which is a solution of problem

(1) thus the proof is complete.

If we assume, as in the previous section, the stronger growth condition (F3′),

instead of (F3), we can remove conditions (5) and (F2′′) as well as the require-

ment of the separability of the space E. Indeed, recalling that by the Krein

Smulian Theorem (see e.g. [7, p. 434]) the convex closure of a weakly com-

pact set is weakly compact, it is possible to reason exactly as in the proof of

Theorem 3.2 to obtain the following result.

Theorem 4.4. Under assumptions (A), (F1),(F2 ′) and (F3 ′) the solution set

of problem (1) is nonempty and weakly compact.
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5. Application to a parabolic partial differential inclusion

Let t ∈ [0, T ] and Ω ⊆ R
n be a bounded domain with a sufficiently regular

boundary. Consider the initial value problem





ut ∈∆u+

[
p1

(
t, x,

∫

Ω

k(x, y)u(t, y)dy

)
, p2

(
t, x,

∫

Ω

k(x, y)u(t, y)dy

)]
f(t, u(t, x)),

t ∈ [0, T ]x ∈ Ω

u(t, x) = 0 t ∈ [0, T ], x ∈ ∂Ω

u(0, x) = u0(x), x ∈ Ω

(10)

under the following hypotheses:

(a) k : Ω × Ω → R is measurable with k(x, ·) ∈ L2(Ω; R) and ‖k(x, ·)‖2 ≤ 1

for all x ∈ Ω;

(b) f : [0, T ] × R → R is a Carathéodory function with f(t, ·) L-Lipschitzian

and f(t, 0) = 0 for a.a. t ∈ [0, T ];

(c) u0 ∈ L2(Ω; R);

(d) p1, p2 : [0, T ] × Ω × R → R satisfy the following conditions:

(i) pi(·, ·, r) is measurable for i = 1, 2 and all r ∈ R;

(ii) −p1(t, x, ·) and p2(t, x, ·) are u.s.c. for a.a. t ∈ [0, T ] and all x ∈ Ω;

(iii) p1(t, x, r) ≤ p2(t, x, r) in [0, T ] × Ω × R;

(iv) there exist ψ ∈ L1([0, T ]; R), M : [0,∞) → R increasing and R >
‖u0‖2 such that |pi(t, x, r)| ≤ ψ(t)M(|r|) for i = 1, 2 and all x and

‖u0‖2 + ‖ψ‖1LRM(R) ≤ R. (11)

We search for solutions u ∈ C([a, b];L2(Ω; R)) of the initial value problem (10).

Namely the following abstract formulation

{
y′(t) ∈ Ay(t) + F (t, y(t)), t ∈ [0, T ]

y(0) = y0,
(12)

should be satisfied, with y(t) = u(t, ·) ∈ L2(Ω; R) for any t ∈ [0, T ]. A :

W 2,2 (Ω; R)∩W 1,2
0 (Ω; R) → L2 (Ω; R) is the linear operator defined as Ay = ∆y

and y0 = u0(·). Given α ∈ L2 (Ω; R), let Iα : Ω → R be the function defined by

Iα(x) =
∫
Ω
k(x, y)α(y) dy. Iα is well-defined and measurable, according to (a),

and it satisfies |Iα(x)| ≤ ‖α‖2 for all x ∈ Ω. Given (t, α) ∈ [0, T ]×L2(Ω; R), we

define the multimap F : [0, T ]×L2(Ω; R) ⊸ L2(Ω; R) as y ∈ F (t, α) if and only
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if there is a measurable function β : Ω → R satisfying p1 (t, x, Iα(x)) ≤ β(x) ≤
p2 (t, x, Iα(x)) for all x ∈ Ω such that y(x) = β(x)f(t, α(x)) for all x ∈ Ω.

Notice that, given (t, α) ∈ [0, T ] × L2(Ω; R) and according to (d)(i)(ii),

the maps x 7−→ pi (t, x, Iα(x)), i = 1, 2 are measurable in Ω; hence F has

nonempty values and it is easy to see that they are also convex. Moreover

‖y‖2 ≤ LM(‖α‖2)‖α‖2ψ(t), for all y ∈ F (t, α). Consequently, if W ⊂ L2(Ω; R)

is bounded, that is if ‖w‖2 ≤ µ for some µ > 0 and all w ∈W we have that

‖F (t,W )‖2 ≤ LµM(µ)ψ(t) (13)

implying (F3).

Now we investigate (F2) and hence we fix t ∈ [a, b] and consider two sequences

{αn}, {yn} ⊂ L2(Ω; R) satisfying αn → α, yn ⇀ y in L2(Ω; R) and yn ∈
F (t, αn) for all n ∈ N. Notice that Iαn

(x) → Iα(x) for all x. Since {αn} is

bounded, there is σ > 0 such that ‖αn‖2 ≤ σ for all n. According to (b) the

sequence f(t, αn(·)) → f(t, α(·)) in L2(Ω; R) and then, passing to a subsequence

denoted as usual as the sequence, we obtain that f(t, αn(x)) → f(t, α(x)) for

a.a. x ∈ Ω. By Mazur’s convexity Theorem we have the existence of a sequence

ỹn =

kn∑

i=0

δn,iyn+i, δn,i ≥ 0,

kn∑

i=0

δn,i = 1

such that ỹn → y in L2(Ω; R) and up to a subsequence, denoted as the sequence,

ỹn(x) → y(x) for a.a. x ∈ Ω. We prove now that y ∈ F (t, α). In fact, if

f(t, α(x)) > 0 then also f(t, αn(x)) > 0 for n sufficiently large, and it implies

that p1(t, x, Iαn
(x))f(t, αn(x)) ≤ yn(x) ≤ p2(t, x, Iαn

(x))f(t, αn(x)) for a.a. x.
Consequently

kn∑

i=0

δn,ip1(t, x, Iαn+i
)f(t, αn+i(x)) ≤ ỹn(x) ≤

kn∑

i=0

δn,ip2(t, x, Iαn+i
)f(t, αn+i(x)).

Passing to the limit as n → ∞ and according to (d)(ii), we obtain that

p1(t, x, Iα(x))f(t, α(x)) ≤ y(x) ≤ p2(t, x, Iα(x))f(t, α(x)). With a similar rea-

soning we arrive to the estimate

p2(t, x, Iα(x))f(t, α(x)) ≤ y(x) ≤ p1(t, x, Iα(x))f(t, α(x))

when f(t, α(x)) < 0. So, it remains to consider Ω0 = {x ∈ Ω : f(t, α(x)) = 0}.
Notice that f(t, αn(x)) → 0 in Ω0. Since yn(·) = βn(·)f(t, αn(·)) for some

bounded and measurable βn : Ω → R satisfying p1(t, x, Iαn
(x)) ≤ βn(x) ≤

p2(t, x, Iαn
(x)) a.e. in Ω, it follows that yn(x) → 0 and then also ỹn(x) → 0,

implying y(x) ≡ 0 in Ω0. Therefore, it is possible to define a measurable

function β : Ω → R such that p1(t, x, Iα(x)) ≤ β(x) ≤ p2(t, x, Iα(x)) and y(x) =
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β(x)f(t, α(x)) a.e. in Ω. We have showed that F has closed graph. Then

by (13) F (t, ·) has weakly compact values and it is locally weakly compact,

since L2(Ω; R) is reflexive, thus it satisfies (F2) (see e.g. [10, Theorem 1.1.5]).

Moreover, according to Pettis measurability Theorem (see [15, p. 278]) it is

possible to see that, for all α ∈ L2(Ω; R), the map t 7→ p1 (t, ·, Iα(·)) f(t, α(·)) is

a measurable selection of F (·, α), hence condition (F1) is satisfied. According

to (13), for Θ = RB \‖u0‖B we can define ηΘ in (F3) as ηΘ(t) = LRM(R)ψ(t)
and hence, according to (d)(iv) also condition (5) is satisfied.

All the assumptions of Theorem 3.4 are then satisfied and hence problem (12)

is solvable, implying that (10) has at least one solution u ∈ C([a, b];L2(Ω; R)).

6. Applications to an hyperbolic partial differential

inclusion

Let Ω be a bounded domain in R
n with a sufficiently regular boundary. Con-

sider the feedback control problem associated to a partial differential equation





utt = ∆u+ p

(
t, x,

∫

Ω

u(t, ξ) dξ

)
u(t, x) + a(t, x)w(t, x) + b(t, x), in [0, d] × Ω

w(t, x) ∈W (u(t, x))

u(t, x) = 0 t ∈ [0, d], x ∈ ∂Ω

u(0, x) = u0(x);ut(0, x) = u1(x) , x ∈ Ω

(14)

where W (r) = {s ∈ R : ℓr +m1 ≤ s ≤ ℓr +m2}, with ℓ > 0 and m1 < m2.

Assume the following hypotheses:

(i) a and b are globally measurable in [0, d]×Ω and there exist two functions

ϕ1, ϕ2 ∈ L1([0, d]; R) such that

|a(t, x)| ≤ ϕ1(t) for a.a. x ∈ Ω and ∀ t ∈ [0, d];

|b(t, x)| ≤ ϕ2(t) for a.a. x ∈ Ω and ∀ t ∈ [0, d];

the map p : [0, d] × Ω × R → R satisfies the following conditions

(ii) p(·, ·, r) : [0, d] × Ω → R is measurable, for all r ∈ R;

(iii) p(t, x, ·) : R → R is continuous, for a.a. (t, x) ∈ [0, d] × Ω;

(iv) there exists ϕ3 ∈ L1([0, d]; R) such that

|p(t, x, r)| ≤ ϕ3(t) for a.e. x ∈ Ω, ∀ t ∈ [0, d] and ∀ r ∈ R.
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Let y : [0, d] → L2 (Ω; R), v : [0, d] → L2 (Ω; R), f : [0, d] × L2 (Ω; R) ×
L2 (Ω; R) → L2 (Ω; R), and V : L2 (Ω; R) ⊸ L2 (Ω; R) be the maps defined

by

y(t) = u(t, ·);
v(t) = w(t, ·);

f(t, α, β) : Ω → R, f(t, α, β)(x)=p

(
t, x,

∫

Ω

α(ξ) dξ

)
α(x)+a(t, x)β(x)+b(t, x);

V (z) = {v ∈ L2 (Ω; R) : ℓz(x) +m1 ≤ v(x) ≤ ℓz(x) +m2, a.a. x ∈ Ω}.

In the Hilbert space L2(Ω; R) problem (14) can be rewritten as a second order

inclusion of the following form

{
y′′(t) ∈ Ay(t) + F (t, y(t)), t ∈ [0, d], y(t) ∈ L2(Ω; R)

y(0) = y0; y
′(0) = y1

(15)

where F (t, y(t)) = f(t, y(t), V (y(t))), y0 = u0(·), y1 = u1(·) and A : D(A) =

W 2,2 (Ω; R) ∩W 1,2
0 (Ω; R) → L2 (Ω; R) is the linear operator defined as Ay =

∆y.
From the fact that −A is a self-adjoint and positive definite operator on

L2(Ω; R) with a compact inverse, we have that there exists a unique positive

definite square root (−A)1/2 with domain D((−A)1/2) = W 1,2
0 (Ω; R). Intro-

duce the Hilbert space E = W 1,2
0 (Ω; R) × L2 (Ω; R) with the inner product

〈(
p0

p1

)
·

(
q0
q1

)〉
=

∫

Ω

∇p0 ∇q0 dx+

∫

Ω

p0 q0 dx+

∫

Ω

p1 q1 dx.

Since the operator

A =

(
0 I
A 0

)
, D(A) = D(A) ×W 1,2

0 (Ω; R)

generates a strongly continuous semigroup (see e.g. [8]), we can treat (15) as

a first order semilinear differential inclusion in E





z′(t) ∈ Az(t) + F(t, z(t)), t ∈ [0, d]

z(0) =

(
y0
y1

)
(16)

where F : [0, d] × E ⊸ E is defined as

F

(
t,

(
c0

c1

))
=

(
0

F (t, c0)

)
.

Observe that the semigroup generated by A is noncompact.

Denoted Iα =
∫
Ω
α(y)dy, by the separability of the space L2 (Ω; R) and the
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Pettis measurability Theorem [15], we have that the map t → p(t, ·, Iα)α(·) +

a(t, ·)(ℓα(·) +m1) + b(t, ·) is a measurable selection of F (·, α). We prove, now,

that the map F satisfies condition (F2 ′). Reasoning like in Section 5 it is

possible to prove that the multimap V is weakly sequentially closed. Let,

now, t ∈ [0, d] be fixed, let {αn} ⊂ L2(Ω; R), be weakly convergent to α ∈
L2(Ω; R) and let {wn} ⊂ L2(Ω; R) with wn ∈ F (t, αn) for any n ∈ N, be

weakly convergent to w ∈ L2(Ω; R). By the definition of the multimap F we

have

wn = f1(t, αn) + f2(t, βn), with βn ∈ V (αn) for any n ∈ N,

where f1(t, α)(x) = p(t, x, Iα)α(x) and f2(t, β)(x) = a(t, x)β(x) + b(t, x). By

the definition of the multimap V and the weak convergence of {αn} we have

that the sequence {βn} is norm bounded. Hence, by the reflexivity of the space

L2(Ω; R), up to subsequence, {βn} weakly converges to β ∈ L2(Ω; R) and the

weak closure of the multimap V implies β ∈ V (α). Moreover by the continuity

of the map p we have that {f1(t, αn)} converges weakly to f1(t, α) and it is

easy to see that {f2(t, βn)} converges weakly to f2(t, β). In conclusion we have

obtained

w = f1(t, α) + f2(t, β) ∈ f(t, α, V (α)) = F (t, α).

Furthermore, easily, V has convex and closed values, thus, by the linearity of

the map f2 and following the same reasonings above, F is convex closed valued

as well.

Finally (see e.g. [4])

‖F (t, α)‖2 ≤
(
ϕ3(t) + 2ℓϕ1(t)

)
‖α‖2 + |Ω|1/2

[
(m1 +m2)ϕ

1(t) + ϕ2(t)
]
,

obtaining both that for any t ∈ [0, d] and α ∈ L2(Ω; R) the set F (t, α) is

bounded (hence relatively compact by the reflexivity of L2(Ω; R)), and that

condition (F3′) is satisfied.

Let z = (y0, y1) be a solution of (16). Applying the Implicit Function Theorem

of Filippov’s type (see [9, Theorem 7.2]) we have that there exists v : [0, d] →
L2(Ω; R) such that v(t) ∈ V (y0(t)) and g(t) = f(t, y0(t), v(t)), t ∈ [0, d]. Hence

the feedback control problem (14) admits a weakly compact set of solutions.
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On repdigits as product of consecutive

Fibonacci numbers
1

Diego Marques and Alain Togbé

Abstract. Let (Fn)n≥0 be the Fibonacci sequence. In 2000, F. Luca

proved that F10 = 55 is the largest repdigit (i.e. a number with only

one distinct digit in its decimal expansion) in the Fibonacci sequence.

In this note, we show that if Fn · · ·Fn+(k−1) is a repdigit, with at least

two digits, then (k, n) = (1, 10).

Keywords: Fibonacci, repdigits, sequences (mod m)
MS Classification 2010: 11A63, 11B39, 11B50

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for n ≥ 0,

where F0 = 0 and F1 = 1. These numbers are well-known for possessing amaz-

ing properties. In 1963, the Fibonacci Association was created to provide an

opportunity to share ideas about these intriguing numbers and their applica-

tions. We remark that, in 2003, Bugeaud et al. [2] proved that the only perfect

powers in the Fibonacci sequence are 0, 1, 8 and 144 (see [6] for the Fibono-

mial version). In 2005, Luca and Shorey [5] showed, among other things, that

a non-zero product of two or more consecutive Fibonacci numbers is never a

perfect power except for the trivial case F1 · F2 = 1.

Recall that a positive integer is called a repdigit if it has only one distinct

digit in its decimal expansion. In particular, such a number has the form

a(10m − 1)/9, for some m ≥ 1 and 1 ≤ a ≤ 9. The problem of finding all

perfect powers among repdigits was posed by Obláth [8] and completely solved,

in 1999, by Bugeaud and Mignotte [1]. One can refer to [3] and its extensive

annotated bibliography for additional references, history and related results.

In 2000, F. Luca [4], using elementary techniques, proved that F10 = 55

is the largest repdigit in the Fibonacci sequence. In a very recent paper, the

authors [7] used bounds for linear forms in logarithms à la Baker, in order to

1The first author is grateful to FAP-DF, CNPq-Brazil and FEMAT-Brazil for the Financial
support. The second author is supported in part by Purdue University North Central.
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prove that there is no Fibonacci number of the form B · · ·B (concatenation of

B, m times), for m > 1 and B ∈ N with at most 10 digits.

In this note, we follow the same ideas by using elementary tools for searching

repdigits as product of consecutive Fibonacci numbers. More precisely, our

main result is the following.

Theorem 1.1. The only solution of the Diophantine equation

Fn · · ·Fn+(k−1) = a

(
10m − 1

9

)
, (1)

in positive integers n, k, m, a, with 1 ≤ a ≤ 9 and m > 1 is (n, k, m, a) =

(10, 1, 2, 5).

We need to point out that all relations which will appear in the proof of the

above result can be easily proved by elementary ways (mathematical induction,

the Fibonacci recurrence pattern, congruence properties etc). So, we will leave

them as exercises to the reader.

2. The proof

First, we claim that k ≤ 4. Indeed, we suppose the contrary, i.e. there exist at

least 5 consecutive numbers among n, ..., n+(k−1). Thus, 3|(n+i) and 5|(n+j),
for some i, j ∈ {0, ..., k − 1}. This implies that 2|Fn+i and 5|Fn+j leading to

an absurdity as 10|Fn · · ·Fn+(k−1) = a(10m −1)/9 and hence k ∈ {1, 2, 3, 4}. If

k = 1, Luca’s result [4, Theorem 1] ensures that (n, m, a) = (10, 2, 5). Hence,

we must prove that Eq. (1) has no solution for k ∈ {2, 3, 4}.

Note that a(102−1)/9 = a ·11 and a(103−1)/9 = a ·3 ·37 are not products

of at least two Fibonacci numbers, for 1 ≤ a ≤ 9. So, from now on, we can

assume that m ≥ 4.

a 1 2 3 4 5 6 7 8 9

a · ( 10m
−1

9 ) 7 14 5 12 3 10 1 8 15 (mod 16)

Table 1: Residue classes modulo 16, for m ≥ 4.

Case k = 4. The sequence (FnFn+1Fn+2Fn+3)n≥1 has period 12 modulo 16.

In fact,

FnFn+1Fn+2Fn+3 ≡ 6, 14, 0, 8, 8, 0, 14, 6, 0, 0, 0, 0 (mod 16).
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So, by Table 1, it suffices to consider a = 2 and 8. Since 4 divides one of

the numbers n, n + 1, n + 2, n + 3, then

3 = F4|FnFn+1Fn+2Fn+3 = a

(
10m − 1

9

)

and so 3|(10m − 1)/9. Thus we deduce that 3|m (in what follows, we will use

this fact on several occasions).

For a = 2 and 8, one has n ≡ 2, 7 (mod 12) and n ≡ 4, 5 (mod 12), respec-

tively. Therefore FnFn+1Fn+2Fn+3 ≡ 0, 1 (mod 5). Thus, Eq. (1) is not valid,

since 2 ·
(

10m
−1

9

)
≡ 2 (mod 5) and 8 ·

(
10m

−1
9

)
≡ 3 (mod 5), for m ≥ 2. We

conclude that the assumption k = 4 is impossible.

Case k = 3. The period of (FnFn+1Fn+2)n≥1 modulo 16 is 12. Actually, we

have

FnFn+1Fn+2 ≡ 2, 6, 14, 8, 8, 8, 2, 6, 14, 0, 0, 0 (mod 16) .

Again, by looking at Table 1, we deduce that a = 2 or 8.

First, we suppose that a = 2. Thus, one has n ≡ 3, 9 (mod 12). If n ≡
3 (mod 12), then FnFn+1Fn+2 ≡ 25, 29, 22, 18, 30 (mod 31). Since 3|m then

4|(n + 1) and we get

2

(
10m − 1

9

)
≡ 5, 14, 24, 11, 0 (mod 31).

Thus Eq. (1) is not true in this case. In the case of n ≡ 9 (mod 12), we have

4 ∤ (n + j), for j ∈ {0, 1, 2}. Thus 3 ∤ m and we split the proof in two subcases:

• m ≡ 1 (mod 3): In this case, 2(10m − 1)/9 ≡ 14 (mod 32), but on the

other hand FnFn+1Fn+2 ≡ 30 (mod 32);

• m ≡ 2 (mod 3): Then 2(10m−1)/9 ≡ 4, 1 (mod 7), while FnFn+1Fn+2 ≡
2, 5 (mod 7).

So, we have no solutions in the case a = 2.

Second, we take a = 8. One has n ≡ 4, 5, 6 (mod 12). In the case of

n ≡ 4 (mod 12), we have FnFn+1Fn+2 ≡ 0, 1, 4 (mod 5). Since 4|n, then

3|m yields 8(10m − 1)/9 ≡ 3 (mod 5). When n ≡ 6 (mod 12), we obtain

FnFn+1Fn+2 ≡ 0, 6, 9 (mod 15). Again 3|m, because 4|(n + 2) and so 8(10m −
1)/9 ≡ 3 (mod 15). Therefore, a possible solution may appear for n ≡ 5

(mod 12). In this case, 3 ∤ m, so we have the following two cases:

• m ≡ 1 (mod 3) implies 8(10m−1)/9 ≡ 15, 4, 5, 17, 9, 8 (mod 19). On the

other hand, FnFn+1Fn+2 ≡ 0, 12, 7 (mod 19);
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• m ≡ 2 (mod 3) yields 8(10m − 1)/9 ≡ 7, 10 (mod 13), while

FnFn+1Fn+2 ≡ 9, 2, 0, 11, 4, 0, 0 (mod 13).

Thus, we also have no solution for k = 3.

Case k = 2. Since

FnFn+1 ≡ 1, 2, 6, 15, 8, 8, 1, 10, 14, 15, 0, 0 (mod 16),

we need to consider a = 2, 6, 7, 8, and 9. For a = 6, we have n ≡ 8 (mod 12) and

then FnFn+1 ≡ 0, 2, 4 (mod 5), while 6(10m − 1)/9 ≡ 1 (mod 5). When a = 9,

one has n ≡ 10 (mod 12) and therefore Eq. (1) becomes FnFn+1 = 10m−1 ≡ 0

(mod 9). However, FnFn+1 ≡ 8 (mod 9), for n ≡ 10 (mod 12). In the case of

a = 7, one gets n ≡ 1, 7 (mod 12) (and then 4 ∤ n). On the other hand, Eq.

(1) implies that 7|Fn or 7|Fn+1 and thus n ≡ 0 (mod 8) or n ≡ −1 (mod 8).

Therefore, n ≡ 7 (mod 12) and n ≡ −1 (mod 8). We then get n ≡ 7 (mod 24)

leading to FnFn+1 ≡ 0, 1, 3 (mod 5), but 7(10m−1)/9 ≡ 2 (mod 5). For a = 2,

one has n ≡ 9 (mod 12) and so 4 ∤ (n + j), for j ∈ {0, 1}. Thus 3 ∤ m and

then 2(10m − 1)/9 ≡ 2 (mod 5), but FnFn+1 ≡ 0, 1, 3 (mod 5). For a = 8, we

have n ≡ 5, 6 (mod 12). If n ≡ 5 (mod 12), similarly as in previous cases, we

deduce that 3 ∤ m.

• m ≡ 1 (mod 3) implies 8(10m−1)/9 ≡ 5, 2, 8 (mod 9), however FnFn+1≡
4 (mod 9);

• m ≡ 2 (mod 3) yields 8(10m − 1)/9 ≡ 2, 4 (mod 7), again Eq. (1) is not

valid, since FnFn+1 ≡ 1, 5 (mod 7).

We finish by considering the case n ≡ 6 (mod 12). Again 3 ∤ m and so 8(10m−
1)/9 ≡ 3 (mod 5), while FnFn+1 ≡ 0, 2, 4 (mod 5). In conclusion, Eq. (1) has

no solution for k > 1.
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Department of Mathematics,
Purdue University North Central,
1401 S, U.S. 421,
Westville, IN 46391, USA
E-mail: atogbe@pnc.edu

Received October 7, 2011
Revised January 9, 2012





Rend. Istit. Mat. Univ. Trieste

Volume 44 (2012), 399–411

On θ(I,J )-continuous functions

Ahmad Al-Omari and Takashi Noiri
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1. Introduction

The concept of ideals in topological spaces is treated in the classic text by

Kuratowski [11] and Vaidyanathaswamy [17]. Janković and Hamlett [9] inves-

tigated further properties of ideal spaces. An ideal I on a topological space

(X, τ) is a non-empty collection of subsets of X which satisfies the following

properties: (1) A ∈ I and B ⊆ A implies B ∈ I; (2) A ∈ I and B ∈ I
implies A ∪ B ∈ I. An ideal topological space (or an ideal space) is a topo-

logical space (X, τ) with an ideal I on X and is denoted by (X, τ, I). For a

subset A ⊆ X, A∗(I, τ) = {x ∈ X : A ∩ U /∈ I for every U ∈ τ(X, x)} is

called the local function of A with respect to I and τ [11]. We simply write

A∗ in case there is no chance for confusion. A Kuratowski closure operator

Cl∗(.) for a topology τ∗(I, τ) called the ∗-topology, finer than τ , is defined by

Cl∗(A) = A ∪ A∗ [17]. The notion of θ-continuity [6] in topological spaces is

widely known and investigated. Recently, Yüksel et al. [19] have introduced

the notion of θ(I,J )-continuous functions between ideal topological spaces. In

the present paper, we obtain several characterizations and many properties of

θ(I,J )-continuous functions.

2. Preliminaries

Let (X, τ) be a topological space with no separation axioms assumed. If A ⊆ X,

Cl(A) and Int(A) will denote the closure and interior of A in (X, τ), respec-

tively.

In 1968, Veličko [18] introduced the class of θ-open sets. A set A is said to

be θ-open [18] if every point of A has an open neighborhood whose closure is

contained in A. The θ-interior [18] of A in X is the union of all θ-open subsets
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of A and is denoted by Intθ(A). Naturally, the complement of a θ-open set is

said to be θ-closed. Equivalently Clθ(A) = {x ∈ X : Cl(U) ∩ A 6= φ, U ∈ τ
and x ∈ U} and a set A is θ-closed if and only if A = Clθ(A). Note that all

θ-open sets form a topology on X, coarser than τ , denoted by τθ and that a

space (X, τ) is regular if and only if τ = τθ. Note also that the θ-closure of a

given set need not be a θ-closed set.

Let (X, τ, I) be an ideal topological space and A ⊆ X. A point x of X is

called a θI-cluster point of A if Cl∗(U) ∩ A 6= φ for every open set U of X
containing x. The set of all θI-cluster points of A is called the θI-closure of

A and is denoted by ClθI
(A). A is said to be θI-closed if ClθI

(A) = A. The

complement of a θI-closed set is called a θI-open set.

Definition 2.1. Let (X, τ, I) be an ideal topological space. A point x of X is

called a θI-interior point of A if there exists an open set U containing x such

that Cl∗(U) ⊆ A. The set of all θI-interior points of A is called the θI-interior

of A and is denoted by IntθI
(A).

Remark 2.2. For a set A of X, IntθI
(X − A) = X − ClθI

(A) so that A is

θI-open if and only if A = IntθI
(A).

Definition 2.3. A function f : (X, τ) → (Y, σ) is said to be θ-continuous [6]

(resp. strongly θ-continuous [14], weakly continuous [13]) if for each x ∈ X and

each open set V in Y containing f(x), there exists an open set U containing x
such that f(Cl(U)) ⊆ Cl(V ) (resp. f(Cl(U)) ⊆ V , f(U) ⊆ Cl(V )).

Definition 2.4. A function f : (X, τ, I) → (Y, σ,J ) is said to be weakly J -

continuous [1] (resp. θ(I,J )-continuous [19]) if for each x ∈ X and each open

set V in Y containing f(x), there exists an open set U containing x such that

f(U) ⊆ Cl∗(V ) (resp. f(Cl∗(U)) ⊆ Cl∗(V )).

By the above definitions, we have the following diagram and none of these
implications is reversible

strongly θ-continuous //

��

continuous

��

// θ-continuous

��

θ(I,J )-continuous // weakly J -continuous // weakly continuous

Remark 2.5. In [1, Example 2.1], it is shown that not every weakly continuous

function is weakly J -continuous.
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Remark 2.6. The following strict implications are well-known:

strongly θ-continuous // continuous // θ-continuous

��

weakly continuous

Example 2.7. Let X = {1, 2, 3, 4}, τ = {X, φ, {1, 2, 3}, {3}, {3, 4}} with I =

{φ, {1}, {2}, {1, 2}} and Y = {a, b, c, d}, σ = {Y, φ, {a, b}, {b}, {d}, {b, d},
{a, b, d}, {b, c, d}} with J = {φ}. We define a function f : (X, τ, I) → (Y, σ,J )

as f = {(1, a), (2, b), (3, c), (4, d)}. Then f is weakly J -continuous but not

θ(I,J )-continuous. In [12, Example 10], it is shown that f is weakly J -con-

tinuous. We show that f : (X, τ, I) → (Y, σ,J ) is not θ(I,J )-continuous. Let

1 ∈ X and V = {a, b} ∈ σ such that f(1) = a ∈ V ∈ σ. But, for every open set

U ⊆ X such that 1 ∈ U , where U = {1, 2, 3} or U = X, Cl∗(U) = X. Then

f(Cl∗(U) = Y * Cl∗(V ) = {a, b, c}. Therefore, f : (X, τ, I) → (Y, σ,J ) is not

θ(I,J )-continuous.

Example 2.8. Let X = {a, b, c}, τ = {X, φ, {b, c}} with I = {φ, {a}} and

Y = {b, c}, σ = {Y, φ, {c}} with J = {φ, {b}}. We define a function f :

(X, τ, I) → (Y, σ,J ) as f = {(a, b), (b, c), (c, b)}. Then f is θ(I,J )-continuous

but not continuous.

1. Let a ∈ X and V = Y ∈ σ such that f(a) = b ∈ V , then there exists an

open set U = X ∈ τ containing a such that f(Cl∗(U)) ⊆ Cl∗(V ) = Y .

2. Let b ∈ X and V = {c} or V = Y such that f(b) = c ∈ V , then

there exists an open set U = {b, c} or U = X containing b such that

f(Cl∗(U)) ⊆ Cl∗(V ) = Y .

3. Let c ∈ X and V = Y such that f(c) = b ∈ V , then there exists an open

set U = {b, c} or U = X containing c such that f(Cl∗(U)) ⊆ Cl∗(V ) = Y .

By (1), (2) and (3) f is θ(I,J )-continuous. On the other hand, let b ∈ X and

V = {c} ∈ σ such that f(b) = c ∈ V ∈ σ. But, for every open set U ⊆ X
such that b ∈ U , where U = {b, c} or U = X. Then f(U) = Y * V = {c}.
Therefore, f : (X, τ, I) → (Y, σ,J ) is not continuous.

The following lemma is useful in the sequel:

Lemma 2.9 ([9]). Let (X, τ, I) be an ideal topological space and A, B subsets

of X. Then the following properties hold:

1. If A ⊆ B, then A∗ ⊆ B∗.
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2. A∗ = Cl(A∗) ⊆ Cl(A).

3. (A∗)∗ ⊆ A∗.

4. (A ∪ B)∗ = A∗ ∪ B∗.

3. Characterizations of θ(I,J )-continuous functions

In this section, we obtain several characterizations of θ(I,J )-continuous func-

tions in ideal topological spaces.

Theorem 3.1. For a function f : (X, τ, I) → (Y, σ,J ), the following proper-

ties are equivalent:

1. f is θ(I,J )-continuous;

2. ClθI
(f−1(B)) ⊆ f−1(ClθJ

(B)) for every subset B of Y ;

3. f(ClθI
(A)) ⊆ ClθJ

(f(A)) for every subset A of X.

Proof. (1) ⇒ (2): Let B be any subset of Y . Suppose that x /∈ f−1(ClθJ
(B)).

Then f(x) /∈ ClθJ
(B) and there exists an open set V containing f(x) such

that Cl∗(V ) ∩ B = φ. Since f is θ(I,J )-continuous, there exists an open set U
containing x such that f(Cl∗(U)) ⊆ Cl∗(V ). Therefore, we have f(Cl∗(U)) ∩
B = φ and Cl∗(U) ∩ f−1(B) = φ. This shows that x /∈ ClθI

(f−1(B)). Thus,

we obtain ClθI
(f−1(B)) ⊆ f−1(ClθJ

(B)).

(2) ⇒ (1): Let x ∈ X and V be an open set of Y containing f(x). Then we

have Cl∗(V ) ∩ (Y − Cl∗(V )) = φ and f(x) /∈ ClθJ
(Y − Cl∗(V )). Therefore,

x /∈ f−1(ClθJ
(Y − Cl∗(V ))) and by (2) we have x /∈ ClθI

(f−1(Y − Cl∗(V ))).

There exists an open set U containing x such that Cl∗(U)∩f−1(Y −Cl∗(V )) = φ
and hence f(Cl∗(U)) ⊆ Cl∗(V ). Therefore, f is θ(I,J )-continuous.

(2) ⇒ (3): Let A be any subset of X. Then we have ClθI
(A) ⊆ ClθI

(f−1(f(A)))

⊆ f−1(ClθJ
(f(A))) and hence f(ClθI

(A)) ⊆ ClθJ
(f(A)).

(3) ⇒ (2): Let B be a subset of Y. We have f(ClθI
(f−1(B)))⊆ClθJ

(f(f−1(B)))

⊆ ClθJ
(B) and hence ClθI

(f−1(B)) ⊆ f−1(ClθJ
(B)).

Definition 3.2 ([1]). An ideal topological space (X, τ, I) is called an FI∗-space

if Cl(U) ⊆ U∗ for every open set U of X.

Definition 3.3 ([3]). Let (X, τ, I) be an ideal topological space. I is said to

be codense if τ ∩ I = φ.

Remark 3.4. In [12], Kuyucu et al. showed the following properties:

1. an ideal topological space (X, τ, I) is an FI∗-space if and only if I is

codense,
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2. if (X, τ, I) is an FI∗-space, then V ∗ = Cl∗(V ) = Cl(V ) for every open

set V of X.

Theorem 3.5. For a function f : (X, τ, I) → (Y, σ,J ), the following implica-

tions: (1) ⇔ (2) ⇒ (3) ⇔ (4) hold. Moreover, the implication (4) ⇒ (1) holds

if (Y, σ,J ) is an FJ ∗-space.

1. f is θ(I,J )-continuous;

2. f−1(V ) ⊆ IntθI
(f−1(Cl∗(V ))) for every open set V of Y ;

3. ClθI
(f−1(V )) ⊆ f−1(Cl(V )) for every open set V of Y ;

4. For each x ∈ X and each open set V of Y containing f(x), there exists

an open set U of X containing x such that f(Cl∗(U)) ⊆ Cl(V ).

Proof. (1) ⇒ (2): Suppose that V is any open set of Y and x ∈ f−1(V ). Then

f(x) ∈ V and there exists an open set U containing x such that f(Cl∗(U)) ⊆
Cl∗(V ). Therefore, x ∈ U ⊆ Cl∗(U) ⊆ f−1(Cl∗(V )). This shows that

x ∈ IntθI
(f−1(Cl∗(V ))). Therefore, we obtain f−1(V ) ⊆ IntθI

(f−1(Cl∗(V ))).

(2) ⇒ (1): Let x ∈ X and V ∈ σ containing f(x). Then, by (2) f−1(V ) ⊆
IntθI

(f−1(Cl∗(V ))). Since x ∈ f−1(V ), there exists an open set U containing

x such that Cl∗(U) ⊆ f−1(Cl∗(V )). Therefore, f(Cl∗(U)) ⊆ Cl∗(V ) and hence

f is θ(I,J )-continuous.

(2) ⇒ (3): Suppose that V is any open set of Y and x /∈ f−1(Cl(V )). Then

f(x) /∈ Cl(V ) and there exists an open set W containing f(x) such that W∩V =

φ; hence Cl∗(W ) ∩ V ⊆ Cl(W ) ∩ V = φ. Therefore, we have f−1(Cl∗(W )) ∩
f−1(V ) = φ. Since x ∈ f−1(W ), by (2) x ∈ IntθI

(f−1(Cl∗(W ))). There

exists an open set U containing x such that Cl∗(U) ⊆ f−1(Cl∗(W )). Thus

we have Cl∗(U) ∩ f−1(V ) = φ and hence x /∈ ClθI
(f−1(V )). This shows that

ClθI
(f−1(V )) ⊆ f−1(Cl(V )).

(3) ⇒ (4): Suppose that x ∈ X and V is any open set of Y containing

f(x). Then V ∩ (Y − Cl(V )) = φ and f(x) /∈ Cl(Y − Cl(V )). Therefore

x /∈ f−1(Cl(Y − Cl(V ))) and by (3) x /∈ ClθI
(f−1(Y − Cl(V ))). There exists

an open set U containing x such that Cl∗(U)∩f−1(Y −Cl(V )) = φ. Therefore,

we obtain f(Cl∗(U)) ⊆ Cl(V ).

(4) ⇒ (3): Let V be any open set of Y . Suppose that x /∈ f−1(Cl(V )).

Then f(x) /∈ Cl(V ) and there exists an open set W containing f(x) such

that W ∩ V = φ. By (4), there exists an open set U containing x such that

f(Cl∗(U)) ⊆ Cl(W ). Since V ∈ σ, Cl(W ) ∩ V = φ and f(Cl∗(U)) ∩ V ⊆
Cl(W )∩V = φ. Therefore, Cl∗(U)∩f−1(V ) = φ and hence x /∈ ClθI

(f−1(V )).

This shows that ClθI
(f−1(V )) ⊆ f−1(Cl(V )).

(4) ⇒ (1): Since (Y, σ,J ) is an FJ ∗-space, Cl(V ) ⊆ Cl∗(V ) for every open

set V of Y and hence f is θ(I,J )-continuous.
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Proposition 3.6. A function f : (X, τ, I) → (Y, σ,J ) from an FI∗-space to

an FJ ∗-space is θ(I,J )-continuous if and only if it is θ-continuous.

Proof. This follows from the Remark 3.4.

4. Some properties of θ(I,J )-continuous functions

Definition 4.1. An ideal topological space (X, τ, I) is said to be θI-T2 (resp.

∗-Urysohn) if for each distinct points x, y ∈ X, there exist two θI-open (resp.

open) sets U, V ∈ X containing x and y, respectively, such that U ∩ V = φ
(resp. Cl∗(U) ∩ Cl∗(V ) = φ).

Theorem 4.2. If f, g : (X, τ, I) → (Y, σ,J ) are θ(I,J )-continuous functions

and (Y, σ,J ) is ∗-Urysohn , then A = {x ∈ X : f(x) = g(x)} is a θI-closed set

of (X, τ, I).

Proof. We prove that X − A is a θI-open set. Let x ∈ X − A. Then

f(x) 6= g(x). Since Y is ∗-Urysohn, there exist open sets V1 and V2 con-

taining f(x) and g(x), respectively, such that Cl∗(V1) ∩ Cl∗(V2) = φ. Since

f and g are θ(I,J )-continuous, there exists an open set U containing x such

that f(Cl∗(U)) ⊆ Cl∗(V1)) and g(Cl∗(U)) ⊆ Cl∗(V2)). Hence we obtain that

Cl∗(U) ⊆ f−1(Cl∗(V1)) and Cl∗(U) ⊆ g−1(Cl∗(V2)). From here we have

Cl∗(U) ⊆ f−1(Cl∗(V1))∩g−1(Cl∗(V2)). Moreover f−1(Cl∗(V1))∩g−1(Cl∗(V2))

⊆ X − A. This shows that X − A is θI-open.

Definition 4.3. An ideal topological space (X, τ, I) is said to be ∗-regular if

for each closed set F and each point x ∈ X −F , there exist an open set V and

an ∗-open set U ∈ τ∗ such that x ∈ V , F ⊆ U and U ∩ V = φ.

Example 4.4. Let X = {a, b, c}, τ = {φ, X, {a}, {a, b}} and I = P(X), then

(X, τ, I) is an ∗-regular space which is not regular.

Lemma 4.5 ([1]). 1. A function f : (X, τ) → (Y, σ,J ) is weakly J -continu-

ous if and only if for each open set V , f−1(V ) ⊆ Int(f−1(Cl∗(V ))).

2. If an ideal space (Y, σ, I) is an FJ ∗-space and a function f : (X, τ, I) →
(Y, σ, I) is weakly J -continuous, then Cl∗(f−1(G)) ⊆ f−1(Cl∗(G)) for

every open set G in Y .

The equivalence of (1) and (2) in the following theorem is suggested by the

referee.

Theorem 4.6. Let (Y, σ,J ) be an FJ ∗-space. For a function f : (X, τ) →
(Y, σ,J ), the following properties are equivalent:
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1. f is weakly J -continuous;

2. Cl(f−1(V )) ⊆ f−1(Cl∗(V )) for every open set V of Y ;

3. f is weakly continuous.

Proof. (1) ⇒ (2): Let V be any open set of Y . Suppose that x /∈ f−1(Cl∗(V )).

Then f(x) /∈ Cl∗(V ). Since (Y, σ,J ) is an FJ ∗-space, f(x) /∈ Cl(V ) and

there exists W ∈ σ containing f(x) such that W ∩ V = φ, hence Cl∗(W ) ∩
V = Cl(W ) ∩ V = φ. Since f is weakly J -continuous, there exists U ∈ τ
containing x such that f(U) ⊆ Cl∗(W ). Therefore, we have f(U)∩ V = φ and

U ∩f−1(V ) = φ. Since U ∈ τ , U ∩Cl(f−1(V )) = φ and hence x /∈ Cl(f−1(V )).

Therefore, we obtain Cl(f−1(V )) ⊆ f−1(Cl∗(V )).

(2) ⇒ (3): Let V be any open set of Y . Since (Y, σ,J ) is an FJ ∗-space, by

(2) we have Cl(f−1(V )) ⊆ f−1(Cl(V )). It follows from [16, Theorem 7] that

f is weakly continuous.

(3) ⇒ (1): Let f be weakly continuous. By [13, Theorem 1]

f−1(V ) ⊆ Int(f−1(Cl(V )))

for every open set V of Y . Since (Y, σ,J ) is an FJ ∗-space, Cl(V ) = Cl∗(V )

and we have f−1(V ) ⊆ Int(f−1(Cl∗(V ))). Therefore, by Lemma 4.5 (1) f is

weakly J -continuous.

Definition 4.7 ([5]). An ideal space (X, τ, I) is said to be ∗-extremally dis-

connected if the ∗-closure of every open subset of X is open.

Lemma 4.8. An ideal topological space (X, τ, I) is ∗-regular if and only if for

each open set U containing x there exists an open set V such that x ∈ V ⊆
Cl∗(V ) ⊆ U .

Proposition 4.9. Let (X, τ, I) be an ∗-regular space. Then f : (X, τ, I) →
(Y, σ,J ) is θ(I,J )-continuous if and only if it is weakly J -continuous.

Proof. Every θ(I,J )-continuous function is weakly J -continuous. Suppose that

f is weakly J -continuous. Let x ∈ X and V be any open set of Y containing

f(x). Then, there exists an open set U containing x such that f(U) ⊆ Cl∗(V ).

Since X is ∗-regular, by Lemma 4.8 there exists an open set W such that

x ∈ W ⊆ Cl∗(W ) ⊆ U . Therefore, we obtain f(Cl∗(W )) ⊆ Cl∗(V ). This

shows that f is θ(I,J )-continuous.

Theorem 4.10. Let an ideal space (Y, σ,J ) be an FJ ∗-space and ∗-extremally

disconnected. Then f : (X, τ, I) → (Y, σ,J ) is θ(I,J )-continuous if and only if

it is weakly J -continuous.
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Proof. It is clear that every θ(I,J )-continuous function is weakly J -continuous.

Conversely, suppose that f is weakly J -continuous. Let x ∈ X and V be

an open set of Y containing f(x). Then by Lemma 4.5 (1), x ∈ f−1(V ) ⊆
Int(f−1(Cl∗(V ))). Let U = Int(f−1(Cl∗(V ))). Since (Y, σ, I) is an FJ ∗-

space and ∗-extremally disconnected, by using Lemma 4.5 (2) f(Cl∗(U)) =

f(Cl∗(Int(f−1(Cl∗(V )))) ⊆ f(Cl∗(f−1(Cl∗(V ))) ⊆ f(f−1(Cl∗(Cl∗(V ))) ⊆
Cl∗(V ). Hence f is θ(I,J )-continuous.

Corollary 4.11. Let an ideal space (Y, σ,J ) be an FJ ∗-space and ∗-extremal-

ly disconnected. For a function f : (X, τ, I) → (Y, σ,J ), the following proper-

ties are equivalent:

1. f is θ(I,J )-continuous;

2. f is weakly J -continuous;

3. f−1(V ) ⊆ Int(f−1(V ∗)) for every open set V in Y ;

4. f−1(V ) ⊆ Int(f−1(Cl(V ))) for every open set V of Y ;

5. f is weakly continuous.

Proof. By Theorem 4.10, we have the equivalence of (1) and (2). The equiv-

alences of (2), (3) and (4) follow from Lemma 4.5 (1) and Remark 3.4. The

equivalence of (4) and (5) is shown in [13, Theorem 1].

A subset A of an ideal space (X,τ, I) is said to be pre-I-open [4] if A ⊆
Int(Cl∗(A)). A function f : (X, τ, I) → (Y, σ,J ) is said to be pre-I-continu-

ous [4] if the inverse image of every open set of Y is pre-I-open in X.

Theorem 4.12. If f : (X, τ, I) → (Y, σ,J ) is a pre-I-continuous function

and Cl∗(f−1(U)) ⊆ f−1(Cl∗(U)) for every open set U in Y , then f is θ(I,J )-

continuous.

Proof. Let x ∈ X and U be an open set in Y containing f(x). By hypoth-

esis, Cl∗(f−1(U)) ⊆ f−1(Cl∗(U)). Since f is pre-I-continuous, f−1(U) is

pre-I-open in X and so f−1(U) ⊆ Int(Cl∗(f−1(U))). Since x ∈ f−1(U) ⊆
Int(Cl∗(f−1(U))), there exists an open set V containing x such that x ∈ V ⊆
Cl∗(V ) ⊆ Cl∗(f−1(U)) ⊆ f−1(Cl∗(U)) and so f(Cl∗(V )) ⊆ Cl∗(U) which

implies that f is θ(I,J )-continuous.

The following corollary follows from Lemma 4.5 and Theorems 4.6 and 4.12.

Corollary 4.13. Let f : (X, τ, I) → (Y, σ,J ) be pre-I-continuous and

(Y, σ,J ) is an FJ ∗-space. The following properties are equivalent:

1. f is θ(I,J )-continuous;
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2. Cl∗(f−1(V )) ⊆ f−1(Cl∗(V )) for every open set V in Y ;

3. Cl(f−1(V )) ⊆ f−1(Cl∗(V )) for every open set V in Y ;

4. f is weakly J -continuous.

5. Preservation theorems

A subset A of a space X is said to be quasi H∗-closed relative to X if for every

cover {Vα : α ∈ Λ} of A by open sets of X, there exists a finite subset Λ0 of Λ

such that A ⊆ ∪{Cl∗(Vα) : α ∈ Λ0}. A space X is said to be quasi H∗-closed

if X is quasi H∗-closed relative to X

Theorem 5.1. If f : (X, τ, I) → (Y, σ,J ) is θ(I,J )-continuous and K is quasi

H∗-closed relative to X, then f(K) is quasi H∗-closed relative to Y .

Proof. Suppose that f : (X, τ, I) → (Y, σ,J ) is a θ(I,J )-continuous function

and K is quasi H∗-closed relative to X. Let {Vα : α ∈ Λ} be a cover of

f(K) by open sets of Y . For each point x ∈ K, there exists α(x) ∈ Λ such

that f(x) ∈ Vα(x). Since f is θ(I,J )-continuous, there exists an open set Ux

containing x such that f(Cl∗(Ux)) ⊆ Cl∗(Vα(x)). The family {Ux : x ∈ K} is

a cover of K by open sets of X and hence there exists a finite subset K∗ of K
such that K ⊆ ∪x∈K∗

Cl∗(Ux). Therefore, we obtain f(K) ⊆ ∪x∈K∗
Cl∗(Vα(x)).

This shows that f(K) is quasi H∗-closed relative to Y .

Definition 5.2. A function f : (X, τ, I) → (Y, σ,J ) is said to be θ(I,J )-

irresolute if for every θJ -open set U in Y , f−1(U) is θI-open in X.

Theorem 5.3. Every θ(I,J )-continuous function is θ(I,J )-irresolute.

Proof. Let f : X → Y be a θ(I,J )-continuous function and U be a θJ -open

set in Y . Let x ∈ f−1(U). Then, f(x) ∈ U . Since U is θJ -open, there exists

an open set V in Y such that f(x) ∈ V ⊆ Cl∗(V ) ⊆ U . By θ(I,J )-continuity

of f , there exists an open set W in X containing x such that f(Cl∗(W )) ⊆
Cl∗(V ) ⊆ U . Thus x ∈ W ⊆ Cl∗(W ) ⊆ f−1(U). Hence f−1(U) is θI-open and

hence f is θ(I,J )-irresolute.

Definition 5.4. (1) An ideal space (X, τ, I) is said to be θI-compact if every

cover of X by θI-open sets admits a finite subcover.

(2) A subset A of an ideal space (X, τ, I) is said to be θI-compact relative to

X if every cover of A by θI-open sets of X admits a finite subcover.

Proposition 5.5. Every quasi H∗-closed space (X, τ, I) is θI-compact.
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Proof. More generally, we show that if A is quasi H∗-closed relative to a space

X, then A is θI-compact relative to X. Let A ⊆ ∪{Vα : α ∈ Λ}, where each

Vα is θI-open, and A be quasi H∗-closed relative to X, then for each x ∈ A
there exists an α(x) ∈ Λ with x ∈ Vα(x). Then there exists an open set Uα(x)

with x ∈ Uα(x) such that Cl∗(Uα(x)) ⊆ V
α(x)

. Since {Uα(x) : x ∈ A} is a cover

of A by open set in X, then there is a finite subset {x1, x2, ..., xn} ⊆ A such

that A ⊆ ∪{Cl∗(Uα(xi)) : i = 1, 2, ..., n} ⊆ ∪{Vα(xi) : i = 1, 2, ..., n}. Hence A
is θI-compact relative to X.

Theorem 5.6. If f : (X, τ, I)→ (Y, σ,J ) is a θ(I,J )-irresolute surjection and

(X, τ, I) is θI-compact, then Y is θJ -compact.

Proof. Let V be a θJ -open covering of Y . Then, since f is θ(I,J )-irresolute,

the collection U = {f−1(U) : U ∈ V} is a θI-open covering of X. Since X
is θI-compact, there exists a finite subcollection {f−1(Ui) : i = 1, ..., n} of U
which covers X. Now since f is onto, {Ui : i = 1, ..., n} is a finite subcollection

of V which covers Y . Hence Y is a θJ -compact space.

Corollary 5.7. The θ(I,J )-continuous surjective image of a θI-compact space

is θJ -compact.

Definition 5.8. An ideal topological space (X, τ, I) is said to be ∗-Lindelöf

if for every open cover {Uα : α ∈ Λ} of X there exists a countable subset

{αn : n ∈ N} ⊆ Λ such that X = ∪n∈NCl∗(Uαn
).

Theorem 5.9. Let f : (X, τ, I) → (Y, σ,J ) be a θ(I,J )-continuous (resp.

weakly J -continuous) surjection. If X is ∗-Lindelöf (resp. Lindelöf), then

Y is ∗-Lindelöf.

Proof. Suppose that f is θ(I,J )-continuous and X is ∗-Lindelöf. Let {Vα :

α ∈ Λ} be an open cover of Y . For each x ∈ X, there exists α(x) ∈ Λ

such that f(x) ∈ Vα(x). Since f is θ(I,J )-continuous, there exists an open

set Uα(x) of X containing x such that f(Cl∗(Uα(x))) ⊆ Cl∗(Vα(x)). Now

{Uα(x) : x ∈ X} is an open cover of the ∗-Lindelöf space X. So there ex-

ists a countable subset {Uα(xn) : n ∈ N} such that X = ∪n∈N(Cl∗(Uα(xn))).

Thus Y = f(∪n∈N(Cl∗(Uα(xn)))) ⊆ ∪n∈Nf(Cl∗(Uα(xn))) ⊆ ∪n∈NCl∗(Vα(xn)).

This shows that Y is ∗-Lindelöf. In case X is Lindelöf the proof is similar.

A function f : (X, τ, I) → (Y, σ,J ) is said to be θ(I,J )-closed if for each

θI-closed set F in X, f(F ) is θJ -closed in Y .

The following characterization of θ(I,J )-closed functions will be used in the

sequel.
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Theorem 5.10. A surjective function f : (X, τ, I) → (Y, σ,J ) is θ(I,J )-closed

if and only if for each set B ⊆ Y and for each θI-open set U containing f−1(B),

there exists a θJ -open set V containing B such that f−1(V ) ⊆ U .

Proof. Necessity. Suppose that f is θ(I,J )-closed. Since U is θI-open in X,

X−U is θI-closed and so f(X−U) is θJ -closed in Y . Now, V = Y −f(X−U)

is θJ -open, B ⊆ V and f−1(V ) = f−1(Y −f(X−U)) = X−f−1(f(X−U)) ⊆
X − (X − U) = U .

Sufficiency. Let A be a θI-closed set in X. To prove that f(A) is θJ -

closed, we shall show that Y − f(A) is θJ -open. Let y ∈ Y − f(A). Then

f−1(y) ∩ f−1(f(A)) = φ and so f−1(y) ⊆ X − f−1(f(A)) ⊆ X − A. By

hypothesis there exists a θJ -open set V containing y such that f−1(V ) ⊆ X−A.

So A ⊆ X − f−1(V ) and hence f(A) ⊆ f(X − f−1(V )) = Y − V . Thus

V ⊆ Y − f(A) and so the set Y − f(A) being the union of θJ -open sets is

θJ -open.

Theorem 5.11. Let f : (X, τ, I) → (Y, σ,J ) be a θ(I,J )-closed surjection such

that for each y ∈ Y , f−1(y) is θI-compact relative to X. If Y is θJ -compact,

then X is θI-compact.

Proof. Let U = {Uα : α ∈ Λ} be a θI-open covering of X. Since for each y ∈ Y ,

f−1(y) is θI-compact relative to X, we can choose a finite subset Λy of Λ such

that {Uβ : β ∈ Λy} is a covering of f−1(y). Now, by Theorem 5.10, there

exists a θJ -open set Vy containing y such that f−1(Vy) ⊆ ∪{Uβ : β ∈ Λy}.
The collection V = {Vy : y ∈ Y } is a θJ -open covering of Y . In view of θJ -

compactness of Y there exists a finite subcollection {Vy1
, ..., Vyn

} of V which

covers Y . Then the finite subcollection {Uβ : β ∈ Λyi
, i = 1, ..., n} of U covers

X. Hence X is a θI-compact space.

Let (X, τ) be a space with an ideal I on X and D ⊆ X. Then ID = {D∩A :

A ∈ I} is obviously an ideal on D.

Theorem 5.12. Let f : (X, τ, I) → (Y, σ,J ) be a function, D be a dense subset

in the topological space (Y, σ∗) and f(X) ⊆ D. Then the following properties

are equivalent:

1. f : (X, τ, I) → (Y, σ,J ) is θ(I,J )-continuous;

2. f : (X, τ, I) → (D, σD,JD) is θ(I,JD)-continuous.

Proof. (1) ⇒ (2): Let x ∈ X and W be any open set of D containing f(x),

that is f(x) ∈ W ∈ σD. Then exists a V ∈ σ such that W = D ∩ V . Since

f : (X, τ, I) → (Y, σ,J ) is θ(I,J )-continuous and f(x) ∈ V ∈ σ, there exists

U ∈ τ such that x ∈ U and f(Cl∗(U)) ⊆ Cl∗(V ). If D is a dense subset in

the topological space (Y, σ∗), then D is a dense subset in the topological space
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(Y, σ) since Cl∗(D) ⊆ Cl(D). Since σ ⊆ σ∗, V ∈ σ∗. So, Cl∗(D∩V ) = Cl∗(V )

since D is dense. Thus f(Cl∗(U)) ⊆ Cl∗(V ) ∩ f(X) ⊆ Cl∗(D ∩ V ) ∩ D ⊆
Cl∗(V ) ∩ D. Since W = D ∩ V , Cl∗D(W ) = Cl∗(V ) ∩ D by [7, Lemma 4]

f(Cl∗(U)) ⊆ Cl∗D(W ). Hence we obtain that f : (X, τ, I) → (D, σD,JD) is

θ(I,JD)-continuous.

(2) ⇒ (1): Let x ∈ X and V be any open set Y containing f(x). Since

f(x) ∈ D ∩ V and D ∩ V ∈ σD, by (2) there exists U ∈ τ containing x such

that f(Cl∗(V )) ⊆ Cl∗D(D ∩ V ) = Cl∗(D ∩ V ) ∩ D ⊆ Cl∗(V ). This shows that

f is θ(I,J )-continuous.
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Abstract. We classify globally generated rank two vector bundles on

P
n, n ≥ 3, with c1 ≤ 5. The classification is complete but for one case

(n = 3, c1 = 5, c2 = 12).
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1. Introduction.

Vector bundles generated by global sections are basic objects in projective alge-

braic geometry. Globally generated line bundles correspond to morphisms to a

projective space, more generally higher rank bundles correspond to morphism

to (higher) Grassmann varieties. For this last point of view (that won’t be

touched in this paper) see [10, 12, 13]. Also globally generated vector bundles

appear in a variety of problems ([7] just to make a single, recent example).

In this paper we classify globally generated rank two vector bundles on P
n

(projective space over k, k = k, ch(k) = 0), n ≥ 3, with c1 ≤ 5. The result is:

Theorem 1.1. Let E be a rank two vector bundle on P
n, n ≥ 3, generated by

global sections with Chern classes c1, c2, c1 ≤ 5.

1. If n ≥ 4, then E is the direct sum of two line bundles

2. If n = 3 and E is indecomposable, then

(c1, c2) ∈ S = {((2, 2), (4, 5), (4, 6), (4, 7), (4, 8), (5, 8), (5, 10), (5, 12)}.

If E exists there is an exact sequence:

0 → O → E → IC(c1) → 0 (∗)

where C ⊂ P
3 is a smooth curve of degree c2 with ωC(4− c1) ≃ OC . The

curve C is irreducible, except maybe if (c1, c2) = (4, 8): in this case C
can be either irreducible or the disjoint union of two smooth conics.
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3. For every (c1, c2) ∈ S, (c1, c2) 6= (5, 12), there exists a rank two vector

bundle on P
3 with Chern classes (c1, c2) which is globally generated (and

with an exact sequence as in 2.).

The classification is complete, but for one case: we are unable to say if there

exist or not globally generated rank two vector bundles with Chern classes

c1 = 5, c2 = 12 on P
3.

2. Rank two vector bundles on P
3
.

2.1. General facts.

For completeness let’s recall the following well known results:

Lemma 2.1. Let E be a rank r vector bundle on P
n, n ≥ 3. Assume E is

generated by global sections.

1. If c1(E) = 0, then E ≃ r.O

2. If c1(E) = 1, then E ≃ O(1) ⊕ (r − 1).O or E ≃ T (−1) ⊕ (r − n).O.

Proof. If L ⊂ P
n is a line then E|L ≃

⊕r

i=1 OL(ai) by a well known theorem

and ai ≥ 0,∀i since E is globally generated. It turns out that in both cases:

E|L ≃ OL(c1)⊕ (r − 1).OL for every line L, i.e. E is uniform. Then 1. follows

from a result of Van de Ven ([14]), while 2. follows from IV. Prop. 2.2 of [4].

Lemma 2.2. Let E be a rank two vector bundle on P
n, n ≥ 3. If E has a

nowhere vanishing section then E splits. If E is generated by global sections

and doesn’t split then h0(E) ≥ 3 and a general section of E vanishes along a

smooth curve, C, of degree c2(E) such that ωC(4− c1) ≃ OC . Moreover IC(c1)

is generated by global sections.

Lemma 2.3. Let E be a non split rank two vector bundle on P
3 with c1 = 2. If

E is generated by global sections then E is a null-correlation bundle.

Proof. We have an exact sequence: 0 → O → E → IC(2) → 0, where C is a

smooth curve with ωC(2) ≃ OC . It follows that C is a disjoint union of lines.

Since h0(IC(2)) ≥ 2, d(C) ≤ 2. Finally d(C) = 2 because E doesn’t split.

This settles the classification of rank two globally generated vector bundles

with c1(E) ≤ 2 on P
3.
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2.2. Globally generated rank two vector bundles with

c1 = 3.

The following result has been proved in [10] (with a different and longer

proof).

Proposition 2.4. Let E be a rank two globally generated vector bundle on P
3.

If c1(E) = 3 then E splits.

Proof. Assume a general section vanishes in codimension two, then it vanishes

along a smooth curve C such that ωC ≃ OC(−1). Moreover IC(3) is generated

by global sections. We have C = ∪r
i=1Ci (disjoint union) where each Ci is

smooth irreducible with ωCi
≃ OCi

(−1). It follows that each Ci is a smooth

conic. If r ≥ 2 let L = 〈C1〉 ∩ 〈C2〉 (〈Ci〉 is the plane spanned by Ci). Every

cubic containing C contains L (because it contains the four points C1 ∩ L,

C2 ∩ L). This contradicts the fact that IC(3) is globally generated. Hence

r = 1 and E = O(1) ⊕O(2).

2.3. Globally generated rank two vector bundles with

c1 = 4.

Let’s start with a general result:

Lemma 2.5. Let E be a non split rank two vector bundle on P
3 with Chern

classes c1, c2. If E is globally generated and if c1 ≥ 4 then:

c2 ≤
2c3

1 − 4c2
1 + 2

3c1 − 4
.

Proof. By our assumptions a general section of E vanishes along a smooth

curve, C, such that IC(c1) is generated by global sections. Let U be the

complete intersections of two general surfaces containing C. Then U links C
to a smooth curve, Y . We have Y 6= ∅ since E doesn’t split. The exact

sequence of liaison: 0 → IU (c1) → IC(c1) → ωY (4 − c1) → 0 shows that

ωY (4 − c1) is generated by global sections. Hence deg(ωY (4 − c1)) ≥ 0. We

have deg(ωY (4 − c1)) = 2g′ − 2 + d′(4 − c1) (g′ = pa(Y ), d′ = deg(Y )). So

g′ ≥ d′(c1−4)+2
2 ≥ 0 (because c1 ≥ 4). On the other hand, always by liaison, we

have: g′ − g = 1
2 (d′ − d)(2c1 − 4) (g = pa(C), d = deg(C)). Since d′ = c2

1 − d

and g =
d(c1−4)

2 + 1 (because ωC(4 − c1) ≃ OC), we get: g′ = 1 +
d(c1−4)

2 +
1
2 (c2

1 − 2d)(2c1 − 4) ≥ 0 and the result follows.
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Now we have:

Proposition 2.6. Let E be a rank two globally generated vector bundle on P
3.

If c1(E) = 4 and if E doesn’t split, then 5 ≤ c2 ≤ 8 and there is an exact

sequence: 0 → O → E → IC(4) → 0, where C is a smooth irreducible elliptic

curve of degree c2 or, if c2 = 8, C is the disjoint union of two smooth elliptic

quartic curves.

Proof. A general section of E vanishes along C where C is a smooth curve with

ωC = OC and where IC(4) is generated by global sections. Let C = C1∪...∪Cr

be the decomposition into irreducible components: the union is disjoint, each

Ci is a smooth elliptic curve hence has degree at least three.

By Lemma 2.5 d = deg(C) ≤ 8. If d ≤ 4 then C is irreducible and is a complete

intersection which is impossible since E doesn’t split. If d = 5, C is smooth

irreducible.

Claim: If 8 ≥ d ≥ 6, C cannot contain a plane cubic curve.

Assume C = P ∪X where P is a plane cubic and where X is a smooth elliptic

curve of degree d − 3. If d = 6, X is also a plane cubic and every quartic

containing C contains the line 〈P 〉∩ 〈X〉. If deg(X) ≥ 4 then every quartic, F ,

containing C contains the plane 〈P 〉. Indeed F |H vanishes on P and on the

deg(X) ≥ 4 points of X ∩ 〈P 〉, but these points are not on a line so F |H = 0.

In both cases we get a contradiction with the fact that IC(4) is generated by

global sections. The claim is proved.

It follows that, if 8 ≥ d ≥ 6, then C is irreducible except if C = X ∪ Y is the

disjoint union of two elliptic quartic curves.

Now let’s show that all possibilities of Proposition 2.6 do actually occur.

For this we have to show the existence of a smooth irreducible elliptic curve of

degree d, 5 ≤ d ≤ 8 with IC(4) generated by global sections (and also that the

disjoint union of two elliptic quartic curves is cut off by quartics).

Lemma 2.7. There exist rank two vector bundles with c1 = 4, c2 = 5 which are

globally generated. More precisely any such bundle is of the form N (2), where

N is a null-correlation bundle (a stable bundle with c1 = 0, c2 = 1).

Proof. The existence is clear (if N is a null-correlation bundle then it is well

known that N (k) is globally generated if k ≥ 1). Conversely if E has c1 =

4, c2 = 5 and is globally generated, then E has a section vanishing along a

smooth, irreducible quintic elliptic curve (cf 2.6). Since h0(IC(2)) = 0, E is

stable, hence E = N (2).

Lemma 2.8. There exist smooth, irreducible elliptic curves, C, of degree 6 with

IC(4) generated by global sections.
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Proof. Let X be the union of three skew lines. The curve X lies on a smooth

quadric surface, Q, and has IX(3) globally generated (indeed the exact sequence

0 → IQ → IX → IX,Q → 0 twisted by O(3) reads like: 0 → O(1) → IC(3) →
OQ(3, 0) → 0). The complete intersection, U , of two general cubics containing

X links X to a smooth curve, C, of degree 6 and arithmetic genus 1. Since,

by liaison, h1(IC) = h1(IX(−2)) = 0, C is irreducible. The exact sequence

of liaison: 0 → IU (4) → IC(4) → ωX(2) → 0 shows that IC(4) is globally

generated.

In order to prove the existence of smooth, irreducible elliptic curves, C, of

degree d = 7, 8, with IC(4) globally generated, we have to recall some results

due to Mori ([11]).

According to [11] Remark 4, Prop. 6, there exists a smooth quartic surface

S ⊂ P
3 such that Pic(S) = ZH ⊕ ZX where X is a smooth elliptic curve of

degree d (7 ≤ d ≤ 8). The intersection pairing is given by: H2 = 4, X2 = 0,

H.X = d. Such a surface doesn’t contain any smooth rational curve ([11,

p. 130]). In particular: (∗) every integral curve, Z, on S has degree ≥ 4 with

equality if and only if Z is a planar quartic curve or an elliptic quartic curve.

Lemma 2.9. With notations as above, h0(IX(3)) = 0.

Proof. A curve Z ∈ |3H − X| has invariants (dZ , gZ) = (5,−2) (if d = 7) or

(4,−5) (if d = 8), so Z is not integral. It follows that Z must contain an

integral curve of degree < 4, but this is impossible.

Lemma 2.10. With notations as above |4H −X| is base point free, hence there

exist smooth, irreducible elliptic curves, X, of degree d, 7 ≤ d ≤ 8, such that

IX(4) is globally generated.

Proof. Let’s first prove the following: Claim: Every curve in |4H − X| is inte-

gral.

If Y ∈ |4H − X| is not integral then Y = Y1 + Y2 where Y1 is integral with

deg(Y1) = 4 (observe that deg(Y ) = 9 or 8).

If Y1 is planar then Y1 ∼ H, so 4H − X ∼ H + Y2 and it follows that

3H ∼ X + Y2, in contradiction with h0(IX(3)) = 0 (cf 2.9).

So we may assume that Y1 is a quartic elliptic curve, i.e. (i) Y 2
1 = 0 and

(ii) Y1.H = 4. Setting Y1 = aH + bX, we get from (i): 2a(2a + bd) = 0. Hence

(α) a = 0, or (β) 2a + bd = 0.

(α) In this case Y1 = bX, hence (for degree reasons and since S doesn’t

contain curves of degree < 4), Y2 = ∅ and Y = X, which is integral.

(β) Since Y1.H = 4, we get 2a + (2a + bd) = 2a = 4, hence a = 2 and

bd = −4 which is impossible (d = 7 or 8 and b ∈ Z).

This concludes the proof of the claim.

Since (4H−X)2 ≥ 0, the claim implies that 4H−X is numerically effective.

Now we conclude by a result of Saint-Donat (cf. [11, Theorem 5]) that |4H−X|
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is base point free, i.e. IX,S(4) is globally generated. By the exact sequence:

0 → O → IX(4) → IX,S(4) → 0 we get that IX(4) is globally generated.

Remark 2.11. If d = 8, a general element Y ∈ |4H − X| is a smooth elliptic

curve of degree 8. By the way Y 6= X (see [1]). The exact sequence of liaison:

0 → IU (4) → IX(4) → ωY → 0 shows that h0(IX(4)) = 3 (i.e. X is of

maximal rank). In case d = 8 Lemma 2.10 is stated in [2], however the proof

there is incomplete, indeed in order to apply the enumerative formula of [8] one

has to know that X is a connected component of

3⋂

i=1

Fi; this amounts to say

that the base locus of |4H − X| on F1 has dimension ≤ 0.

To conclude we have:

Lemma 2.12. Let X be the disjoint union of two smooth, irreducible quartic

elliptic cuvres, then IX(4) is generated by global sections.

Proof. Let X = C1 ⊔ C2. We have: 0 → O(−4) → 2.O(−2) → IC1
→ 0,

twisting by IC2
, since C1 ∩ C2 = ∅, we get:

0 → IC2
(−4) → 2.IC2

(−2) → IX → 0 and the result follows.

Summarizing:

Proposition 2.13. There exists an indecomposable rank two vector bundle, E,

on P
3, generated by global sections and with c1(E) = 4 if and only if 5 ≤

c2(E) ≤ 8 and in these cases there is an exact sequence:

0 → O → E → IC(4) → 0

where C is a smooth irreducible elliptic curve of degree c2(E) or, if c2(E) = 8,

the disjoint union of two smooth elliptic quartic curves.

2.4. Globally generated rank two vector bundles with

c1 = 5.

We start by listing the possible cases:

Proposition 2.14. If E is an indecomposable, globally generated, rank two

vector bundle on P
3 with c1(E) = 5, then c2(E) ∈ {8, 10, 12} and there is an

exact sequence:

0 → O → E → IC(5) → 0

where C is a smooth, irreducible curve of degree d = c2(E), with ωC ≃ OC(1).

In any case E is stable.
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Proof. A general section of E vanishes along a smooth curve, C, of degree

d = c2(E) with ωC ≃ OC(1). Hence every irreducible component, Y , of C is a

smooth, irreducible curve with ωY ≃ OY (1). In particular deg(Y ) = 2g(Y )− 2

is even and deg(Y ) ≥ 4.

1. If d = 4, then C is a planar curve and E splits.

2. If d = 6, C is necessarily irreducible (of genus 4). It is well known that

any such curve is a complete intersection (2, 3), hence E splits.

3. If d = 8 and C is not irreducible, then C = P1 ⊔ P2, the disjoint union

of two planar quartic curves. If L = 〈P1〉 ∩ 〈P2〉, then every quintic

containing C contains L in contradiction with the fact that IC(5) is

generated by global sections. Hence C is irreducible.

4. If d = 10 and C is not irreducible, then C = P ⊔ X, where P is a planar

curve of degree 4 and where X is a degree 6 curve (X is a complete

intersection (2, 3)). Every quintic containing C vanishes on P and on the

8 points of X ∩ 〈P 〉, since these 8 points are not on a line, the quintic

vanishes on the plane 〈P 〉. This contradicts the fact that IC(5) is globally

generated.

5. If d = 12 and C is not irreducible we have three possibilities:

(a) C = P1 ⊔ P2 ⊔ P3, Pi planar quartic curves

(b) C = X1 ⊔ X2, Xi complete intersection curves of types (2, 3)

(c) C = Y ⊔ P , Y a canonical curve of degree 8, P a planar curve of

degree 4.

(a) This case is impossible (consider the line 〈P1〉 ∩ 〈P2〉).
(b) We have Xi = Qi ∩ Fi. Let Z be the quartic curve Q1 ∩ Q2. Then

Xi ∩ Z = Fi ∩ Z, i.e. Xi meets Z in 12 points. It follows that every

quintic containing C meets Z in 24 points, hence such a quintic contains

Z. Again this contradicts the fact that IC(5) is globally generated.

(c) This case too is impossible: every quintic containing C vanishes on P
and on the points 〈P 〉 ∩ Y , hence on 〈P 〉.

We conclude that if d = 12, C is irreducible.

The normalized bundle is E(−3), since in any case h0(IC(2)) = 0 (ev-

ery smooth irreducible subcanonical curve on a quadric surface is a complete

intersection), E is stable.

Now we turn to the existence part.

Lemma 2.15. There exist indecomposable rank two vector bundles on P
3 with

Chern classes c1 = 5 and c2 ∈ {8, 10} which are globally generated.
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Proof. Let R = ⊔s
i=1Li be the union of s disjoint lines, 2 ≤ s ≤ 3. We may

perform a liaison (s, 3) and link R to K = ⊔s
i=1Ki, the union of s disjoint

conics. The exact sequence of liaison: 0 → IU (4) → IK(4) → ωR(5 − s) → 0

shows that IK(4) is globally generated (n.b. 5 − s ≥ 2).

Since ωK(1) ≃ OK we have an exact sequence: 0 → O → E(2) → IK(3) → 0,

where E is a rank two vector bundle with Chern classes c1 = −1, c2 = 2s − 2.

Twisting by O(1) we get: 0 → O(1) → E(3) → IK(4) → 0 (∗). The Chern

classes of E(3) are c1 = 5, c2 = 2s + 4 (i.e. c2 = 8, 10). Since IK(4) is globally

generated, it follows from (∗) that E(3) too, is generated by global sections.

Remark 2.16.

1. If E is as in the proof of Lemma 2.15 a general section of E(3) vanishes

along a smooth, irreducible (because h1(E(−2)) = 0) canonical curve,

C, of genus 1 + c2/2 (g = 5, 6) such that IC(5) is globally generated.

By construction these curves are not of maximal rank (h0(IC(3)) = 1 if

g = 5, h0(IC(4)) = 2 if g = 6). As explained in [9] 4 this is a general

fact: no canonical curve of genus g, 5 ≤ g ≤ 6 in P
3 is of maximal rank.

We don’t know if this is still true for g = 7.

2. According to [9] the general canonical curve of genus 6 lies on a unique

quartic surface.

3. The proof of 2.15 breaks down with four conics: IK(4) is no longer glob-

ally generated, every quartic containing K vanishes along the lines Li

(5− s = 1). Observe also that four disjoint lines always have a quadrise-

cant and hence are an exception to the normal generation conjecture(the

omogeneous ideal is not generated in degree three as it should be).

Remark 2.17. The case (c1, c2) = (5, 12) remains open. It can be shown

that if E exists, a general section of E is linked, by a complete intersections of

two quintics, to a smooth, irreducible curve, X, of degree 13, genus 10 having

ωX(−1) as a base point free g1
5. One can prove the existence of curves X ⊂ P

3,

smooth, irreducible, of degree 13, genus 10, with ωX(−1) a base point free pencil

and lying on one quintic surface. But we are unable to show the existence of

such a curve with h0(IX(5)) ≥ 3 (or even with h0(IX(5)) ≥ 2). We believe

that such bundles do not exist.

3. Globally generated rank two vector bundles on P
n
,

n ≥ 4.

For n ≥ 4 and c1 ≤ 5 there is no surprise:

Proposition 3.1. Let E be a globally generated rank two vector bundle on P
n,

n ≥ 4. If c1(E) ≤ 5, then E splits.
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Proof. It is enough to treat the case n = 4. A general section of E vanishes

along a smooth (irreducible) subcanonical surface, S: 0 → O → E → IS(c1) →
0. By [5], if c1 ≤ 4, then S is a complete intersection and E splits. Assume now

c1 = 5. Consider the restriction of E to a general hyperplane H. If E doesn’t

split, by 2.14 we get that the normalized Chern classes of E are: c1 = −1,

c2 ∈ {2, 4, 6}. By Schwarzenberger condition: c2(c2 + 2) ≡ 0 (mod 12). The

only possibilities are c2 = 4 or c2 = 6. If c2 = 4, since E is stable (because

E|H is, see 2.14), we have ([3]) that E is a Horrocks-Mumford bundle. But the

Horrocks-Mumford bundle (with c1 = 5) is not globally generated.

The case c2 = 6 is impossible: such a bundle would yield a smooth surface

S ⊂ P
4, of degree 12 with ωS ≃ OS , but the only smooth surface with ωS ≃ OS

in P
4 is the abelian surface of degree 10 of Horrocks-Mumford.

Remark 3.2. For n > 4 the results in [6] give stronger and stronger (as

n increases) conditions for the existence of indecomposable rank two vector

bundles generated by global sections.

Putting everything together, the proof of Theorem 1.1 is complete.
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Abstract. We introduce some contra continuous functions in weak

structure spaces such as contra (M, w)-continuous functions, con-
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tions, contra (π(m), w)-continuous functions and contra (β(m), w)-

continuous functions. We investigate their characterization and re-

lationships among such functions.
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1. Introduction and Preliminaries

Császár [4] introduced a generalized structure called generalized topology. Re-

cently, Császár [5] has introduced a new notion of structures called a weak

structure which is weaker than both a generalized topology [4] and a minimal

structure [8, 9]. Let X be a nonempty set and w⊆ P(X), where P(X) is the

power set of X. Then w is called a weak structure (briefly WS) on X if ∅ ∈
w. Each member of w is said to be w -open and the complement of a w -open

set is said to be w -closed. Let w be a weak structure on X and A ⊆ X.

Császár [5] defined (as in the general case) iw(A) as the union of all w -open

subsets of A (e.g. ∅) and cw(A) as the intersection of all w -closed sets contain-

ing A (e.g. X). Quite recently, Al-Omari and Noiri [1, 2, 3, 7] has obtained

several fundamental properties of weak structure spaces.

Let X be a nonempty set and M ⊆ P(X). Then M is called a minimal

structure on X if ∅, X ∈ M [8], in this case (X,M) is called a minimal space.

Each member of M is said to be m-open and the complement of an m-open

set is said to be m-closed. Let M, be a minimal structure on X and A ⊆ X.

Maki, Umehara and Noiri [8] defined (as in the general case) im(A) as the

union of all m-open subsets of A and cm(A) as the intersection of all m-closed

sets containing A.

We call a class µ ⊆ P(X) a generalized topology [4] (briefly GT ) if φ ∈ µ
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and the arbitrary union of elements of µ belongs to µ. A set X with a GT µ
on it is called a generalized topological space (briefly GTS) and is denoted by

(X, µ). In this paper, We introduce some contra continuous functions in weak

structure spaces such as contra (M, w)-continuous functions, contra (α(m), w)-

continuous functions, contra (σ(m), w)-continuous functions, contra (π(m), w)-

continuous functions and contra (β(m), w)-continuous functions. We investi-

gate their characterization and relationships among such functions.

The following lemmas are useful in the sequel:

Lemma 1.1 ([5]). Let w be a WS on X and A, B subsets of X, then the

following properties hold:

1. iw(A) ⊆ A ⊆ cw(A).

2. If A ⊆ B implies that iw(A) ⊆ iw(B) and cw(A) ⊆ cw(B).

3. iw(iw(A)) = iw(A) and cw(cw(A)) = cw(A).

4. iw(X − A) = X − cw(A) and cw(X − A) = X − iw(A).

Lemma 1.2 ([5]). Let w be a WS on X and A a subset of X, then the following

properties hold:

1. x ∈ iw(A) if and only if there is W ∈ w such that x ∈ W ⊆ A.

2. x ∈ cw(A) if and only if W ∩ A 6= ∅ whenever x ∈ W ∈ w.

3. If A ∈ w, then A = iw(A) and if A is w-closed, then A = cw(A).

Remark 1.3. If w is a WS on X, then

1. iw(∅) = ∅ and cw(X) = X.

2. iw(X) is the union of all w-open sets in X.

3. cw(∅) is the intersection of all w-closed sets in X.

Theorem 1.4 ([1]). For a WS space (X, w), the following properties are equiv-

alent:

1. w = µ i.e. w is a generalized topology in the sense of Császár;

2. iw(A) is w-open for every subset A of X;

3. cw(A) is w-closed for every subset A of X.

Theorem 1.5 ([1]). Let w be a WS on X and w∗ = {A ⊂ X : A = iw(A)}.
Then, the following properties hold:

1. w∗ is a GT containing w;

2. w is a GT if and only if w = w∗.
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2. Contra (M, w)-continuity on weak structure spaces

Definition 2.1. Let M be minimal structure on X and w be weak structure

on Y . A function f : (X,M) → (Y, w) is said to be

1. contra (M, w)-continuous if for each w-open set U in Y , f−1(U) is m-

closed in X.

2. contra (M, w)-continuous at some x ∈ X if for each w-closed set V
containing f(x), there exists U ∈ M containing x such that f(U) ⊆ V .

Theorem 2.2. Let M be minimal structure on X and w be weak structure on

Y . For a function f : (X,M) → (Y, w). The implications (1) ⇒ (2) ⇒ (3) ⇒
(4) hold. If M = M∗, then the following statements are equivalent:

1. f is contra (M, w)-continuous.

2. f is contra (M, w)-continuous at any x ∈ X.

3. f−1(F ) ⊆ im(f−1(F )) for any w-closed F of Y .

4. cm(f−1(V )) ⊆ f−1(V ) for any w-open V of Y .

Proof. (1)⇒ (2). Let x ∈ X and V be w-closed set containing f(x). By (1),

f−1(V ) ∈ M. Put U = f−1(V ). We have U is m-open containing x and

f(U) ⊆ V .

(2)⇒ (3). Let F be w-closed F of Y . For each x ∈ f−1(F ), f(x) ∈ F . By (2),

there exists U ∈ M containing x such that f(U) ⊆ F . Since x ∈ U ⊆ f−1(F ),

we have x ∈ im(f−1(F )). This implies f−1(F ) ⊆ im(f−1(F )).

(3)⇒ (4). Let V ∈ w. Then Y − V is w-closed. By (3) and Lemma 1.1,

f−1(Y − V ) ⊆ im(f−1(Y − V )) = im(X − f−1(V )) = X − cm(f−1(V )). Thus

cm(f−1(V )) ⊆ f−1(V ).

(4)⇒ (1). Let V ∈ w. By (4), we have cm(f−1(V )) ⊆ f−1(V ) and hence

cm(f−1(V )) = f−1(V ). Since M = M∗, then f−1(V ) is m-closed. Hence f is

contra (M, w)-continuous.

The implication (2)⇒ (1) of Theorem 2.2 need not be true in general.

Example 2.3. Let X = {a, b, c} and M = {φ, {a}, {b}, {c}, X} be a minimal

structure on X. Let f : (X,M) → (X,M) be the identity function. Then f is

contra (M,M)-continuous at any x ∈ X but not contra-(M,M)-continuous.

Theorem 2.4. Let M be minimal structure on X and w be weak structure on

Y . For a function f : (X,M) → (Y, w). The implications (1) ⇒ (2) ⇒ (3)

hold. If w = w∗, then the following statements are equivalent:

1. cm(f−1(iw(B))) ⊆ f−1(iw(B)) for any B ⊆ Y .
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2. f−1(cw(B)) ⊆ im(f−1(cw(B))) for any B ⊆ Y .

3. cm(f−1(V )) ⊆ f−1(V ) for any w-open V of Y .

Proof. (1)⇒ (2). Let B ⊆ Y . By (1), cm(f−1(iw(Y − B))) ⊆ f−1(iw(Y −
B)). By Lemma 1.1, cm(f−1(iw(Y − B))) = cm(f−1(Y − cw(B))) = cm(X −
f−1(cw(B)))=X−im(f−1(cw(B))) and X−im(f−1(cw(B)))⊆X−f−1(cw(B)).

Thus f−1(cw(B)) ⊆ im(f−1(cw(B))).

(2)⇒ (3). Let V ∈ w. Then Y − V is w-closed and hence cw(Y − V ) = Y − V .

Now by (2), we have f−1(cw(Y −V )) ⊆ im(f−1(cw(Y −V ))) and hence f−1(Y −
V ) ⊆ im(f−1(Y − V )) = X − cm(f−1(V )). Then cm(f−1(V )) ⊆ f−1(V ).

(3)⇒ (1). Let B ⊆ Y . Since w = w∗, then iw(B) is w-open set, by (3)

cm(f−1(iw(B))) ⊆ f−1(iw(B)).

Definition 2.5 ([1]). Let (X, w) be a WS space. Then the weak kernel of

A ⊆ X is denoted by w-ker(A) and defined as w-ker(A) = ∩{G ∈ w : A ⊆ G}.

Lemma 2.6 ([1]). Let A and B be two subsets of a WS space (X, w). Then

the following properties hold:

1. x ∈w-ker(A) if and only if A ∩ F 6= φ for any w-closed F containing x.

2. A ⊆w-ker(A) and A =w-ker(A) if A ∈ w.

3. If A ⊆ B, then w-ker(A) ⊆w-ker(B).

Lemma 2.7. Let A be a subset of a WS space (X, w). Then w-ker(A) = w-

ker(w -ker (A))

Proof. By Lemma 2.6, we have w-ker(A) ⊆ w-ker(w -ker(A)). Conversely, if

x /∈ w-ker(A) there exists F which is w-closed such that x ∈ F and F ∩A = φ.

Since X − F ∈ w and A ⊆ X − F , and since w-ker(A) is the intersection of all

w-open sets containing A, we have w-ker(A) ⊆ X−F so that F ∩w-ker(A) = φ.

Since x ∈ F , we have that x /∈ w-ker(w -ker(A)). Thus w-ker(w -ker(A)) ⊆ w-

ker(A).

Theorem 2.8. Let M be minimal structure on X and w be weak structure on

Y . For a function f : (X,M) → (Y, w). The implications (1) ⇒ (2) ⇒ (3)

hold. If M = M∗, then the following statements are equivalent:

1. f is contra (M, w)-continuous;

2. f(cm(A)) ⊆w-ker(f(A)) for any A ⊆ X;

3. cm(f−1(B)) ⊆ f−1(w-ker(B)) for any B ⊆ Y .
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Proof. (1) ⇒ (2). Let A ⊆ X. Suppose that f(cm(A)) − w-ker(f(A)) 6= φ.

Pick y ∈ f(cm(A))−w-ker(f(A)). By y /∈w-ker(f(A)), there exists w-closed

set F containing y such that f(A) ∩ F = φ. Then A ∩ f−1(F ) = φ and

cm(A) ∩ f−1(F ) = φ, since f−1(F ) ∈ m. This implies that f(cm(A)) ∩ F = φ
and y /∈ f(cm(A)). Thus f(cm(A)) ⊆w-ker(f(A)).

(2) ⇒ (3). Let B ⊆ Y . By (2), f(cm(f−1(B))) ⊆w-ker(f(f−1(B))) ⊆w-

ker(B). Thus cm(f−1(B)) ⊆ f−1(w-ker(B)).

(3) ⇒ (1). Let B ∈ w. By (3) cm(f−1(B)) ⊆ f−1(w-ker(B)). By Lemma 2.6,

B = w-ker(B)). Thus cm(f−1(B)) ⊆ f−1(B). Since M = M∗ implies that

f−1(B) is m-closed. Hence f is contra (M, w)-continuous.

Definition 2.9. Let (X, w) be a WS space. X is called w-connected, if there

are no nonempty disjoint w-open subsets U , V of X such that U ∪ V = X.

Lemma 2.10. Let (X, w) be a WS space. If U , V are nonempty disjoint w-open

subsets of X and U ∪ V = X, then U and V are w-closed.

Theorem 2.11. Let f : (X,M) → (Y, w) be a contra (M, w)-continuous sur-

jection. If X is m-connected, then Y is w-connected.

Proof. Let f : (X,M) → (Y, w) be a contra (M, w)-continuous surjection and

let X be m-connected. Suppose Y is not w-connected. Then there exists

nonempty disjoint w-open subsets V1 and V2 of Y such that V1 ∪ V2 = Y . By

Lemma 2.10, V1 and V2 are w-closed. Since f is contra (M, w)-continuous,

then f−1(V1), f−1(V2) ∈ M. Note that f−1(V1) ∩ f−1(V2) 6= φ and f−1(V1) ∪
f−1(V2) = X. Then X is not m-connected, contradiction. Thus Y is w-

connected.

Definition 2.12. A WS space (X, w) is said to be strongly w-closed if every

cover of X by w-closed sets of (X, w) has a finite subcover.

Definition 2.13. A minimal space (X,M) is said to be m-compact if every

m-open cover of X has a finite subcover.

Theorem 2.14. Let f : (X,M) → (Y, w) be a contra-(M, w)-continuous sur-

jection. If (X,M) is m-compact, then (Y, w) is strongly w-closed.

Proof. Let (X,M) be m-compact and {Vα : α ∈ ∆} any cover of Y by w-closed

sets of (Y, w). Since f is contra-(M, w)-continuous, the family {f−1(Vα) :

α ∈ ∆} is a m-open cover of X. Since (X,M) is m-compact, there exists

a finite subset ∆0 of ∆ such that X = ∪{f−1(Vα) : α ∈ ∆0}. Therefore,

Y = f(X) = ∪{Vα : α ∈ ∆0}. This shows that (Y, w) is strongly w-clsoed.
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3. Contra continuity on weak structure spaces

Definition 3.1 ([10]). Let (X,M) be a minimal structure space and A ⊆ X.

Then A is said to be

1. m-semi-open if A ⊆ cm(im(A)),

2. m-preopen if A ⊆ im(cm(A)),

3. m-α-open if A ⊆ im(cm(im(A))),

4. m-β-open if A ⊆ cm(im(cm(A))),

5. mr-open if A = im(cm(A)).

The complement of m-semi-open (resp. m-preopen, m-α-open, m-β-open,

mr-open) is said to be m-semi-closed (resp. m-preclosed, m-α-closed, m-β-

closed, wr-closed). Let us denote by σ(m) (resp. π(m), α(m), β(m)) the class

of all m-semi-open (resp. m-preopen, m-α-open, m-β-open) sets of (X,M).

Definition 3.2. Let M be minimal structure on X and w be weak structure

on Y . A function f : (X,M) → (Y, w) is said to be

1. contra (α(m), w)-continuous if for each w-open set U in Y , f−1(U) is

m-α-closed in X.

2. contra (σ(m), w)-continuous if for each w-open set U in Y , f−1(U) is

m-σ-closed in X.

3. contra (π(m), w)-continuous if for each w-open set U in Y , f−1(U) is

m-π-closed in X.

4. contra (β(m), w)-continuous if for each w-open set U in Y , f−1(U) is

m-β-closed in X.

5. contra (σ(m), w∗)-continuous if for each w∗-open set U in Y , f−1(U) is

m-σ-closed in X.

6. contra (π(m), w∗)-continuous if for each w∗-open set U in Y , f−1(U) is

m-π-closed in X.

Lemma 3.3 ([5]). For a WS w on X, the following relations hold:

1. w ⊆ α(w) ⊆ σ(w) ⊆ β(w).

2. w ⊆ α(w) ⊆ π(w) ⊆ β(w).

Theorem 3.4 ([5]). If w is a WS, each of the structures α(w), σ(w), π(w)

and β(w) is a generalized topology.
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For several functions defined above, we have the following implications.

DIAGRAM

contra-(M, w)
-continuous

// contra-(α(m), w)
-continuous

��

// contra-(σ(m), w)
-continuous

��

contra-(π(m), w)
-continuous

// contra-(β(m), w)
-continuous

The reverse implication may be not true in general and this can be clearly

seen from the following examples.

Example 3.5. Let X = {a, b, c, d} and M = {φ, {a}, {b}, {a, b, c}, X} be a

minimal structure on X. Define f : (X,M) → (X,M) as follows: f(a) =

f(b) = d and f(c) = f(d) = a. Then f−1({a}) = {c, d}, f−1({b}) = φ and

f−1({a, b, c}) = {c, d}. We have f is contra-(α(m),M)-continuous but not

contra-(M,M)-continuous.

Example 3.6. Let X = Y = {a, b, c}, M = {φ, {a}, {b}, X} be a minimal

structure on X and w = {φ, {a}, {b}} a WS on Y . Define f : (X,M) → (Y, w)

be the identity function. We have f is contra-(σ(m), w)-continuous but not

contra-(α(m), w)-continuous.

Example 3.7. Let X = Y = {a, b, c}, M = {φ, {a}, {b}, X} be a minimal

structure on X and w = {φ, {a, c}, {b}} a WS on Y . Define f : (X,M) →
(Y, w) as follows: f(a) = a, f(b) = c and f(c) = c. Then f−1({a, b}) = {a}
and f−1({b}) = φ. We have f is contra-(β(m), w)-continuous but not contra-

(π(m), w)-continuous.

Example 3.8. Let X = Y = {a, b, c}, M = {φ, {a, c}, {b, c}, X} be a minimal

structure on X and w = {φ, {a, c}} a WS on Y . Define f : (X,M) → (Y, w)

as follows: f(a) = f(b) = a and f(c) = b. Then f−1({a, c}) = {a, b}. We have

f is contra-(π(m), w)-continuous but not contra-(σ(m), w)-continuous.

Theorem 3.9. Let M be a minimal structure on X and w be weak structures

on Y . A function f : (X,M) → (Y, w) is contra-(α(m), w)-continuous if and

only if it is both contra-(π(m), w)-continuous and contra-(σ(m), w)-continuous.

Proof. Necessity. It is clear from the above diagram.

Sufficiency. Follows from the fact that α(w) = π(w) ∩ σ(w).

Definition 3.10. Let M be a minimal structure on X and w be weak structures

on Y . A function f : (X,M) → (Y, w) is said to be
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1. (σ(m), w)-continuous if f−1(V ) is m-semi-open in X for each w-open set

V of Y ,

2. (π(m), w)-continuous if f−1(V ) is m-preopen in X for each w-open set

V of Y .

Lemma 3.11. For a subset A of a WS space (X, w), the following properties

are equivalent:

1. A is wr-closed;

2. A is w-preclosed and w-semi-open;

3. A is w-α-closed and w-β-open.

Proof. (1)⇒ (2). Let A be wr-closed. Then A = cw(iw(A)) and A is w-

preclosed and w-semi-open.

(2)⇒ (3). Let A be w-preclosed and w-semi-open. Then A ⊆ cw(iw(A)) and

cw(iw(A))⊆A. Therefore, we have cw(A)=cw(iw(A)) and hence cw(iw(cw(A)))

= cw(iw(cw(iw(A)))) = cw(iw(A)) ⊆ A. This shows that A is w-α-closed. Since

σ(w) ⊆ β(w), it is obvious that A is w-β-open.

(3)⇒ (1). Let A be w-α-closed and w-β-open. Then A = cw(iw(cw(A))) and

hence cw(iw(A)) = cw(iw(cw(iw(cw(A))))) = cw(iw(cw(A))) = A. Therefore,

A is wr-closed.

Definition 3.12. Let M be a minimal structure on X and w be weak structures

on Y . A function f : (X,M) → (Y, w) is said to be RC-(M, w)-continuous if

f−1(V ) is mr-closed in X for each w-open set of Y .

As a consequence of Lemma 3.11, we have the following result:

Theorem 3.13. Let M be a minimal structure on X and w be weak structures

on Y . For a function f : (X,M) → (Y, w), the following statements are

equivalent:

1. f is RC-(M, w)-continuous;

2. f is contra-(π(m), w)-continuous and (σ(m), w)-continuous;

3. f is contra-(α(m), w)-continuous and (β(m), w)-continuous.

Let M be a minimal structure on X or w be a weak structures on X and

A ⊆ X. The m-α-closure (resp. m-semi-closure, m-preclosure, m-β-closure,

w∗-closure) of a subset A of X, denoted by cα(A) (resp. cσ(A), cπ(A), cβ(A),

cw∗(A)), is the intersection of m-α-closed (resp. m-semi-closed, m-preclosed,

m-β-closed, w∗-closed) sets including A. The m-α-interior (resp. m-semi-

interior, m-preinterior, m-β-interior, w∗-interior) of a subset A of X, denoted

by iα(A) (resp. iσ(A), iπ(A), iβ(A), iw∗(A)), is the union of m-α-open (resp.

m-semi-open, m-preopen, m-β-open, w∗-open) sets contained in A.
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Theorem 3.14. Let M be a minimal structure on X and w be a weak struc-

tures on Y . For a function f : (X,M) → (Y, w), the following properties are

equivalent:

1. f is contra (π(m), w∗)-continuous;

2. f−1(A) is m-preopen set in X for every w∗-closed set A in Y ;

3. f−1(A) ⊆ im(cm(f−1(cw∗(A)))) for every subset A in Y ;

4. cm(im(f−1(iw∗(A)))) ⊆ f−1(A) for every subset A in Y ;

5. A ⊆ im(cm(f−1(cw∗(f(A))))) for every subset A in X.

Proof. (1) ⇔ (2). It is obvious.

(2) ⇒ (3). Let A ⊆ Y . Then cw∗(A) is w∗-closed set in Y . By (2) im-

plies that f−1(cw∗(A)) is m-preopen set in X. Therefore, f−1(cw∗(A)) ⊆
im(cm(f−1(cw∗(A)))). Hence f−1(A) ⊆ im(cm(f−1(cw∗(A)))).

(3) ⇔ (4). It is obvious.

(3) ⇒ (5). Let A ⊆ X. Then f(A) ⊆ Y . By (3) implies that f−1(f(A)) ⊆
im(cm(f−1(cw∗(f(A))))).Therefore, A⊆f−1(f(A))⊆ im(cm(f−1(cw∗(f(A))))).

(5) ⇒ (2). Let A be w∗-closed in Y . Then f−1(A) ⊆ X. By hypothesis

f−1(A) ⊆im(cm(f−1(cw∗(f(f−1(A)))))

⊆im(cm(f−1(cw∗(A))))

=im(cm(f−1(A))) .

Hence f−1(A) is m-preopen set in X.

Remark 3.15. Since every w-open set is w∗-open set in Y . Then every contra

(π(m), w∗)-continuous is contra (π(m), w)-continuous.

Theorem 3.16. Let M be a minimal structure on X and w be weak struc-

tures on Y . For a function f : (X,M) → (Y, w), the following properties are

equivalent:

1. f is contra (σ(m), w∗)-continuous;

2. f−1(A) is m-semi-open set in X for every w∗-closed set A in Y ;

3. f−1(A) ⊆ cm(im(f−1(cw∗(A)))) for every subset A in Y ;

4. im(cm(f−1(iw∗(A)))) ⊆ f−1(A) for every subset A in Y ;

5. A ⊆ cm(im(f−1(cw∗(f(A))))) for every subset A in X.
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Proof. (1) ⇔ (2). It is obvious.

(2) ⇒ (3). Let A ⊆ Y . Then cw∗(A) is w∗-closed set in Y . By (2) im-

plies that f−1(cw∗(A)) is m-semi-open set in X. Therefore, f−1(cw∗(A)) ⊆
cm(im(f−1(cw∗(A)))). Hence f−1(A) ⊆ f−1(cw∗(A)) ⊆ cm(im(f−1(cw∗(A)))).

(3) ⇔ (4). It is obvious by taking complement.

(3) ⇒ (5). Let A ⊆ X. Then f(A) ⊆ Y . By (3) implies that f−1(f(A)) ⊆
cm(im(f−1(cw∗(f(A))))).Therefore, A⊆f−1(f(A))⊆cm(im(f−1(cw∗(f(A))))).

(5) ⇒ (2). Let A be w∗-closed in Y . Then f−1(A) ⊆ X. By hypothesis

f−1(A) ⊆cm(im(f−1(cw∗(f(f−1(A)))))

⊆cm(im(f−1(cw∗(A))))

=cm(im(f−1(A))) .

Hence f−1(A) is m-semi-open set in X.

Remark 3.17. Since every w-open set is w∗-open set in Y . Then every contra

(σ, w∗)-continuous is contra (σ, w)-continuous.

Theorem 3.18. Let M be a minimal structure on X and w be weak structures

on Y . A function f : (X,M) → (Y, w) is contra (β(m), w∗)-continuous if and

only if f−1(cβ(B)) ⊆ iβ(f−1(cw∗(B)) for each subset B in Y .

Proof. Necessity. Let B ⊆ Y . Then cw∗(B) is w∗-closed in Y . By hypoth-

esis, f−1(cw∗(B)) ∈ β(m) and since w∗ ⊆ β(w). Therefore, f−1(cβ(B)) ⊆
f−1(cw∗(B)) = iβ(f−1(cw∗(B)). Hence f−1(cβ(B)) ⊆ iβ(f−1(cw∗(B)).

Sufficiency. Let B ⊆ Y be w∗-closed. Then cw∗(B) = B. By hypothesis,

f−1(cβ(B)) ⊆ iβ(f−1(cw∗(B))) = iβ(f−1(B). Now f−1(B) ⊆ f−1(cβ(B)) ⊆
iβ(f−1(B)) ⊆ f−1(B). This implies that iβ(f−1(B)) = f−1(B) and by Theo-

rem 3.4. Hence f−1(B) ∈ β(m) and hence f is contra (β(m), w∗)-continuous.

Remark 3.19. Since every w-open set is w∗-open set in Y . Then every contra

(β(m), w∗)-continuous is contra (β(m), w)-continuous.

Theorem 3.20. Let M be a minimal structure on X and w be weak structures

on Y . A function f : (X,M) → (Y, w) is contra (α(m), w∗)-continuous if and

only if f−1(cα(B)) ⊆ iα(f−1(cw∗(B)) for each subset B in Y .

Proof. Similar as in Theorem 3.18.

Theorem 3.21. Let M be a minimal structure on X and w be weak structures

on Y . For a function f : (X,M) → (Y, w). Suppose that one of the following

conditions holds:
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1. f−1(cw(B)) ⊆ im(cβ(f−1(B))) for each subset B in Y ;

2. cm(iβ(f−1(B))) ⊆ f−1(iw(B)) for each subset B in Y ;

3. f(cm(iβ(A))) ⊆ iw(f(A)) for each subset A in X;

4. f(cm(A)) ⊆ iw(f(A)) for each m-β-open set A in X.

Then f is contra (β(m), w)-continuous.

Proof. (1) ⇒ (2). It is obvious by taking complement.

(2) ⇒ (3). Let A⊆X, then f(A)⊆Y. By (2) implies that cm(iβ(f−1(f(A))))⊆
f−1(iw(f(A))). That is cm(iβ(A)) ⊆ cm(iβ(f−1(f(A)))) ⊆ f−1(iw(f(A))).

Hence f(cm(iβ(A))) ⊆ f(f−1(iw(f(A)))) ⊆ iw(f(A)).

(3) ⇒ (4). Let A ⊆ X be m-β-open. Then f(cm(iβ(A))) ⊆ iw(f(A)).

That is f(cw(A)) = f(cm(iβ(A))) ⊆ iw(f(A)), since iβ(A) = A. Hence

f(cm(A)) ⊆ iw(f(A)).

Suppose (4) holds: Let A ⊆ Y be w-open. Then f−1(A) ⊆ X and iβ(f−1(A))

is m-β-open in X, by Theorem 3.4. By (4) implies that f(cm(iβ(f−1(A)))) ⊆
iw(f(iβ(f−1(A)))) ⊆ iw(f(f−1(A))) ⊆ iw(A) = A. Now cm(iβ(f−1(A))) ⊆
f−1(f(cm(iβ(f−1(A))))) ⊆ f−1(A). We have cm(im(f−1(A))) ⊆ f−1(A).

Therefore, f−1(A) is a m-preclosed set and hence a m-β-closed set. Thus

f is contra (β(m), w)-continuous.

Theorem 3.22. Let M be a minimal structure on X and w be weak structures

on Y . For a function f : (X,M) → (Y, w). Suppose that one of the following

conditions holds:

1. f−1(cw(B)) ⊆ im(cα(f−1(B))) for each subset B in Y ;

2. cm(iα(f−1(B))) ⊆ f−1(iw(B)) for each subset B in Y ;

3. f(cm(iα(A))) ⊆ iw(f(A)) for each subset A in X;

4. f(cm(A)) ⊆ iw(f(A)) for each m-α-open set A in X.

Then f is contra (α(m), w)-continuous.

Proof. Similar as in Theorem 3.21.

Theorem 3.23. Let M be a minimal structure on X and w be weak structures

on Y . For a function f : (X,M) → (Y, w). Suppose that one of the following

conditions holds:

1. f(cβ(A)) ⊆ iw(f(A)) for each subset A in X;

2. cβ(f−1(B))) ⊆ f−1(iw(B)) for each subset B in Y ;
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3. f−1(cw(B)) ⊆ iβ(f−1(B))) for each subset B in Y .

Then f is contra (β(m), w)-continuous

Proof. (1) ⇒ (2). Let B ⊆ Y . Then f−1(B) ⊆ X. By (1) implies that

f(cβ(f−1(B))) ⊆ iw(f(f−1(B))) ⊆ iw(B). Thereforef−1(f(cβ(f−1(B)))) ⊆
f−1(iw(B)). So that cβ(f−1(B)) ⊆ f−1(f(cβ(f−1(B)))) ⊆ f−1(iw(B)). Hence

cβ(f−1(B)) ⊆ f−1(iw(B)).

(2) ⇒ (3). It is obvious by taking complement in (2).

Suppose (3) holds: Let B ⊆ Y be w-closed. Then, by hypothesis, f−1(cw(B)) ⊆
iβ(f−1(B))). That is f−1(B) = f−1(cw(B)) ⊆ iβ(f−1(B)) ⊆ f−1(B) and

by Theorem 3.4. Therefore, f−1(B) is m-β-open in X. Hence f is contra

(β(m), w)-continuous.

Theorem 3.24. Let M be a minimal structure on X and w be weak structures

on Y . For a function f : (X,M) → (Y, w). Suppose that one of the following

conditions holds:

1. f(cα(A)) ⊆ iw(f(A)) for each subset A in X;

2. cα(f−1(B))) ⊆ f−1(iw(B)) for each subset B in Y ;

3. f−1(cw(B)) ⊆ iα(f−1(B))) for each subset B in Y .

Then f is contra (α(m), w)-continuous.

Proof. Similar as in Theorem 3.23.

Theorem 3.25. Let M be a minimal structure on X and w be weak structures

on Y . A function f : (X,M) → (Y, w) is contra (β(m), w)-continuous if

cw(f(A)) ⊆ f(iβ(A)) for each subset A of X and f is bijective.

Proof. Let B⊆Y bew-closed. Then f−1(B)⊆X.By hypothesis cw(f(f−1(B)))⊆
f(iβ(f−1(B))). Now B = cw(B) = cw(f(f−1(B))) ⊆ f(iβ(f−1(B))). There-

fore, f−1(B) ⊆ f−1(f(iβ(f−1(B)))) = iβ(f−1(B)) ⊆ f−1(B) and by Theo-

rem 3.4. Hence f−1(B) ∈ β(m) and hence f is contra (β(m), w)-continuous.

Theorem 3.26. Let M be a minimal structure on X and w be weak structures

on Y . Let f : (X,M) → (Y, w) be a contra (β(m), w)-continuous. Then the

following properties hold:

1. cβ(f−1(B)) ⊆ f−1(iw(cβ(B))) for each w-open set B in Y .

2. f−1(cw(iβ(B))) ⊆ iβ(f−1(B)) for each w-closed set B in Y .
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Proof. (1). Let B ⊆ Y be w-open. By hypothesis, f−1(B) is m-β-closed in X.

Then cβ(f−1(B)) = f−1(B) = f−1(iw(B)) ⊆ f−1(iw(cβ(B))). Hence

cβ(f−1(B)) ⊆ f−1(iw(cβ(B))).

(2). It is obvious by taking complement in (1).

Theorem 3.27. Let M be a minimal structure on X and w be weak structures

on Y . For a function f : (X,M) → (Y, w). The following conditions are

equivalent:

1. f is contra (β(m), w)-continuous;

2. for each x ∈ X and each w-closed set B containing f(x), there exists

A ∈ β(m) and x ∈ A such that A ⊆ f−1(B);

3. for each x ∈ X and each w-closed set B containing f(x), there exists

A ∈ β(m) and x ∈ A such that f(A) ⊆ B.

Proof. (1) ⇒ (2). Let B ⊆ Y be w-closed and f(x) ∈ B. By hypothesis

f−1(B) ∈ β(m). Therefore, iβ(f−1(B)) = f−1(B). Put A = iβ(f−1(B)).

Then A ∈ β(w) and A ⊆ f−1(B).

(2) ⇒ (3). Let B ⊆ Y be w-closed and f(x) ∈ B. By hypothesis there exists

A ∈ β(m) and x ∈ A such that A ⊆ f−1(B). Therefore, f(A) ⊆ f(f−1(B)) ⊆
B. Thus f(A) ⊆ B.

(3) ⇒ (1). Let B be w-closed in Y . Let x ∈ X and f(x) ∈ B. By hypothesis

there exists A ∈ β(m) and x ∈ A such that f(A) ⊆ B. This implies that

x ∈ A ⊆ f−1(f(A)) ⊆ f−1(B). That is x ∈ f−1(B). Since A ∈ β(m),

A = iβ(A) ⊆ iβ(f−1(B)). Hence x ∈ iβ(f−1(B)). Therefore, f−1(B) =

∪{x : x ∈ f−1(B)} ⊆ iβ(f−1(B)) ⊆ f−1(B). Thus iβ(f−1(B)) = f−1(B)

and by Theorem 3.4 we have f−1(B) ∈ β(m). Hence f is contra (β(m), w)-

continuous.

Theorem 3.28. Let M be a minimal structure on X and w be weak structures

on Y . For a function f : (X,M) → (Y, w). The following conditions are

equivalent:

1. f is contra (π(m), w)-continuous;

2. f−1(A) ∈ π(m) for every w-closed set A in Y ;

3. for each x ∈ X and each w-closed set A containing f(x), there exists

B ∈ π(m) containing x such that f(B) ⊆ A;

4. f(cπ(A)) ⊆ w-ker(f(A)) for every subset A of X;

5. cπ(f−1(B)) ⊆ f−1(w-ker(B)) for every subset B of Y .
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Proof. (1) ⇔ (2). It is obvious.

(2) ⇒ (3). Let x ∈ X and A be w-closed set containing f(x). By hypothesis,

f−1(A) ∈ π(m). Now put B = f−1(A), then f(B) = f(f−1(A)) ⊆ A. Thus

f(B) ⊆ A.

(3) ⇒ (2). Let A be a w-closed set in Y and x ∈ f−1(A). Then f(x) ∈ A. By

(3) there exists Bx ∈ π(m) containing x such that f(Bx) ⊆ A. This implies

that Bx ⊆ f−1(f(Bx)) ⊆ f−1(A). Now f−1(A) = ∪{Bx : x ∈ f−1(A)} and

since π(m) is a generalized topology, f−1(A) ∈ π(m).

(2) ⇒ (4). Let A be any subset of X. Suppose y /∈ w-ker(f(A)), then by

Lemma 2.6 there exists w-closed set B containing y such that f(A) ∩ B = φ.

thus we have A∩ f−1(B) = φ and cπ(A)∩ f−1(B) = φ. Therefore, f(cπ(A))∩
B = φ and y /∈ f(cπ(A)). This implies f(cπ(A)) ⊆ w-ker(f(A)).

(4) ⇒ (5). Let B be any subset of Y . By (4) and Lemma 2.6, we have

f(cπ(f−1(B))) ⊆ w-ker(f(f−1(B))) ⊆ w-ker(B) and cπ(f−1(B)) ⊆ f−1(w-

ker(B)).

(5) ⇒ (1). Let B be any w-open set in Y . By Lemma 2.6, we have cπ(f−1(B))⊆
f−1(w-ker(B)) = f−1(B) and cπ(f−1(B)) = f−1(B) and by Theorem 3.4.

Hence f−1(B) ∈ π(m).
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SBV-like regularity for general

hyperbolic systems of conservation laws

in one space dimension

Stefano Bianchini and Lei Yu

Abstract. We prove the SBV regularity of the characteristic speed

of the scalar hyperbolic conservation law and SBV-like regularity of

the eigenvalue functions of the Jacobian matrix of flux function for

general hyperbolic systems of conservation laws. More precisely, for

the equation

ut + f(u)x = 0, u : R
+ × R → Ω ⊂ R

N ,

we only assume that the flux f is a C2 function in the scalar case

(N = 1) and Jacobian matrix Df has distinct real eigenvalues in the

system case (N ≥ 2). Using a modification of the main decay estimate

in [8] and the localization method applied in [17], we show that for

the scalar equation f ′(u) belongs to the SBV space, and for system of

conservation laws the i-th component of Dxλi(u) has no Cantor part,

where λi is the i-th eigenvalue of the matrix Df .

Keywords: hyperbolic conservation laws, SBV-like regular, wave-front tracking

MS Classification 2010: 35L65, 35D30

1. Introduction

The study of the regularity of solutions to a general hyperbolic system of con-

servation laws

ut + f(u)x = 0, u : R
+ × R → Ω ⊂ R

N (1)

with initial data

u(t = 0) = u0 ∈ BV(R, Ω) (2)

is an important topic in the study of hyperbolic equations. In particular,

recently there have been interesting advances in the analysis of the structure

of the measure derivative Dxu(t) of BV solution to genuinely nonlinear scalar

equations and hyperbolic systems. The results obtained are that, in addition
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to the BV bounds, the solution enjoys the strong regularity property that no

Cantor part in the space derivative of u(t) appears out of a countable set of

times [1, 8, 17]: the fact that the measure Dxu(t) has only absolutely continuous

and jump part yields by definition that u(t) ∈ SBV(R).

The main idea of the proof is to find a positive bounded functional, which

is monotonically decreasing in time: then one shows that at each time a Cantor

part appears the functional has a jump downward, and hence one concludes

that the SBV regularity of u holds outside a countable set of times.

This paper concerns the extension of the results of [8] to the case where

the system is only strictly hyperbolic, i.e. no assumption on the nonlinear

structure of the eigenvalues λi of Df is done. Clearly, by just considering a

linearly degenerate eigenvalue, it is fairly easy to see that the solution u itself

cannot be in the SBV function space, so the regularity concerns some nonlinear

function of u.

We state the main theorems of this paper: in the following a BV function

on R will be considered defined everywhere by taking the right continuous

representative.

In the scalar case, one has

Theorem 1.1. Suppose that u ∈ BV(R+ × R) is an entropy solution of the

scalar conservation law (3). Then there exists a countable set S ⊂ R
+ such

that for every t ∈ R
+ \ S the following holds:

f ′(u(t, ·)) ∈ SBVloc(R).

After introducing the definition of i-th component of Dxλi(u) (see (16)),

we have the SBV-like regularity for the system case.

Theorem 1.2. Let u be a vanishing viscosity solution of the Cauchy problem

for the strictly hyperbolic system (6) with small BV norm. Then there exists

an at most countable set S ⊂ R
+ such that i-th component of Dxλi(u(t, ·)) has

no Cantor part for every t ∈ R
+ \ S and i ∈ {1, 2, . . . , N}.

Since in the genuinely nonlinear case u 7→ λi(u) is invertible along the i-th
admissible curves T i

s [u] (see Theorem 3.2 for the definition), it follows that

Theorem 4.1 is an extension of the results contained in [8] (and Theorem 1.1 is

an extension of the results contained in [17] when the source is 0). The example

contained in Remark 7.2 shows that the results are sharp.

The main point of the paper is the fact that the wave-front tracking ap-

proximation for the waves of a genuinely nonlinear family does not essentially

differ from the wave-front approximations of genuinely nonlinear systems: in

other words, the wave pattern of a genuinely nonlinear characteristic family for

a (approximate) solution in a general hyperbolic system has the same struc-

ture as if all characteristic families are genuinely nonlinear. Thus the analysis

carried out in [8] holds also in this case.
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The proof of the above two theorems is done as follows. To introduce the

argument in the easiest setting, in Section 2, we give a proof for the SBV

regularity of the characteristic speed for the general scalar conservation laws.

The proof is just a slight modification of the proof of [17, Theorem 1.1].

As one sees in the proof of Theorem 1.1, the main tool is to obtain the

SBV regularity when only one characteristic field is genuinely nonlinear (Corol-

lary 4.2). By inspection, the analysis of [8] relies on the wave-front tracking

approximation of [9], which assumes that all characteristic fields are genuinely

nonlinear or linearly degenerate. Thus we devote Sections 3.2, Section 5.1 to

introduce the wave-front tracking approximation for general systems [3].

The focus of Section 5.2 is the observation that the convergence and regu-

larity estimates of [Theorem 10.4][9] still holds for the i-th component of ux,

under the only assumption that the i-th characteristic field is genuinely nonlin-

ear: these estimates are needed in order to define the i-th (ǫ1, ǫ0)-shocks and

to pass to the limit the estimates concerning the interaction, cancellation and

jump measures. The latter is responsible for the functional controlling the SBV

regularity, Theorem 4.1.

After these estimates, for completeness we repeat the proof of the decay of

negative waves in Section 6.2. Finally we show how to adapt the strategy of

the scalar case in Section 7.

2. The scalar case

In this section, we restrict our attention to the scalar conservation laws and

motivate our general strategy with this comparatively simpler situation. Let us

consider the entropy solution to the hyperbolic conservation law in one space

dimension

{
ut + f(u)x = 0 u : R

+ × R → Ω ⊂ R, f ∈ C2(Ω, R),

u|t=0 = u0 u0 ∈ BV(R, Ω).
(3)

In [17], it is proved the SBV regularity result for the convex or concave flux

case.

Lemma 2.1. [17] Suppose f ∈ C2(R) and |f ′′(u)| > 0. Let u ∈ L∞(R) be

an entropy solution of the scalar conservation law (3). Then there exists a

countable set S ⊂ R such that for every τ ∈ R
+ \ S the following holds:

u(τ, ·) ∈ SBVloc(R).

Further, by Volpert’s Chain Rule (see [2, Theorem 3.99]), it follows that

f ′(u(τ, ·)) ∈ SBVloc(R) for τ ∈ R
+ \ S: actually, since f ′′ 6= 0, the two condi-

tions f ′(u(τ, ·)) ∈ SBVloc(R) and u(τ, ·) ∈ SBVloc(R) are equivalent.
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Following the same argument together with the analysis in [17], we can get

the SBV regularity of the slope of characteristics for the scalar conservation

law with general flux as stated in Theorem 1.1.

Proof of Theorem 1.1. Recall that if u ∈ BV(R+ × R) is an entropy solution,

then by the theory of entropy solutions, it follows that u(τ, ·) ∈ BV(R) is well

defined for every τ ∈ R
+.

Define the sets

Jτ :=
{
x ∈ R : u(τ, x−) 6= u(τ, x+)

}
,

Fτ :=
{
x ∈ R : f ′′(u(τ, x)) = 0

}
,

C :=
{
(τ, ξ) ∈ R

+ × R : ξ ∈ Jτ ∪ Fτ

}
.

Set also Cτ := Jτ ∪ Fτ as the τ -section of C.

Since the Cantor part Dcu(τ, ·) of Du(τ, ·) and the jump part Dju(τ, ·) of

Du(τ, ·) are mutually singular, then |Dcu(τ, ·)|(Jτ ) = 0. Using the fact that

f ′′(u(τ, ·)) = 0 on Fτ , by Volpert’s Chain Rule one obtains

|Dcf ′(u(τ, ·))|(Cτ ) ≤ |Dcf ′(u(τ, ·))|(Jτ ) + |Dcf ′(u(τ, ·))|(Fτ )

= |f ′′(u(τ, ·))Dcu(τ, ·)|(Jτ ) + |f ′′(u(τ, ·))Dcu(τ, ·)|(Fτ ) = 0.

Let (t0, x0) ∈ R
+ × R \ C. Using the finite speed of propagation and the

maximum principle for entropy solutions and the fact that u(t0, x) is continuous

at x0 by the definition of C, it is possible to find a triangle of the form

T (t0, x0) :=
{

(t, x) : |x − x0| < b0 − λ̄(t − t0), 0 < t − t0 < b0/λ̄
}

(4)

such that |f ′′(u(t, x))| ≥ c0 > 0, for any (t, x) ∈ T (t0, x0). Here c0 depends on

(t0, x0) and λ̄ is the maximal speed of propagation, which depends only on the

L∞-bound of ut0 (and hence only depends on the L∞-bound of u by maximal

principle).

In particular, in T (t0, x0) the solution u of (3) coincides with the solution

of the following problem





wt + f(w)x = 0,

w(t0, x) =

{
u(t0, x) |x − x0| < b0,
1

2b0

∫ x0+b0

x0−b0
u(t0, y)dy |x − x0| ≥ b0.

By Lemma 2.1, w(t, ·) is SBV regular for any t > t0 out of a countable set of

times S(t0, x0). Write Tτ (t0, x0) := T (t0, x0) ∩ {t = τ}, thus u(τ, ·)xTτ (t0,x0)

and f ′(u(τ, ·))xTτ (t0,x0) are SBV for τ ∈]t0, t0 + b/λ̄[\S(t0, x0).

Let B be the set of all points of R
+ ×R \C which are contained in at least

one of these triangles. (Notice that T (t0, x0) is a open set and does not contain
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the point (t0, x0).) Let {T (ti, xi)}i∈N be a countable subfamily of the triangles

covering B. From the previous observation on the function uxT (ti,xi), the set

Si :=
{
τ : u(τ, ·)xTτ (ti,xi) /∈ SBV(Tτ (ti, xi))

}

is at most countable.

Let C ′ := R
+ × R \ (B ∪ C) and SC′ := {τ ∈ R

+ : {t = τ} ∩ C ′ 6= ∅}.
It is obvious that for every t′ ∈ R

+ \ SC′ , x′ ∈ R, either there is a triangle

T ∈ {T (ti, xi)}i∈N such that (t′, x′) ∈ T and u(t, ·)xT is SBV function out of

countable many times or (t′, x′) ∈ C.

We claim that the set SC′ is at most countable. Indeed, it is enough to

prove that the set SK := {τ ∈ R
+ : {t = τ}∩C ′ ∩K 6= ∅} is at most countable

for every compact set K ⊂ R
+ × R when the triangles T (t′, x′) have a base of

fixed length for every (t′, x′) ∈ C ′: it is fairly simple to see that in this case

the set SK is finite since (t′, x′) can not be contained in any other T (t′′, x′′) for

t′ 6= t′′ and (t′′, x′′) ∈ C ′.

For any τ not in the countable set

SC′ ∪
⋃

i∈N

Si,

one obtains the following inequality:

|Dcf ′(u(τ, ·))(R)| ≤ |Dcf ′(u(τ, ·))|

(
⋃

i∈N

Tτ (ti, xi)

)

+|Dcf ′(u(τ, ·))|(Cτ ) = 0.

(5)

This concludes the proof.

By a standard argument in the theory of BV functions, we have the following

result.

Corollary 2.2. Let u ∈ L∞(R+ × R) be an entropy solution of the scalar

conservation law (3). Then f ′(u) ∈ SBVloc(R
+ × R).

The difference is that now the function f ′(u) is considered as a function of

two variable.

Proof. The starting point is that up to a countable set of times, Df ′(u(t, ·))
has no Cantor part (Theorem 1.1). From the slicing theory of BV function ([2,

Theorem 3.107-108]), we know that the Cantor part of the 2-dimensional mea-

sure Dxf ′(u) is the integral with respect of t of the Cantor part of Df ′(u(t, ·)).
This concludes that Dxf ′(u) has no Cantor part, i.e. Dc

xf ′(u) = 0.
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By combining Volpert’s Chain Rule and the conservation law (3), one has

Dc
tu = −f ′(u)Dc

xu.

Using Volpert’s rule once again, one obtains

Dc
tf

′(u) = −f ′′(u)Dc
tu = −f ′′(u)f ′(u)Dc

xu = −f ′(u)Dc
xf ′(u) = 0,

which concludes that also Dtf(u) has no Cantor part.

Remark 2.3. In [17], it is proved that if f in (3) has only countable many

inflection points. i.e. the set

{u ∈ Ω : f ′′(u) 6= 0}

is at most countable, then the entropy solution of (3) is SBV regular. It is easy

to see that for general hyperbolic scalar conservation laws f ∈ C2 is not enough

to obtain the SBV regularity. In fact, we can consider f ′ ≡ constant, which

means (3) degenerates into a linear equation. Then the entropy solution u is

not SBV regular unless the initial data u0 is a SBV function.

3. Notations and settings for general systems

Throughout the rest of the paper, the symbol O(1) always denotes a quantity

uniformly bounded by a constant depending only on the system (1).

3.1. Preliminary notation

Consider the Cauchy problem
{

ut + f(u)x = 0 u : R
+ × R → Ω ⊂ R

N , f ∈ C2(Ω, R),

u|t=0 = u0 u0 ∈ BV(R, Ω).
(6)

The only assumption is strict hyperbolicity in Ω: the eigenvalues {λi(u)}N
i=1 of

the Jacobi matrix A(u) = Df(u) satisfy

λ1(u) < · · · < λN (u), u ∈ Ω.

Furthermore, as we only consider the solutions with small total variation, it is

not restrictive to assume that Ω is bounded and there exist constants {λ̌j}
N
j=0,

such that

λ̌k−1 < λk(u) < λ̌k, ∀u ∈ Ω, k = 1, . . . , N. (7)

Let {ri(u)}N
i=1 and {lj(u)}N

j=1 be a basis of right and left eigenvectors, depend-

ing smoothly on u, such that

lj(u) · ri(u) = δij and |ri(u)| ≡ 1, i = 1, . . . , N. (8)
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Definition 3.1. For i = 1, . . . , N , we say that the i-th characteristic field (or

i-th family) is genuinely nonlinear if

∇λi(u) · ri(u) 6= 0 for all u ∈ Ω,

and we say that the i-th characteristic field (or i-th family) is linearly degen-

erate if instead

∇λi(u) · ri(u) = 0 for all u ∈ Ω.

In the following, if the i-th characteristic field is genuinely nonlinear, instead

of (8) we normalize ri(u) such that

∇λi(u) · ri(u) ≡ 1. (9)

In [7], it is proved that if the total variation of u0 is sufficiently small, the

solutions of the viscous parabolic approximation equations

{
ut + f(u)x = ǫuxx,

u(0, x) = u0(x),

are uniformly bounded, and the limit of uǫ as ǫ → 0 is called vanishing viscosity

solution of (6) and it is a BV function.

3.2. Construction of solutions to the Riemann problem

The Riemann problem is the Cauchy problem (6) with piecewise constant initial

data of the form

u0 =

{
uL x < 0,

uR x > 0.
(10)

The solution to this problem is the key ingredient for building the front-tracking

approximate solution: the basic step is the construction of the admissible ele-

mentary curve of the k-th family for any given left state uL.

A working definition of admissible elementary curves can be given by means

of the following theorem.

Theorem 3.2 ([4, 7]). For every u ∈ Ω there exist

1. N Lipschitz continuous curves s 7→ T k
s [u] ∈ Ω, k = 1, . . . , N , satisfying

lim
s→0

d

ds
T k

s [u] = rk(u),

2. N Lipschitz functions (s, τ) 7→ σk
s [u](τ), with 0 ≤ τ ≤ s, k = 1, . . . , N ,

satisfying τ 7→ σk
s [u](τ) increasing and σk

0 [u](0) = λk(u)
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with the following properties.

When uL ∈ Ω, uR = T k
s [uL], for some s sufficiently small, the unique vanishing

viscosity solution of the Riemann problem (6)-(10) is defined a.e. by

u(t, x) :=





uL x/t < σk
s [uL](0),

T k
τ [uL] x/t = σk

s [uL](τ), τ ∈ I,

uR x/t > σk
s [uL](s).

where I :=
{
τ ∈ [0, s] : σk

s [uL](τ) 6= σk
s [uL](τ ′) for all τ ′ 6= τ

}
.

Remark 3.3. If i-th family is genuinely nonlinear, then the Lipschitz curve

T i
s [ū] can be written as

T i
s [ū] =

{
Ri[ū](s) s ≥ 0,

Si[ū](s) s < 0,

where Ri[ū], Si[ū] are respectively the rarefaction curve and the Rankine-Hugo-

niot curve of the i-th family with any given point ū in Ω. Some certain ele-

mentary weak solution, called rarefaction waves and shock waves can be defined

along the rarefaction curve and Rankine-Hugoniot curve, for example see [9].

The elementary curve T i
s [ū] is parametrized by

s = li(ū) · (T i
s [ū] − ū). (11)

The vanishing viscosity solution [7] of a Riemann problem for (6) is obtained

by constructing a Lipschitz continuous map

(s1, . . . , sN ) 7→ TN
sN

[
TN−1

sN−1

[
· · ·
[
T 1

s1
[ uL ]

] ]]
= uR,

which is one to one from a neighborhood of the origin onto a neighborhood of

uL. Then we can uniquely determine intermediate states uL = ω0, ω1, . . . , ωN =

uR, and the wave sizes s1, s2, . . . , sN such that

ωk = T k
sk

[ωk−1], k = 1, . . . , N,

provided that |uL − uR| is sufficiently small.

By Theorem 3.2, each Riemann problem with initial datum

u0 =

{
ωk−1 x < 0,

ωk x > 0,
(12)

admits a vanishing viscosity solution uk, containing a sequence of rarefactions,

shocks and discontinuities of the k-th family: we call uk the k-th elementary
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composite wave. Therefore, under the strict hyperbolicity assumption, the gen-

eral solution of the Riemann problem with the initial data (10) is obtained by

piecing together the vanishing viscosity solutions of the elementary Riemann

problems given by (6)-(12).

Indeed, from the strict hyperbolicity assumption (7), the speed of each

elementary k-th wave in the solution uk is inside the interval [λ̌k−1, λ̌k] if s ≪ 1,

so that the solution of the general Riemann problem (6)-(10) is then given by

u(t, x) =





uL x/t < λ̌0

uk(t, x) λ̌k−1 < x/t < λ̌k, k = 1, . . . , N,

uR x/t > λ̌N .

(13)

Remark 3.4. If the characteristic fields are either genuinely nonlinear or lin-

early degenerate, the admissible solution of Riemann problem (6)-(10) consists

of N family of waves. Each family contains either only one shock, one rar-

efaction wave or one contact discontinuity. However, the general solution of a

Riemann problem provided above may contain a countable number of rarefac-

tion waves, shock waves and contact discontinuities.

3.3. Cantor part of the derivative of characteristic for i-th

waves

Recalling the solution (13) to the Riemann problem (6)-(10), let λ̃i(u
L, uR)

denote the i-th eigenvalue of the average matrix

A(uL, uR) =

∫ 1

0

A(θuL + (1 − θ)uR)dθ, (14)

and l̃i(u
L, uR), r̃i(u

L, uR) are the corresponding left and right eigenvector sat-

isfying l̃i · r̃i = δij and |r̃j | ≡ 1, for every i, j ∈ {1, . . . , N}. Define thus

λ̃i(t, x) = λ̃i(u(t, x−), u(t, x+)), (15a)

r̃i(t, x) = r̃i(u(t, x−), u(t, x+)), (15b)

l̃i(t, x) = l̃i(u(t, x−), u(t, x+)). (15c)

Since the r̃i, l̃i have directions close to ri, li, one can decompose Dxu into

the sum of N measures:

Dxu =

N∑

k=1

vkr̃k.

where vi = l̃i · Dxu is a scalar valued measure which we call as i-th wave

measure [9].
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In the same way we can decompose the a.c. part Dac
x u, the Cantor part

Dc
xu and the jump part Djump

x u of Dxu as

Dac
x u =

N∑

k=1

vac
k r̃k, Dc

xu =

N∑

k=1

vc
kr̃k, Djump

x u =

N∑

k=1

vjump
k r̃k.

We call vc
i the Cantor part of vi and denote by

vcont
i := vc

i + vac
i = l̃i · (D

c
xu + Dac

x u)

the continuous part of vi. According to Volpert’s Chain Rule

Dxλi(u) = ∇λi(u)(Dac
x u + Dc

xu) + [λi(u
+) − λi(u

−)]δx,

and then

Dc
xλi(u) = ∇λi · D

c
xu =

∑

k

(
∇λi · r̃k

)
vc

k.

We define the i-th component of Dxλi(u) as

[Dxλi(u)]i :=
(
∇λi · r̃i

)
vcont

i +
[
λi(u

+) − λi(u
−)
] |vjump

i (x)|
∑

k |v
jump
k (x)|

, (16)

and the Cantor part of i-th component of Dxλi(u) to be

[Dc
xλi(u)]i :=

(
∇λi · r̃i

)
vc

i . (17)

4. Main SBV regularity argument

Following [8], the key idea to obtain SBV-like regularity for vi is to prove a

decay estimate for the continuous part of vi. We state here the main estimate

of our paper.

Theorem 4.1. Consider the general strictly hyperbolic system (6), and suppose

that the i-th characteristic field is genuinely nonlinear. Then there exists a

finite, non-negative Radon measure µICJ
i on R

+ × R such that for t > τ > 0

∣∣vcont
i (t)

∣∣(B) ≤ O(1)

{
L(B)

τ
+ µICJ

i ([t − τ, t + τ ] × R)

}
(18)

for all Borel subset B of R.

Different from [8], we assume only one characteristic field to be genuinely

nonlinear and no other requirement on the other characteristic fields. Once

Theorem 4.1 is proved, then the SBV argument develops as follows [8].
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Suppose at time t = s, vi(s) has a Cantor part. Then there exists a L1-

negligible Borel set K with vcont
i (s)(K) > 0 and Djumpvi(s)(K) = 0. Then for

all s > τ > 0,

0 < |vi(s)|(K) = |vcont
i (s)|(K) ≤ O(1)

{
L1(K)

τ
+ µICJ

i ([s − τ, s + τ ] × R)

}
.

Since L1(K) = 0, we can let τ → 0, and deduce that µICJ
i ({s} × R) > 0. This

shows that the Cantor part appears at most countably many times because

µICJ
i is finite.

Then, we can have the following result which generalizes [8, Corollary 3.2]

to the case when only one characteristic field is genuinely nonlinear and no

assumption is made on the others.

Corollary 4.2. Let u be a vanishing viscosity solution of the Cauchy problem

for the strictly hyperbolic system (6), and assume that the i-th characteristic

field is genuinely nonlinear. Then vi(t) has no Cantor part out of a countable

set of times.

As we see in the scalar case, by proving the SBV regularity of the solution

under the genuinely nonlinearity assumption of one characteristic field, we can

deduce a kind of SBV regularity of the characteristic speed for general systems.

Unlike the scalar case, we do not have the maximum principle to guarantee

the small variation of u in the triangle T (t0, x0) defined in (4). However, in

the system case, we have the following estimates for the vanishing viscosity

solutions.

For a < b and τ ≥ 0, we denote by Tot.Var.{u(τ); ]a, b[} the total variation

of u(τ) over the open interval ]a, b[. Moreover, consider the triangle

∆
τ,η
a,b :=

{
(t, x) : τ < t < (b − a)/2η, a + ηt < x < b − ηt

}
.

The oscillation of u over ∆
τ,η
a,b will be denoted by

Osc.{u; ∆
τ,η
a,b} := sup

{
|u(t, x) − u(t′, x′)| : (t, x), (t′, x′) ∈ ∆

τ,η
a,b

}
.

We have the following results.

Theorem 4.3 (Tame Oscillation, [7]). There exists C ′ > 0 and η̄ > 0 such that

for every a < b and τ ≥ 0, one has

Osc.{u; ∆
τ,η̄
a,b} ≤ C ′ · Tot.Var.{u(τ); ]a, b[}.

Adapting the proof of the scalar case, we can prove the main Theorem 1.2

of this paper: the proof of this theorem will be done in Section 7.
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5. Review of wave-front tracking approximation for

general system

To prove Theorem 4.1, we use the front tracking approximation in [3] which

extends the one in [9] to the general systems. Since the construction is now

standard, we only give a short overview about existence, compactness and con-

vergence of the approximation, pointing to the properties needed in our argu-

ment: more precisely, we will only consider how one constructs the approximate

wave pattern of the k-th genuinely nonlinear family (Section 5.1.2).

The main point is that, for general systems, the accurate/simplified/crude

Riemann solvers for the k-th wave coincides with the approximate/simpli-

fied/crude Riemann solvers when all families are genuinely nonlinear (see below

for the definition of accurate/simplified/crude Riemann solvers). This means

that the wave pattern of the k-th genuinely nonlinear family will have the

same structure as if all other families are genuinely nonlinear: by this, we

mean that shock-shock interaction generates shocks, the jump in characteristic

speed across k-th waves is proportional to their size, and one can thus use the

k-component of the derivative of λk (16) to measure the total variation of vk.

5.1. Description of the wave-front tracking approximation

The wave-front tracking approximation is an algorithm which produces piece-

wise constant approximate solutions to the Cauchy problem (6). Roughly

speaking, we first choose a piecewise constant function uǫ
0 which is a good

approximation to the initial data u0 such that

Tot.Var.{uǫ
0} ≤ Tot.Var.{u0}, ||uǫ

0 − u0||L1 < ǫ, (19)

and uǫ
0 only has finite jumps. Let x1 < · · · < xm be the jump points of uǫ

0.

For each α = 1, . . . ,m, we approximately solve the Riemann problem (see Sec-

tion 3.2, just shifting the center from (0, 0) to (0, xα)) with the initial data given

by the jump [uǫ
0(xα−), [uǫ

0(xα+)] by a function w(t, x) = φ(x−x0

t−t0
) where φ is

a piecewise constant function. The straight lines where the discontinuities are

located are called wave-fronts (or just fronts for shortness). The wave-fronts

can be prolonged until they interact with other fronts, then at the interaction

point, the corresponding Riemann problem is approximately solved and sev-

eral new fronts are generated forward. Then one tracks the wave-fronts until

they interact with other wave-fronts, etc... In order to avoid the algorithm to

produce infinite many wave-fronts in finite time, different kinds of approximate

Riemann solvers should be introduced.
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5.1.1. Approximate Riemann solver

Suppose at the point (t1, x1) a wave-front of size s′ belonging to k′-th family

interacts from the left with a wave-front of size s′′ belonging to k′′-th family

for some k′, k′′ ∈ {1, · · · , N} such that k′ < k′′ and (see Section 3.2 for the

definition of T k
s )

uM = T k′

s′ [uL], uR = T k′′

s′′ [uM ].

Assuming that |uL−uR| sufficiently small, at the interaction point, the Riemann

problem with the initial data given by the jump [uL, uR] will be solved by

approximate Riemann solver. There are two kinds of approximate Riemann

solvers defined for interactions between two physical wave-fronts.

• Accurate Riemann Solver : It replaces each elementary composite wave

of the exact Riemann solution (refers to uk in (13)) by an approximate

elementary wave which is a finite collection of jumps traveling with a

speed given by the average speed λ̃k (see (15a)), and the wave opening (i.e.

the difference in speeds between any two consecutive fronts) is less than

some small parameter ǫ controlling the accuracy of the approximation.

• Simplified Riemann Solver : It only generates approximate elementary

waves belonging to k′-th and k′′-th families with corresponding size s′ and

s′′ as the incoming ones if k′ 6= k′′, and approximate elementary waves of

size s′ + s′′ belonging to k′-th family if k′ = k′′. The simplified Riemann

solver collects the remaining new waves into a single nonphysical front,

traveling with a constant speed λ̂, strictly larger than all characteristic

speed λ̂. Therefore, usually the simplified Riemann solver generate less

outgoing fronts after interaction than the accurate Riemann solver.

Since the simplified Riemann solver produces nonphysical wave-fronts and

they can not interact with each other, one only needs an approximate Riemann

solver defined for the interaction between, for example, a physical front of the

k-th family with size s, connecting uM , uR and a nonphysical front (coming

from the left) connecting the left value uL and uM traveling with speed λ̂.

• Crude Riemann Solver generates a k-th front connecting uL and ũM =

T k
s [uL] traveling with speed λ̃i and a nonphysical wave-front joining ũM

and uR, traveling with speed λ̂. In the following, for simplicity, we just

say that the non-physical fronts belong to the (N + 1)-th characteristic

field.

Remark 5.1. We can assume that at each time t > 0, at most one interac-

tion takes place, involving exactly two incoming fronts, because we can slightly

change the speed of one of the incoming fronts if more than two fronts meet at
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the same point. It is sufficient to require that the error vanishes when ǫ → 0.

To simplify the analysis, we assume that the fronts satisfy the Rankine-Hugoniot

conditions exactly.

5.1.2. The approximate Riemann solvers for genuinely nonlinear

waves

If the k-th characteristic family is genuinely nonlinear, the elementary wave uk

is either a shock wave or a rarefaction wave. The key example of the accurate

Riemann solver is thus to consider how these two solutions are approximated.

If k-th elementary wave uk in (13) is just a single shock, for example

uk =

{
uL x/t < σ,

uR x/t > σ,

where σ is the speed of shock wave, then the approximated k-th wave coincides

the exact one (apart from the speed in case, see the above remark).

If uk is a rarefaction wave of the k-th family connecting the left value uL

and the right value uR, for example, if uR := T k
s [uL] and

uk =





uL x/t < λk(uL),

T k
s∗ [uL] x/t ∈ [λk(uL), λk(uR)], x/t = λk(T k

s∗ [uL]),

uR x/t > λk(uR),

where s∗ ∈ [0, s]. Then the approximation ũk is a rarefaction fan containing

several rarefaction fronts. More precisely, we can choose real numbers 0 = s0 <
s1 < · · · < sn = s, and define the points wi := T k

si
[uL], i = 0, . . . , n, with the

following properties,

wi+1 = T k
(si+1−si)

[wi],

and the wave opening of consecutive wave-fronts are sufficiently small, i.e.

σk
s [uL](si+1) − σk

s [uL](si) ≤ ǫ, ∀i = 0, . . . , n − 1.

where the function σk
s is defined in Theorem 3.2. We let the jump [ωi, ωi+1]

travel with the speed σ̃i := λ̃k(ωi, ωi+1) (15a), so that the rarefaction fan ũk

becomes

ũk =





uL x/t < σ̃1,

ωi σ̃i ≤ x/t < σ̃i+1, i = 1, . . . , n − 1,

uR x/t ≥ σ̃n.
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5.1.3. Interaction potential and BV estimates

Suppose two wave-fronts with size s′ and s′′ interact. In order to get the

estimate on the difference between the size of the incoming waves and the

size of the outgoing waves produced by the interaction, we need to define the

amount of interaction I(s′, s′′) between s′ and s′′.

When s′ and s′′ belong to different characteristic families (including N+1-th

family), set

I(s′, s′′) = |s′s′′|. (20)

If s′, s′′ belong to the same characteristic family, the definition of I(s′, s′′)
is more complicated (see [3, Definition 3]). We just mention that if s′, s′′ are

the sizes of two shocks which have the same sign, traveling with the speed σ′

and σ′′ respectively, then the amount of interaction takes the form

I(s′, s′′) = |s′s′′|
∣∣σ′ − σ′′

∣∣, (21)

i.e. the product of the size of the waves times the difference of their speeds (of

the order of the angle between the two shocks).

To control the amount of interaction, the following potential is introduced.

At each time t > 0 when no interaction occurs, and u(t, ·) has jumps at

x1, . . . , xm, we denote by

ω1, . . . , ωm, s1, . . . , sm, i1, . . . , im,

their left states, signed sizes and characteristic families, respectively: the sign

of sα is given by the respective orientation of dT k
s [u]/ds and rk, if the jump at

xα belongs to the k-th family. The Total Variation of u will be computed as

V (t) = V (u(t)) :=
∑

α

∣∣sα

∣∣.

Following [4], we define the Glimm wave interaction potential as follows:

Q(t) = Q(u(t)) :=
∑

iα>iβ
xα<xβ

∣∣sαsβ

∣∣

+
1

4

∑

iα=iβ<N+1

∫
|sα|

0

∫
|sβ |

0

∣∣σiβ
sβ [ωβ ](τ ′′) − σiα

sα
[ωα](τ ′)

∣∣dτ ′dτ ′′.

(22)

Denoting the time jumps of the total variation and the Glimm potential as

∆V (τ) = V (τ+) − V (τ−), ∆Q(τ) = Q(τ+) −Q(τ−),
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the fundamental estimates are the following ([3, Lemma 5]): in fact, when two

wave-fronts with size s′, s′′ interact,

∆Q(τ) = −O(1)I(s′, s′′), (23a)

∆V (τ) = O(1)I(s′, s′′). (23b)

Thus one defines the Glimm functional

Υ(t) := V (t) + C0Q(t) (24)

with C0 suitable constant, so that Υ decreases at any interaction. Using this

functional, one can prove that ǫ-approximate solutions exist and their total

variations are uniformly bounded (see [3, Section 6.1]).

5.1.4. Construction of the approximate solutions and their

convergence to exact solution

The construction starts at initial time t = 0 with a given ǫ > 0, by taking uǫ
0 as

a suitable piecewise constant approximation of initial data u0, satisfying (19).

At the jump points of uǫ
0, we locally solve the Riemann problem by accurate

Riemann solver. The approximate solution uǫ then can be prolonged until

a first time t1 when two wave-fronts interact. Again we solve the Riemann

problem at the interaction point by an approximate Riemann solver. Whenever

the amount of interaction (see Section 5.1.3 for the definition) of the incoming

waves is larger than some threshold parameter ρ = ρ(ǫ) > 0, we shall adopt the

accurate Riemann solver. Instead, in the case where the amount of interaction

of the incoming waves is less than ρ, we shall adopt simplified Riemann solvers.

And we will apply the crude Riemann solver if one of the incoming wave-

front is non-physical front. One can show that the number of wave-fronts in

approximate solution constructed by such algorithm remains finite for all times

(see [3, Section 6.2]).

We call such approximate solutions ǫ-approximate front tracking solutions.

At each time t when there is no interaction, the restriction uǫ(t) is a step

function whose jumps are located along straight lines in the (t, x)-plane.

Let {ǫν}
∞

ν=1 be a sequence of positive real numbers converging to zero.

Consider a corresponding sequence of ǫν-approximate front tracking solutions

uν := uǫν of (6): it is standard to show that the functions t 7→ uν(t, ·) are

uniformly Lipschitz continuous in L1 norm, and the decay of the Glimm Func-

tional yields that the solutions uν(t, ·) have uniformly bounded total variation.

Then by Helly’s theorem, uν converges up to a subsequence in L
1
loc(R

+ ×R) to

some function u, which is a weak solution of (6).
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It can be shown that by the choice of the Riemann Solver in Theorem 3.2,

the solution obtained by the front tracking approximation coincides with the

unique vanishing viscosity solution [7]. Furthermore, there exists a closed do-

main D ⊂ L1(R, Ω) and a unique distributional solution u, which is a Lipschitz

semigroup D× [0, +∞[→ D and which for piecewise constant initial data coin-

cides, for a small time, with the solution of the Cauchy problem obtained piec-

ing together the standard entropy solutions of the Riemann problems. More-

over, it lives in the space of BV functions.

For simplicity, the pointwise value of u is its L1 representative such that

the restriction map t 7→ u(t) is continuous form the right in L1 and x 7→ u(t, x)

is right continuous from the right.

5.1.5. Further estimates

To each uν , we define the measure µI
ν of interaction and the measure µIC

ν of

interaction and cancellation concentrated on the set of interaction points as

follows. If two wave-fronts belonging to the families i, i′ ∈ {1, . . . , N + 1} with

size s′, s′′ interact at a point P , we define by

µI
ν({P}) := I(s′, s′′),

µIC
ν ({P}) := I(s′, s′′) +

{
|s′| + |s′′| − |s′ + s′′| i = i′,
0 i 6= i′.

(25)

the measure of interaction and the measure of interaction-cancellation.

The wave size estimates ([3, Lemma 1]) yields balance principles for the

wave size of approximate solution. More precisely, given a polygonal region

Γ with edges transversal to the waves it encounters, denote by W i±
ν,in, W i±

ν,out

the positive (+) or negative (−) i-th waves in uν entering or exiting Γ, and

let W i
ν,in = W i+

ν,in − W i−
ν,in, W i

ν,out = W i+
ν,out − W i−

ν,out. Then the measure of

interaction and the measure of interaction-cancellation control the difference

between the amount of exiting i-th waves and the amount of entering i-th waves

w.r.t. the region as follows:

|W i
ν,out − W i

ν,in| ≤ O(1)µI
ν(Γ), (26a)

|W i±
ν,out − W i±

ν,in| ≤ O(1)µIC
ν (Γ). (26b)

The above estimates are fairly easy consequence of the interaction estimates

(23) and the definition of µI
ν , µIC

ν .

By taking a subsequence and using the weak compactness of bounded mea-

sures, there exist measures µI and µIC on R
+ ×R such that the following weak

convergence holds:

µI
ν ⇀ µI, µIC

ν ⇀ µIC. (27)
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5.2. Jump part of i-th waves

The derivative of uν is clearly concentrated on polygonal lines, being a piecewise

constant function with discontinuities along lines. Suppose the i-th family is

genuinely nonlinear. To select the wave fronts belonging to i-th family of uν

converging to the jump part of u, we use the following definition.

Definition 5.2 (Maximal (ǫ0, ǫ1)-shock front). [9] A maximal (ǫ0, ǫ1)-shock
front for the i-th family of an ǫν-approximate front-tracking solution uν is any

maximal (w.r.t. inclusion) polygonal line (t, γν(t)) in the (t, x)-plane, t0 ≤ t ≤
t1, satisfying:

(i) the segments of γν are i-shocks of uν with size |sν | ≥ ǫ0, and at least once

|sν | ≥ ǫ1;

(ii) the nodes are interaction points of uν ;

(iii) it is on the left of any other polygonal line which it intersects and which

have the above two properties.

Let Mν,i

(ǫ0,ǫ1) be the number of maximal (ǫ0, ǫ1)-shock front for the i-th fam-

ily. Denote

γν,i

(ǫ0,ǫ1),m :
[
tν,i,−

(ǫ0,ǫ1),m, tν,i,+
(ǫ0,ǫ1),m

]
→ R, m = 1, . . . ,Mν,i

(ǫ0,ǫ1),

as the maximal (ǫ0, ǫ1)-shock fronts for the i-th family in uν . Up to a subse-

quence, we can assume that Mν,i

(ǫ0,ǫ1) = M̄ i
(ǫ0,ǫ1) is a constant independent of ν

because the total variations of uν are bounded.

Consider the collection of all maximal (ǫ0, ǫ1)-shocks for the i-th family and

define

T
ν,i

(ǫ0,ǫ1) =

M̄i

(ǫ0,ǫ1)⋃

m=1

Graph
(
γν,i

(ǫ0,ǫ1),m

)
,

and let {ǫ0k}k∈N, {ǫ1k}k∈N be two sequences satisfying 0 < 2kǫ0k ≤ ǫ1k ց 0.

Up to a diagonal argument and by a suitable labeling of the curves, one

can assume that for each fixed k, m the Lipschitz curves γν,i

(ǫ0
k
,ǫ1

k
),m

converge

uniformly to a Lipschitz curve γi
(ǫ0

k
,ǫ1

k
),m

. Let

T
i :=

⋃

m,k

Graph
(
γi
(ǫ0

k
,ǫ1

k
),m

)
.

denote the collection of all these limiting curves in u.

For fixed (ǫ0, ǫ1), we write for shortness

l̃νi (t, x) := l̃i(u
ν(t, x−), uν(t, x+)) (28)
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and define

vν,jump
i,(ǫ0,ǫ1) := l̃νi · uν

xxT ν,i

(ǫ0,ǫ1)

. (29)

Following the same idea of the proof of [9, Theorem 10.4], the next lemma

holds if only the i-th characteristic field is genuinely nonlinear.

Lemma 5.3. The jump part of vi is concentrated on T i.

Moreover there exists a countable set Θ ⊂ R
+ ×R, such that for each point

P = (τ, ξ) = (τ, γi
m(τ)) /∈ Θ

where i-th shock curve γi
m is approximated by the sequence of (ǫ0, ǫ1)-shock

fronts γν,i

(ǫ0,ǫ1),m of the approximate solutions uν , the following holds

lim
r→0+

lim sup
ν→∞


 sup

x<γ
ν,i

(ǫ0,ǫ1),m
(t)

(t,x)∈B(P,r)

∣∣uν(t, x) − u−
∣∣


 = 0, (30a)

lim
r→0+

lim sup
ν→∞


 sup

x>γ
ν,i

(ǫ0,ǫ1),m
(t)

(t,x)∈B(P,r)

∣∣uν(t, x) − u+
∣∣


 = 0. (30b)

Moreover, we can choose a sequence {νk}
∞

k=1 such that

vjump
i = weak∗− lim

k

N∑

i=1

vνk,jump
i,(ǫ0

k
,ǫ1

k
)
. (31)

The key argument of the proof is that we can use the tools of the proof

of [9, Theorem 10.4] because the wave structure of the i-th genuinely nonlinear

family has the following properties:

1. the interaction among two shocks of the i-th family generates only one

shock of the i-th family,

2. the strength of i-th waves can be measured by the jump of the i-th char-

acteristic speed λi,

3. the speed of i-th waves is very close to the average of the jump of λi

across the discontinuity.

These properties are a direct consequence of the behavior of the approximate

Riemann solvers on the i-th waves if the i-th family is genuinely nonlinear

(Section 5.1.2).

Before proving the lemma, we recall some definitions which will be used in

the proof.
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Definition 5.4 ([9], Definition 7.2). Let λ̂ be a constant larger than the absolute

value of all characteristic speed. We say a curve x = y(t), t ∈ [a, b] is space-like

if

|y(t2) − y(t1)| > λ̂(t2 − t1) for all a < t1 < t2 < b.

We recall that a minimal generalized i-characteristic is an absolutely con-

tinuous curve starting from (t0, x0) satisfying the differential inclusion

xν(t; t0, x0) := min

{
xν(t) : xν(t0) = x0 ,

ẋν(t) ∈
[
λi

(
uν(t, x(t) +

)
, λi

(
uν(t, x(t)−)

)]
}

for a.e. t ≥ t0.
For any given (T, x̄) ∈ R, we consider the minimal (maximal) generalized

i-characteristic through (T, x̄), defined as

χ−(+)(t) = min(max){χ(t) : χ is a generalized i-characteristic, χ(T ) = x̄}.

From the properties of approximate solutions, we conclude that there is no

wave-front of i-th family crossing χ+ from the left or crossing χ− from the

right.

Sketch of the proof. Let Θ be the set defined by all jump points of the initial

datum, the atoms of µIC (see (27)). For any point P ∈ T i \Θ, if (30a) or (30b)

does not hold, then this means that the approximate solutions uν have some

uniform oscillation: Indeed, if (30a) not true , there exist Pν , Qν → P and

Pν , Qν on the left of γν,i

(ǫ0,ǫ1),m, PνQν is space-like such that

u(Pν) → u−

and

|uν(Pν) − uν(Qν)| ≥ ǫ,

for some constant ǫ > 0. It is not restrictive to assume that the direction
−−−→
PνQν

towards γν,i

(ǫ0,ǫ1),m. Let Λk(PνQν) be the total wave strength of fronts of k-th

family which across the segment PνQν . Then, one has Λj(PνQν) ≥ cǫ for some

j ∈ {1, · · · , d} and some constant c > 0. We consider three cases.

1 j >i, we take the minimal forward generalized j-characteristic χ+ through

Pν and maximal generalized j-characteristic χ− through Qν .

If χ+ and χ− interact with each other at Oν before hitting γν,i

(ǫ0,ǫ1),m, we

consider the region Γν bounded by PνQν , χ+ and χ−. Since no fronts

can leave Γν through χ+ and χ−. By (20) and (25), one obtains that

there exists a constant c1 > 0 such that µIC
ν (Γν) ≥ c1ǫ

2.

If χ+ interacts with γν,i

(ǫ0,ǫ1),m at Aν and χ− interact γν,i

(ǫ0,ǫ1),m at Bν , we

consider the region Γν bounded by PνQν , χ+, χ− and γν,i

(ǫ0,ǫ1),m. Then
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either there exists a constant 0 < c′0 < 1 such that µIC
ν (Γν) > c′0ǫ or there

exists a constant 0 < c′′0 < 1 such that fronts with total strength lager

than c′′0ǫ0 hit AνBν . By (20) and the fact that each front on γν,i

(ǫ0,ǫ1),m

has strength less than −ǫ0, we determine that µIC
ν (Γ̄ν) ≥ c0ǫǫ0 on the

closure of Γν .

Thus, let B(P, rν) be a ball with center at P containing Γν with radius

rν → 0 as ν → 0. This implies that µIC({P}) > 0 against the assumption

P /∈ Θ.

2 j < i, we consider the minimal backward generalized j-characteristic

through the point Pν and the maximal backward generalized j-charac-

teristic through the point Qν . Then by the similar argument for the case

j > i, we get µIC({P}) > 0 against the assumptions.

3 j = i and for any j′ 6= i, 1 ≤ j′ ≤ N, Λj′(PνQν) → 0 as ν → ∞. In this

case, suppose that PνQν intersects the curve γν,i

(ǫ0,ǫ1),m at Bν . Because of

genuine nonlinearity, the minimal generalized i-characteristic χ through

Pν will hit γν,i

(ǫ0,ǫ1),m if no previous large interactions or cancellations

occur on γν,i

(ǫ0,ǫ1),m. We consider the triangle region Γν bounded by the

segment PνBν , the curve γν,i

(ǫ0,ǫ1),m and χ. Since no fronts of ith-family

can exit from Γν through χ, one obtains µIC
ν (Γν) uniformly positive which

contradicts the assumption µIC(P ) = 0.

Therefore, we conclude that (30a) is true. And (30b) is similar to prove.

For P /∈ T i ∪Θ, if vjump
i (P ) > 0, i.e. P is a jump point of u, by the similar

argument of Step 8 in the proof of [9, Theorem 10.4], the waves present in the

approximate solutions are canceled, and thus µIC(P ) > 0. It is impossible since

P /∈ Θ. This concludes that vjump
i is concentrated on T i, because by (30) the

jumps in the approximate solutions are vanishing in a neighborhood of every

P /∈ T i ∪ Θ.

We are left with the proof of (31). At jump point (t, γi
(ǫ0,ǫ1),m(t)) ∈ T i \Θ,

according to (30a), (30b), there exist a sequence (tν , γν,i

(ǫ0,ǫ1),m(t)(tν)) such that

(
t, γi

(ǫ0,ǫ1),m(t)
)

= lim
ν→∞

(
tν , γν,i

(ǫ0,ǫ1),m(t)(tν)
)

(32)

and its left and right values converges to the left and right values of the jump

in (t, γi
(ǫ0,ǫ1),m(t)).

Since f ∈ C2, by the definition (14) the matrix A(uL, uR) depends con-

tinuously on the value (uL, uR), and since its eigenvalues are uniformly sepa-

rated the same continuity holds for its eigenvalues λ̃k(uL, uR), left eigenvectors

l̃k(uL, uR) and right eigenvectors r̃k(uL, uR). Using the notation (15a) and (28),
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one obtains

l̃i
(
t, γi

(ǫ0,ǫ1),m(t)
)

= lim
ν

l̃νi
(
tν , γν,i

(ǫ0,ǫ1),m(tν)
)
, (33)

and similar limits hold for r̃i, λ̃i.

Up to a subsequence {νk}, from the convergence of the graphs of T
νk,i

(ǫ0
k
,ǫ1

k
)

to T i and (30a), (30b), it is fairly easy to prove that

DuxT i= weak∗− lim
k→∞

Duνkx
T

νk,i

(ǫ0
k

,ǫ1
k
)

. (34)

According to (29), (33) and (34), one concludes the weak convergence of

vνk,jump
i,(ǫ0

k
,ǫ1

k
)

to vjump
i .

6. Proof of Theorem 4.1

6.1. Decay estimate for positive waves

The Glimm Functional for BV functions to general systems has been obtained

in [4], and when u is piecewise constant, it reduced to (22): and we will write it

as Q also the formulation of the functional given in [4]. Moreover, for the same

constant C0 > 0 of the Glimm Functional Υ(t) (24), the sum Tot.Var.(u) +

C0Q(u) is lower semi-continuous w.r.t the L1 norm (see [9, Theorem 10.1]).

For any Radon measure µ, we denote [µ]+ and [µ]− as the positive and

negative part of µ according to Hahn-Jordan decomposition. The same proof

of the decay of the Glimm Functional Υ(t) yields that for every finite union of

the open intervals J = I1 ∪ · · · ∪ Im

[vi]
±(J) + C0Q(u) ≤ lim inf

ν→∞

{
[vν

i ]±(J) + C0Q(uν)
}

, i = 1, . . . , n, (35)

as uν → u in L1.

In [9, 10] the authors prove a decay estimate for positive part of the i-th
wave measure under the assumption that i-th characteristic field is genuinely

nonlinear and the other characteristic fields are either genuinely nonlinear or

linearly degenerate. In [12], a sharp decay estimate for positive waves is also

given under the same assumptions as those in [9, 10]. By inspection, one can

verify that the proof also works (with a little modification) under no assump-

tions on the nonlinearity on the other characteristic fields, since the essential

requirements of strict hyperbolicity and of the controllability of interaction

amounts by Glimm Potential still hold: the main variation is that one should

replace the original Glimm Potential in [9] with the generalized one given in [4].

We thus state the following theorem, which is the analog of [9, Theo-

rem 10.3].



SBV-LIKE REGULARITY FOR GENERAL SYSTEMS 461

Theorem 6.1. Let the system (1) be strictly hyperbolic and the i-th character-

istic field be genuinely non-linear. Then there exists a constant C ′′ such that,

for every 0 ≤ s < t and every solution u with small total variation obtained as

the limit of wave-front tracking approximation, the measure [vi(t)]
+ satisfies

[vi(t)]
+(B) ≤ C ′′

{
L1

t − s
(B) + [Q(s) −Q(t)]

}
(36)

for every B Borel set in R.

The estimate (36) gives half of the bound (18). In this section, we always

assume that the i-th family is genuinely nonlinear.

6.2. Decay estimate for negative waves

To simplify the notation, we omit the index (ǫ0, ǫ1) in vν,jump
i,(ǫ0,ǫ1) in the rest

of the proof. In order to get the uniform estimate for the continuous part

vν,cont
i := vν

i − vν,jump
i , we need to consider the distributions

µν
i := ∂tv

ν
i + ∂x(λ̃ν

i vν
i ), µν,jump

i := ∂tv
ν,jump
i + ∂x(λ̃ν

i vν,jump
i ).

6.2.1. Estimate for the source

Let ym : [τ−

m, τ+
m] → R, m = 1, . . . , Lν , be time-parameterized segments whose

graphs are the i-th wave-fronts of uν and define

uL
m := u(t, ym(t)−), uR

m = u(t, ym(t)+), t ∈]τ−

m, τ+
m[.

For any test function φ ∈ C∞

c (R+ × R) one obtains

−

∫

R+×R

φdµν
i =

Lν∑

m=1

[
φ(τ+

m, ym(τ+
m)) − φ(τ−

m, ym(τ−

m)
]
l̃i · (u

R
m − uL

m). (37)

For any m, since the i-th characteristic field is genuinely nonlinear, one has

|l̃i(u
L, uR) − li(u

L)| = O(1)|uR
m − uL

m|,

where uR
m = T i

si
[uL

m] for some size si. Then it follows from (11) that

si
∼= l̃i · (u

R
m − uL

m). (38)

Let {(tk, xk)}k be the collection of points where the i-th fronts interact. The

computation (37) yields that µν
i concentrates on the interaction points, i.e.

µν
i =

∑

k

pkδ(tk,xk),
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where pk is the difference between the strength of the i-th waves leaving at

(tk, xk) and the i-th waves arriving at (tk, xk). We estimate the quantity pk

depending on the type of interaction:

Since in [8], it is proved that the total size of nonphysical wave-fronts are

of the same order of ǫν , when decomposing uν
x, we only consider the physical

fronts. If at (tk, xk), two physical fronts with i-th component size s′i, s′′i interact

and generate an i-th wave or a rarefaction fan with total size si =
∑

m sm
i ,

from (37) and (38), one has

pk
∼= si − s′i − s′′. (39)

Notice that s′ or s′′ or both may vanish in (39) if one of incoming physical

fronts does not belong to the i-th family.

According to the estimate in [3, Lemma 1], the difference of sizes between

the incoming and outgoing waves of the same family is controlled by the amount

of interaction (see Section 5.1.3), so that one concludes

|µν
i |({(tk, xk)}) ≤ O(1)I(si, s

′

i)

and thus

|µν
i |({tk} × R) ≤ O(1){Υν(t−k ) − Υν(t+k )}.

This yields

|µν
i |(R

+ × R) ≤ O(1)Υν(0),

i.e. |µν
i | is a finite Radon measure.

6.2.2. Estimate for the jump part

Let γi
m : [τ−

m, τ+
m] → R, m = 1, . . . , M̄ i

(ǫ0,ǫ1), be the curves whose graphs are the

segments supporting the fronts of uν belonging to T
ν,i

(ǫ0,ǫ1), and write

uL
m := u

(
t, γi

m(t) −
)
, uR

m := u
(
t, γi

m(t) +
)
, t ∈]τ−

m, τ+
m[.

For any test function φ ∈ C∞

c (R+×R) by direct computation one has as in (37)

−

∫

R+×R

φdµν,jump
i =

M̄i

(ǫ0,ǫ1)∑

m=1

[
φ(τ+

m, ym(τ+
m)) − φ(τ−

m, ym(τ−

m)
]
l̃i · (u

R − uL),

which yields

µν,jump
i =

∑

k

qkδ(τk,xk),
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where (τk, xk) are the nodes of the jumps in T
ν,i

(ǫ0,ǫ1) and the quantities qk can

be computed as follows: if the i-th incoming waves have sizes s′ and s′′, and

the outgoing i-th shock has size s, then (see [8])

qk
∼=





−s′ (tk, xk) terminal point of a front not merging

into another front,

s (tk, xk) initial point of a maximal front,

s − s′ − s′′ (tk, xk) is a triple point of T
ν,i

(ǫ0,ǫ1) ,

s − s′ (tk, xk) interaction point of a front with waves

not belonging to T
ν,i

(ǫ0,ǫ1).

(40)

In fact, since s ≤ 0 on shocks the second case of (40) implies qk ≤ 0. For

the triple point, one has that

qk ≤ µIC
ν (τk, xk).

When a shock front in T
ν,i

(ǫ0,ǫ1) interacts with a front not belonging to T
ν,i

(ǫ0,ǫ1),

there are three situations:

• It interacts with a rarefaction front of i-th family, then one has by the

interaction estimates

qk ≤ µIC
ν (τk, xk).

• It interacts with a front of different family, then also one gets

qk ≤ µI
ν(τk, xk).

• It interacts with a shock of i-th family which does not belong to T
ν,i

(ǫ0,ǫ1),

then

qk ≤ 0.

Suppose now that (τk, xk) is a terminal point of an (ǫ0, ǫ1)-shock front γm.

By the definition of (ǫ0, ǫ1)-shock, for some t ≤ τk the shock front γm has size

s0 ≤ −ǫ1, and at (τk, xk) the size s1 of the outgoing i-th front must be not

less than −ǫ0 as a result of interaction between two wave-fronts belonging to

different family or cancellation between two wave-fronts belonging to the same

family along γk. Hence we obtain

ǫ1 − ǫ0 ≤ |s0| − |s1| ≤ O(1)µIC
ν (γk).

This yields

qk
∼= − s1 + (s1 + qk)

≤
ǫ0

ǫ1 − ǫ0
(ǫ1 − ǫ0) + O(1)µI

ν(tk, xk) ≤
O(1)ǫ0

ǫ1 − ǫ0
µIC

ν (γk) + O(1)µI
ν(tk, xk).
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Since the end points correspond to disjoint maximal i-th fronts, due to gen-

uinely nonlinearity, it follows that
∑

(tk,xk) end point

qk ≤ O(1)µIC
ν (R+ × R),

so that it is a uniformly bounded measure. We thus conclude that the distri-

bution

µ̄ν := −µν,jump
i + O(1)µIC

ν +
∑

(tk,xk) end point

qkδ(tk,xk)

is non-negative, so it is a Radon measure and thus also µν,jump
i is a Radon

measure.

In order to obtain a lower bound, one considers the Lipschitz continuous

test function

φα(t) := χ[0,T+α](t) −
t − T

α
χ[T,T+α](t), α > 0,

which is allowed because vν
i is a bounded measure. Since µ̄ is non-negative,

one obtains

µ̄ν
(
[0, T ] × R

)
≤

∫

R+×R

φαdµ̄

= −

∫

R+×R

φαdµν,jump
i + O(1)

∫

R+×R

φαdµIC
ν +

∑

(tk,xk) end point

qkφα(tk)

≤

∫

R+×R

[
(φα)t + λ̃ν

i (φα)x

]
d
[
vν,jump

i (t)
]
dt +

[
vν,jump

i (0)
]
(R)

+ O(1)µIC
ν

(
[0, T + α] × R

)

≤ −
1

α

∫ T+α

T

[
vν,jump

i (t)
]
(R)dt +

[
vν,jump

i (0)
]
(R) + O(1)µIC

ν

(
[0, T + α] × R

)
.

Letting α ց 0 and since [vν,jump
i (R)](0) is negative, one concludes

µ̄ν
(
[0, T ] × R

)
≤ −

[
vν,jump

i (T )
]
(R) + O(1)µIC

ν

(
[0, T + α] × R

)
≤ O(1)Υν(0).

We conclude this section by writing the uniform estimate

−O(1)Υν(0) ≤ µν,jump
i ≤ O(1)µIC

ν .

In particular, the definitions of the measures µν
i , µν,jump

i give the following

balances for the i-th waves across the horizontal lines:
[
vν

i (t+)
]
(R) −

[
vν

i (t−)
]
(R) = µν

i

(
{t} × R

)
, (41a)

[
vν,jump

i (t+)
]
(R) −

[
vν,jump

i (t−)
]
(R) = µν,jump

i

(
{t} × R

)
. (41b)

The limits are taken in the weak topology. Notice that we can always take that

t 7→ vν
i (t), vν,jump

i (t) is right continuous in the weak topology.
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6.2.3. Balances of waves in the region bounded by generalized

characteristics

Given an interval I = [a, b], we define the region A
ν,(t0,τ)
[a,b] bounded by the

minimal i-th characteristics a(t), b(t) of uν starting at (t0, a) and (t0, b) by

A
ν,(t0,τ)
[a,b] :=

{
(t, x) : t0 < t ≤ t0 + τ, a(t) ≤ x ≤ b(t)

}
,

and its time-section by I(t) := [a(t), b(t)]. Let J := I1 ∪ I2 ∪ · · · ∪ IM be the

union of the disjoint closed intervals {Ii}
M
i=1, and set

J(t) := I1(t) ∪ · · · ∪ IM (t), A
ν,(t0,τ)
J :=

M⋃

m=1

A
ν,(t0,τ)
Im

.

We will now obtain wave balances in regions of the form A
ν,(t0,τ)
J . Due to the

genuinely non-linearity of the i-th family, the corresponding proof in [8] works,

we will repeat it for completeness.

The balance on the region A
ν,(t0,τ)
J has to take into account also the con-

tribution of the flux Φν
i across boundaries of the segments Im(t): due to the

definition of generalized characteristic and the wave-front approximation, it

follows that Φν
i is an atomic measure on the characteristics forming the border

of A
ν,(t0,τ)
J , and moreover a positive wave may enter the domain A

ν,(t0,τ)
J only

if an interaction occurs at the boundary point (t̂, x̂), which gives the estimate

Φν
i

(
{(t̂, x̂)}

)
≤ O(1)µIC

i

(
{(t̂, x̂)}

)
. (42)

One thus obtains that

[
vν

i (τ)
]
(J(τ)) −

[
vν

i (t0)
]
(J) = µν

i

(
A

ν,(t0,τ)
J

)
+ Φν

i

(
A

ν,(t0,τ)
J

)
+ O(1)ǫν , (43)

where the last term depends on the errors due to the wave-front approximation

(a single rarefaction front may exit the interval Im at t0).

The same computation can be done for the jump part vν,jump
i , obtaining

[
vν,jump

i (τ)
]
(J(t)) −

[
vν,jump

i (t0)
]
(J)

= µν,jump
i

(
A

ν,(t0,τ)
J

)
+ Φ

ν,jump
i

(
A

ν,(t0,τ)
J

)
.

(44)

Since the flux Φ
ν,jump
i only involves the contribution of (ǫ0, ǫ1)-shocks, it is

clearly non-positive.

Subtracting (44) to (43), one finds the following equation for vν,cont
i :

[
vν,cont

i (τ)
]
(J(τ)) −

[
vν,cont

i (t0)
]
(J)

=
(
µν

i − µν,jump
i

)(
Aν,τ

J

)
+
(
Φν

i − Φ
ν,jump
i

)(
A

ν,(t0,τ)
J

)
+ O(1)ǫν .
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Denote the difference between the two fluxes by

Φ
ν,cont
i := Φν

i − Φ
ν,jump
i .

Since Φ
ν,jump
i removes only some terms in the negative part of Φν

i , one concludes

that

Φν
i − Φ

ν,jump
i ≤

[
Φν

i

]+
≤ µIC

ν . (45)

Setting

µICJ
i,ν := µIC

ν +
∣∣µν,jump

i

∣∣,

and using the estimate |µν
i | ≤ O(1)µIC

ν , one has

µν
i − µν,jump

i ≤ O(1)µICJ
i,ν . (46)

6.2.4. Decay estimate

Due to the semigroup property of solutions, it is sufficient to prove the estimate

for the measure [vν,cont
i (t = 0)]−. Consider thus a closed interval I = [a, b] and

let z(t) := b(t) − a(t) where

a(t) := xν(t; 0, a), b(t) := xν(t; 0, b)

and the minimal forward characteristics stating at t = 0 from a and b. For

L1-a.e. t one has

ż(t) = λ̃i(t, b(t)) − λ̃i(t, a(t)).

By introducing a piecewise Lipschitz continuous non-decreasing potential Φ to

control the waves on the other families [9], with Φ(0) = 1, one obtains

∣∣∣ż(t) + ξ(t) −
[
vν

i (t)
]
(I(t))

∣∣∣ ≤ O(1)ǫν + Φ̇(t)z(t), (47)

where

ξ(t) :=
(
λ̃i(t, a(t)+) − λ̃i(t, a(t)−)

)
+
(
λ̃i(t, b(t)+) − λ̃i(t, b(t)−)

)
.

We consider two cases.

Case 1. If

ż(t) − Φ̇(t)z(t) <
1

4

[
vν,cont

i (0)
]
(I)

for all t > 0, then

d

dt

[
e−

∫
t

0
Φ̇(s)dsz(t)

]
= e−

∫
t

0
Φ̇(s)ds

{
ż(t) − Φ̇(t)z(t)

}

<
e−

∫
t

0
Φ̇(s)ds

4

[
vν,cont

i (0)
]
(I).



SBV-LIKE REGULARITY FOR GENERAL SYSTEMS 467

Integrating the above inequality from 0 to τ and remembering that Φ(0) = 1

and vν,jump
i (0) is non-positive, one has

−L1(I) = −z(0) ≤ e−
∫

τ

0
Φ̇(s)dsz(τ) − z(0)

≤
1

4

∫ τ

0

e−
∫

t

0
Φ̇(s)dsdτ

[
vν,cont

i (0)
]
(I)

≤
1

4
τ
[
vν,cont

i (0)
]
(I),

which reads as

−
[
vν,cont

i (0)
]
(I) ≤ 4

L1(I)

τ
.

Case 2. Assume instead that

ż(t̄) − Φ̇(t̄)z(t̄) ≥
1

4

[
vν,cont

i (0)
]
(I) (48)

at some time t̄ > 0. From (29) and the fact that the i-th family is genuinely

nonlinear and the fronts in T
ν,i

(ǫ0,ǫ1) satisfy Rankine-Hugoniot conditions (up to

a negligible error), we have

vν,jump
i (t, a(t)) = λi(t, a(t)+) − λi(t, a(t)−),

Then by the assumption of genuine nonlinearity, we conclude that

ξ(t) ≥
3

4

[[
vν,jump

i (t)
]
(a(t)) +

[
vν,jump

i (t)
]
(b(t)) − 2ǫ1

]

≥
3

4

[[
vν,jump

i (t)
]
(I(t)) − 2ǫ1

]
.

(49)

As vν,jump is non-positive, (47) and (49) yield that

ż(t) − Φ̇z(t) ≤
[
vν,cont

i (t)
]
(I(t)) +

[
vν,jump

i (t)
]
(I(t)) − ξ(t) + O(1)ǫν

≤
[
vν,cont

i (t)
]
(I(t)) + O(1)ǫν + 2ǫ1.

Recall the assumption (48), at time t̄, we get

[
vν,cont

i (0)
]
(I)/4 ≤

[
vν,cont

i (t̄)
]
(I(t̄)) + O(1)ǫν + 2ǫ1.

By the balance for vν,cont we get in Section 6.2.3, one obtains

[
vν,cont

i (0)
]
(I)/4 ≤

[
vν,cont

i (0)
]
(I) + µICJ

ν

(
A

ν,(0,t̄)
I

)
+ O(1)ǫν + 2ǫ1.

Combining the conclusion for the two cases one gets the uniform bound r.w.t

ν

−
[
vν,cont

i (0)
]
(I) ≤ O(1)

{
L1(I)

t
+ µICJ

ν

(
A

ν,(0,t)
I

)
+ ǫ1 + ǫν

}
.



468 S. BIANCHINI AND L. YU

This gives the estimate (18) for the case of a single interval for the approximate

solution.

By analogous computation for the region which is a finite union of intervals,

as we have done in Section 6.2.3, one obtains the same bound as above, and

since vν,cont
i is a Radon measure, the same result holds for any Borel sets, i.e.

−
[
vν,cont

i (0)
]
(B) ≤ O(1)

{
L1(B)

t
+ µICJ

ν

(
A

ν,(0,t)
B

)
+ ǫ1 + ǫν

}
,

where B is any Borel set in R and

A
ν,(0,t)
B :=

{(
τ, xν(τ ; 0, x0)

)
: x ∈ B, 0 < τ ≤ t

}
.

As the solution is independent on the choice of the approximation, we can

consider a particular converging sequence {uν}ν≥1 of ǫν-approximate solutions

with the following additional properties:

Q(uν(0, ·)) → Q(u0).

By lower semi-continuity of [vi(0)]− + C0Q(u(0)) (35), one gets

[vi(0)]− + C0Q(u(0)) ≤ weak∗ − lim inf
ν→∞

{
[vν

i (0)]− + C0Q(uν(0))
}

. (50)

Since vjump
i (0) has only negative part, from (50) and (31), up to a subse-

quence, one obtains for any open set U ⊂ R,

[
vcont

i (0)
]−

(U)

= [vi(0)]−(U) +
[
vjump

i (0)
]
(U)

≤ lim inf
ν→∞

{[
vν

i (0)
]−

(U) + C0Q(uν(0))
}
− C0Q(u(0)) + lim

ν→∞

[
vν,jump

i (0)
]
(U)

= lim inf
ν→∞

{[
vν,cont

i (0)
]−

(U) + C0Q(uν(0))
}
− C0Q(u(0))

≤ lim inf
ν→∞

O(1)

{
L1(U)

t
+ µν,ICJ

i

(
A

ν,(0,t)
U

)
+ ǫ1 + ǫν + Q(uν(0)) −Q(u(0))

}

≤ O(1)

{
L1(U)

t
+ µICJ

i

(
[0, t] × R

)}
,

where µICJ
i is defined as weak∗-limit of measure µν,ICJ

i (up to a subsequence).

Then the outer regularity of Radon measure yields the inequality for any Borel

set.

The above estimate together with Theorem 6.1 gives (18).
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7. SBV regularity for the i-th component of the i-th

eigenvalue

This last section concerns the proof of Theorem 1.2, adapting the strategy of

Section 2.

Proof of Theorem 1.2. As in the scalar case, we define the sets

Jτ :=
{
x ∈ R : uL(τ, x) 6= uR(τ, x)

}
,

Fτ :=
{
x ∈ R : ∇λi(u(τ, x)) · ri(u(τ, x)) = 0

}
,

C :=
{
(τ, ξ) ∈ R

+ × R : ξ ∈ Jτ ∪ Fτ

}
, Cτ := Jτ ∪ Fτ .

By definition of continuous part

∣∣vcont
i (τ)

∣∣(Jτ ) = 0,

and since

∇λi

(
u(τ, Fτ \ Jτ )

)
· ri

(
u(τ, Fτ \ Jτ )

)
= 0,

we conclude that

∣∣∇λi(u) · ri(u)vcont
i (τ)|(Cτ )

=
∣∣∇λi(u) · ri(u)vcont

i (τ)
∣∣(Jτ ) +

∣∣∇λi(u) · ri(u)vcont
i (τ)

∣∣(Fτ \ Jτ )

= 0.

For any (t0, x0) ∈ R
+ × R \ C, there exist strictly positive b0 = b0(x0, t0),

c0 = c0(x0, t0) such that

∣∣∇λi · ri(u(t0, x))
∣∣ ≥ c0 > 0

for every x in the open interval I0 :=] − b0 + x0, x0 + b0[, because u(t0, x) is

continuous at x0 /∈ Ct0 . Hence by Theorem 4.3, we know that there is a triangle

T0 :=
{

(t, x) : |x − x0| < b′0 − η̄(t − t0), 0 < t − t0 < b′0/η̄
}

with the basis I ′0 :=] − b′0 + x0, x0 + b′0[⊂ I0, such that

∣∣∇λi · ri(u(t0, x))
∣∣ ≥ c0

2
> 0, (51)

by taking b′0 ≪ 1 in order to have that the total variation remains sufficiently

small.



470 S. BIANCHINI AND L. YU

Since uxT0
coincides with the solution to





∂tw + f(w)x = 0,

w(x, t0) =

{
ut0(x) |x − x0| < b′0,
1

2b′
0

∫ x0+b′0
x0−b′

0

ut0(y)dy |x − x0| ≥ b0,

(52)

and by taking b′0 sufficiently small, we still have that (51) holds for the range of

w. In particular w is SBV outside a countable number of times, and the same

happens for u in T0.

As in the scalar case, one thus verifies that there is a countable family of

triangles {Ti}
∞

i=1 covering the complement of C outside a set whose projection

on the t-axis is countable. The same computation of the scalar case concludes

the proof: for any τ chosen as in (5)

∣∣(∇λi · ri)v
c
i

∣∣(R) ≤
∣∣(∇λi · ri)v

c
i

∣∣(Cτ )

+
∣∣(∇λi · ri)v

c
i

∣∣
(⋃

i

Ti ∩ {t = τ}

)
= 0.

Recall the definition (17), we can finally conclude that the i-th component of

Dxλi(u(t, ·)) has no Cantor part for every t ∈ R
+\S and i ∈ {1, 2, . . . , N}.

Similar to the scalar case, it is easy to get the following corollary from the

Theorem 1.2 and (16).

Corollary 7.1. Suppose u be a vanishing viscosity solution of the Cauchy

problem for the strictly hyperbolic system (1)-(2). Let u be the vanishing vis-

cosity solution of the problem (1), (2). Then the scalar measure [Dxλi(u)]i has

no Cantor part in R
+ × R.

Remark 7.2. As we mentioned in the introduction, it no longer holds the SBV

regularity of admissible solution to the general strictly hyperbolic system of con-

servation laws.

Consider the following equations

{
ut = 0,

vt + ((1 + v + u)v)x = 0.

Since Dxλ2((u, v)) = Dxu+2Dxv, then it is clear that Dxλ2 can have a Cantor

part since the first equation is just trivial which means that the component u is

not SBV regular if the initial data is not.
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While from Theorem 4.1 we know that the Cantor part of the second com-

ponent of Dxλ2(u),

[Dc
xλ2(u)]2 =

(
Duλ2 · r2

)(
l2 · D

c
x(u, v)

)

=
2

1 + u + 2v

(
vDc

xux + (1 + u + 2v)Dc
xv
)

vanishes. (Notice that since the Cantor part of (Dxu, Dxv) concentrates on the

set of continuous points of (u, v), we do not need to specify the coefficients at

the jump points of (u, v).)
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Abstract. In this paper we expand on some results exposed in a previ-

ous one, in which we introduced the concept of inessential and strongly

inessential generators in a standard basis of a saturated homogeneous

ideal. The appearance of strongly inessential elements seemed to be a

non generic situation; in this paper we analyze their presence in a per-

fect height 2 ideal with the greatest number of generators, according to

Dubreil’s inequality.
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1. Introduction

In a previous paper [4] we introduced the concept of strongly inessential ele-

ment (briefly s.i.) in a homogeneous ideal I ⊂ K[X1, . . . , Xn]. Our first idea,

when we started to think about essential and inessential elements of a standard

basis (see [4], n.3), was that every homogeneous ideal should have a standard

basis consisting of essential forms, but we very soon found many counterexam-

ples. Therefore, our next conjecture was that the assertion might be true for

a sufficiently general ideal. In this paper we thus investigate the structure of

e-maximal bases ([4], Definition 5.1) and, as a consequence ([4], Theorem 5.1),

the presence of s.i. elements, in what seemed to be the easiest situation, that

is when I is a perfect height 2 ideal. In this case, it is possible to associate to

every B(I) a Hilbert-Burch matrix ([13, 14]) and to decide the nature of the

forms of B(I), with respect to essentiality, just looking at the ideals generated

by the entries of its columns ([4]).

We observe that, if the multiplicity e(I) ([10, 11, 15]) is low, our first idea

was correct; more precisely, if e(I) < 6, then every standard basis consists of

essential elements, while, if 6 < e(I) < 9, I has at least a standard basis whose

elements are all essential.

To deal with the problem when the multiplicity is ≥ 9, we observe that

strong inessentiality is preserved modulo a regular sequence (while essentiality
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is not). So, the first case to be considered seems to be the one of zero depth. As

the general case still appears hard to be analyzed, we replace the family of all

perfect height 2 ideals with its subfamily F =
⋃

n≥2 F [n], where F [n] is the set

of all perfect height two ideals in S = K[X1, . . . , Xn], n ≥ 2, whose standard

bases are of maximal cardinality with respect to Dubreil’s inequality ([9]). In a

previous paper [3], in fact, we found a description of F that is of help in dealing

with the problem considered here. So, as we restrict our attention to the ideals

of zero depth, we study F [2]. For every ideal I ∈ F [2], we produce a canonical

Hilbert matrix, with the property that its corresponding basis is e-maximal,

which means that its inessential elements are s.i.. Using such a matrix, we

prove that the number of s.i. elements appearing in an e-maximal basis is

linked to the greatest common divisor Φ of its generators of minimal degree

α(I); in fact, it depends on the decomposition of Φ into linear factors (see

Theorem 4.1). More precisely, we prove that I has a basis of essential elements

iff all the linear factors of Φ are distinct; therefore, the generic I ∈ F [2] has

this a property.

The description of the e-maximal bases is much more complicated when we

pass from F [2] to F [3]. The Hilbert-Burch matrix of any element I ∈ F [3] can

be obtained by lifting the Hilbert-Burch matrix of its image Ī ∈ F [2] modulo

any linear form, regular for S/I ([3]); however, it may happen that there exists

some Ĩ with the same number of s.i. elements of Ī in any e-maximal basis,

among the ideals of F [3] lifting Ī ∈ F [2], but there are also cases in which

no lifting of Ī preserves a s.i. element. We prove that the greatest expected

number of s.i. generators in a standard basis of I ∈ F [3] is α(I)−2 and that this

number is attained. So, we focus on the set S ⊂ F [3] of the ideals with α(I)−2

s.i. generators in their e-maximal bases, finding some of their properties and

giving examples. In particular, we completely describe the ideals I generated

in two different degrees, with α(I) = 3 and a s.i. element in any e-maximal

basis.

2. Background and Notation

Let S = K[X1, . . . , Xn], where K is an algebraically closed field, be the co-

ordinate ring of P
n−1, I =

⊕
Id, d ∈ N, a homogeneous ideal of S, and

M = (X1, . . . , Xn) be the irrelevant maximal ideal. We recall some basic

definitions.

The Hilbert function of S/I ([12]), denoted H(S/I,−), is the function

defined by

H(S/I, t) = dimK(S/I)t.

It is well known that for t ≫ 0 the function H(S/I, t) is a polynomial, with

rational coefficients, of degree r(S/I)− 1, where r(S/I) is the Krull dimension

of S/I.



STRONGLY INESSENTIAL ELEMENTS 475

If ∆ denotes the difference operator on maps from Z to Z, defined by

∆φ(t) = φ(t) − φ(t − 1), the function

Γ(I, t) = ∆r(S/I)H(S/I, t)

is called the Castelnuovo function of I, while ∆r(S/I)H(S/I, t) is, for large t, a

natural number e(I), independent on t, which is called the multiplicity of S/I,

or also of I.

Definition 2.1 ([8]). A standard basis B(I) of I is an ordered set of forms

of S, generating I, such that its elements of degree d define a K-basis of

Id/(Id−1S1) ([5, 7, 8]).

It is well known ([8]) that the degree vector of B(I) , with non decreasing

entries, does not depend on the basis; α(I) denotes its first entry, ν(I) the

number of entries, ν(I, t) the number of entries equal to t. Moreover, if ht(I) >
1, β(I) is the minimal degree t such that GCD(It) = 1.

The following theorem links α(I) to ν(I).

Theorem 2.2 (Dubreil, [7, 8, 9]). Let I be a homogeneous perfect height 2 ideal.

Then ν(I) ≤ α(I) + 1.

According to [3], F [n] denotes the set of all the homogeneous perfect height

2 ideals of S = K[X1, . . . , Xn] such that ν(I) = α(I)+1; in this paper they are

called Dubreil’ s ideals. In the special case n = 2, Theorem 1.7 ii) of [3] gives

a description of every ideal of F [2] involving the greatest common divisor Φ of

its elements of degree α(I) and a decomposition of Φ as a product of forms.

A refinement of Theorem 2.2 ([5]) says, in particular, that, for every perfect

height 2 ideal I in S

t ≤ β(I) ⇒ ν(I, t) ≤ −∆Γ(I, t). (1)

We say that ν(I, t) is maximal when equality holds in (1).

If I is a perfect height 2 ideal, then a minimal resolution of S/I is defined

by a Hilbert-Burch (shortly H.B.) matrix M(I) which, in turn, is uniquely

determined by a standard basis B(I) and by a minimal basis of its module

of syzygies Syz B(I). Its corresponding degree matrix ∂M(I) is uniquely

determined by I.

We need some results, widely explained in [1, 2], that we summarize as

follows.
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Theorem 2.3. Let I be a perfect height 2 ideal, p + 1 a degree in which the

number ν(I, p + 1) of generators in degree p + 1 satisfies the following relation

of maximality with respect to Dubreil-Campanella inequality

ν(I, p + 1) = Γ(I, p) − Γ(I, p + 1), (2)

D the greatest common divisor of Ip. Then I admits a basis

B = (DF1, . . . , DFm, G1, . . . , Gn),

where (DF1, . . . , DFm)S = Ip, so that I splits into two ideals I′ = (F1, . . . , Fm)

and I′′ = (D,G1, . . . , Gn), which are still perfect of height 2. Moreover, there

is a H.B. matrix M(I) with respect to B, with the following shape

M(I) =

(
A 0

B C

)
,

where

i) A ∈ K(m−1)×m is a H.B. matrix of I′,

ii) A H.B. matrix of I′′ is (B′′ C), where B′′ = B t(F1 . . . Fm),

iii) det C = D

3. Strongly inessential elements of an ideal: recalls and

complements

Let I = ⊕Id, d ∈ N, Id ⊂ Sd be a homogeneous ideal of S = K[X1, . . . , Xn].

We recall some definitions and results appearing in [4].

Definition 3.1 ([4], Definition 3.1). An element f of a standard basis B(I) is

called an inessential generator of I with respect to B(I) iff

∃t ∈ N, fM t ⊆ (B(I) − {f})S.

Otherwise we say that f is an essential generator of I with respect to B(I).

In the special case of perfect height 2 ideals, the essentiality of the r-th

element fr of B(I) can be read on the ideal ICr
generated by the entries of

the r-th column of any matrix of Syz B(I). In fact, in [4], Proposition 4.1 says

what follows.
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Proposition 3.2. Let I be a perfect codimension 2 ideal of S. Then fr ∈ B(I)

is inessential for B(I) iff the condition

(∃t ∈ N) M t ⊆ ICr

is satisfied.

Definition 3.3 ([4], Definition 3.2). An element f ∈ Id is strongly inessential

(s.i.) iff f /∈ (Id−1)S and it is inessential with respect to any standard basis

containing it.

Definition 3.4 ([4], Definition 5.1). A standard basis is called e-maximal iff

it has, in every degree d, exactly νe(d) essential generators, where νe(d) is the

greatest number of essential generators of degree d appearing in a standard basis

of I.

Theorem 3.5 ([4], Theorem 5.1). A standard basis is e-maximal iff its inessen-

tial elements are strongly inessential.

Starting from Theorem 3.5 we can prove the following statement.

Proposition 3.6. The ideal I ⊂ S admits a basis of essential elements iff none

of its elements is s.i..

Proof. Proposition 5.2 of [4] says that two different e-maximal bases contain

the same number of inessential elements. So, I has a basis of essential elements

iff all its e-maximal bases do not contain inessential elements, and we know

that they should be s.i., thanks to Theorem 3.5. Now, every s.i. element can

be considered as an entry of a standard basis B(I) and from any standard

basis B(I) it is possible to produce an e-maximal basis BM (I), containing as a

subset all the s.i. elements appearing in B(I) (see Proposition 5.4 in [4]). So,

the e-maximal bases do not contain inessential elements iff s.i. elements do not

exist in I.

In other words, I admits a basis of essential elements iff one of its e-maximal

basis (and, as a consequence, all of them) consists of essential elements and this

is equivalent to say that I does not contain s.i. forms.

Next proposition says that a s.i. element of I preserves its property modulo

a linear form, regular for S/I. We will use the following notation.

Notation If z is any element of S = K[X1, . . . , Xn] and φ : S −→ S/zS is

the canonical morphism, then we set : φ(s) = s̄,∀s ∈ S and φ(A) = Ā for any

subset A ⊆ S, if the element z can be understood.

We need the following lemma.
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Lemma 3.7 ([7, 8]). If B is a standard basis of I and z ∈ S is a linear form,

regular for S/I, then B̄ is a standard basis of Ī.

Proposition 3.8. Let s ∈ I be a s.i. element and z a linear form regular for

S/I. Then s̄ ∈ Ī is s.i..

Proof. Without any loss of generality we can suppose z = X1. At first we

notice that if s is inessential for B(I) = B, then s̄ is inessential for the standard

basis B̄(Ī) = B̄ of Ī. In fact we have:

s Mt ⊆ (B − {s})S ⇒ s̄ M̄t ⊆ (B̄ − {s̄}).

Now, let us suppose s to be s.i. and consider a standard basis B containing it,

say B = (b1, b2, . . . , bh), where bi = s. Then B̄ is a standard basis of Ī, contain-

ing b̄i = s̄ and any other standard basis C of Ī is of the form C = B̄P , where

P = (pji) is an invertible matrix, whose entries are forms in K[X2, . . . , Xn].

Let us observe that s̄ = b̄i ∈ C iff pii 6= 0 and pij = 0 when j 6= i. As a

consequence, B′ = BP is a standard basis containing s = bi; in B′ the element

s is inessential, as it is so in every basis in which it appears. The first part of

the proof allows to conclude that s̄ is inessential for C.

In Section 5 we will see that the lifting of a s.i. element of Ī is not necessarily

s.i. in I. (see Remark 5.4).

A consequence of Proposition 3.8 is that if the image Ī of I ⊂ K[X1, . . . , Xn]

modulo a maximal regular sequence does not contain any s.i. element, the same

property holds for I. So, it seems convenient to start considering the problem

of the presence of s.i. elements when depth (S/I) = 0 (see Section 3).

In the sequel we use the following statement (see Theorem 2.3 for notation).

Theorem 3.9. Let I ⊂ S be a perfect height 2 ideal and p+1 a degree in which

the maximality condition (2) is verified. The following statements hold.

i) If a form F ∈ I′ is s.i. in I′, then also DF ∈ I is s.i. in I.

ii) G ∈ I′′ is s.i. iff G ∈ It, t > p and G is s.i. as an element of I.

Proof. i) Let F ∈ I′

u, u ≤ p − d, where d is the degree of D, be s.i.. Then

F /∈ I′

u−1S1, because it is an element of a standard basis of I′. As a consequence

FD ∈ Id+u, FD /∈ Id+u−1S1, so that FD can be an element of some standard

basis of I. Let B = (DF1, . . . , DFm, G1, . . . , Gn) be any basis of I such that

F = Fi. As (F1, . . . , Fm) is a standard basis of I′, we have

(∃t) FMt ⊂ (F1, . . . , Fi−1, Fi+1, . . . , Fm).
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So, for some t, the relation

(DF )Mt ⊂ (DF1, . . . , DFi−1, DFi+1, . . . , DFm, G1, . . . , Gn)

holds.

ii) Let G be a s.i. element of I′′. Thanks to Proposition 3.4 in [4], stating

that no element of degree α(I) can be s.i., G cannot be of the form kD, k ∈ K,

so that t = deg G ≥ p + 1. First we observe that, as an element of I, G can

belong to a standard basis. In fact, as it is a form of a standard basis of

I′′, we have G /∈ (I′′

t−1)S1 ⊇ (It−1)S1, so that G /∈ It−1S1. Now, let

B = (DF1, . . . , DFm, G1, . . . , Gi−1, G,Gi+1, . . . , Gn) be any standard basis of

I containing G. Then (D,G1, . . . , Gi−1, G,Gi+1, . . . , Gn) is a standard basis of

I′′. The hypothesis of inessentiality of G as an element of I′′ implies that

(∃t) GMt ⊂ (D,G1, . . . , Gi−1, Gi+1, . . . , Gn).

In other words, for every form P ∈ Mt, we have

GP = DV +
∑

j 6=i

VjGj ,

so that (V, V1, . . . , Vi−1,−P, Vi+1, . . . , Vn) ∈ Syz I′′. From (c) of Theorem 3.1

([2]) it follows V ∈ I′, so that GP ∈ (DF1, ..., DFm, G1, ..., Gi−1, Gi+1, ..., Gn).

This means that G is s.i. also as an element of I.

Viceversa, let G ∈ It, t > p be a s.i. element in I. If B = (DF1, . . . , DFm,
G1, . . . , Gi−1, G, Gi+1, . . . , Gn) is a basis of I containing G, then B′′ = (D,G1,
. . . , Gi−1, G ,Gi+1, . . . , Gn) is a basis of I′′. Thanks to Proposition 5.1 in [4],

it is enough to prove that G is inessential with respect to any basis

B̃′′ = (D,G1 + A1G, . . . , Gi−1 + Ai−1G, G,Gi+1 + Ai+1G, . . . , Gn + AnG)

for every (degree allowed) choice of A1, . . . , Ai−1, Ai+1, . . . , An.
As B̃ = (DF1, ..., DFm, G1 +A1G, ..., Gi−1 +Ai−1G, G,Gi+1 +Ai+1G, ..., Gn +

AnG) is still a standard basis of I, G is inessential with respect to it. This

means that

(∃t ∈ N) GMt ⊂ (DF1, . . . , DFm, G1 + A1G, . . . , Gi−1 + Ai−1G,

Gi+1 + Ai+1G, . . . , Gn + AnG)

⊂ (D,G1 + A1G, . . . , Gi−1 + Ai−1G,

Gi+1 + Ai+1G, . . . , Gn + AnG).

As a consequence, G is inessential also with respect to the basis B̃′′.
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Remark 3.10. Theorem 3.9 can also be proved by working on a suitable H.B.

matrix of I, taking into account Proposition 1.2 in [1] and Corollary 4.1 in [4].

Remark 3.11. It may happen that in I there exist s.i. elements that do not

produce s.i. elements in I′ (see Remark 4.18)

Remark 3.12. For every I ∈ F [n], the maximality condition required in The-

orem 3.9 is verified at any degree.

Proposition 3.2 suggests a situation in which all the elements of every basis

of I are essential because the columns of its H.B. matrix are ”short”, so that

they cannot generate a power of M.

Corollary 3.13. Let I be a perfect height 2 ideal of S = K[X1, . . . , Xn]. Each

of the following conditions is enough to guaranty that in any standard basis of

I all the elements are essential:

i) ν(I) < n + 1

ii) α(I) < n

iii) e(I) <
n(n + 1)

2
.

Proof. i) and ii) are the statement of Corollary 5.1 and Remark in [4]; iii)

comes from the inequality
α(α + 1)

2
≤ e(I) , where α = α(I), just observing

that e(I) <
n(n + 1)

2
implies α < n.

Remark 3.14. It is easy to find examples of ideals with e(I) =
n(n + 1)

2
con-

taining inessential elements in some standard basis; see, for instance, Exam-

ple 3.1 in [4], where n = 3, e = 6.

Proposition 3.4 of [4] says that in degree α(I) no element is s.i.. So, the

existence of a basis of essential elements is assured if the generators of degree

> α are essential. Such a condition is verified when in the degree matrix

∂M(I) = (dij), i = 1, . . . , ν(I) − 1, j = 1, . . . , ν(I) the inequality dh,ν(I,α) ≤ 0

is verified for h = ν(I)−n (and, as a consequence, for h < ν(I)−n), because it

assures that the columns Cj , j ≥ ν(I, α), have at most n−1 elements different

from zero. This justifies the following statement.

Proposition 3.15. Let I be a perfect height 2 ideal of S = K[X1, . . . , Xn],

with degree matrix ∂M(I) = (dij), i = 1, . . . , ν(I) − 1, j = 1, . . . , ν(I). If

dν(I)−n, ν(α,I) ≤ 0, then I has a basis of essential elements.
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A consequence of Proposition 3.15 is the following statement.

Corollary 3.16. Let I be a perfect height 2 ideal of S = K[X1, . . . , Xn]. If

e(I) <
n(n + 3)

2
,

then I has a standard basis whose elements are all essential.

Proof. Taking into account the inequality
α(α + 1)

2
≤ e(I), we see that the

hypothesis implies α ≤ n. In case α < n we apply Corollary 3.13 ii). In

case α = n and ν = ν(I) < α + 1 we apply Corollary 3.13 i). So, the only

case to be considered is α = n, ν = n + 1. In this situation the degree matrix

∂M(I) = (dij) satisfies the conditions di,i+1 = 1, i = 1, . . . , n. Taking into

account the rule of computation of e(I) starting from ∂M(I) (see [6]), it is

easy to verify that the only values of dii compatible with the hypothesis are

the following ones:

a) dii = 1, i = 1, . . . , n

b) dii = 1, i 6= i0, di0i0 = 2 for some i0 6= 1.

In case a) the ideal is generated in degree α, so that we apply Proposition 3.4

of [4].

In case b) we have necessarily di0(i0+1) = 0, so that Proposition 3.15 can be

used.

Remark 3.17. If the inequality of Corollary 3.16 is not satisfied, there exist

examples of ideals with s.i. elements. For instance, let us consider in S =

K[X1, . . . , Xn] the ideal I, with H.B. matrix

M(I) =




X2
2 −X1

X2 −X1

X3 X2 −X1

. . . . . . . . . . . . . . . . . . .
Xn X2 −X1




,

where the unwritten entries are zero forms.

I satisfies the condition e(I) =
n2 + 3n

2
and its second generator is s.i..

We observe that the ideals, with multiplicity e(I) =
n2 + 3n

2
, that do not

admit a basis of essential elements must necessarily have as a degree matrix

the one defined by

d11 = 2; dii = 1, i 6= 1; di(i+1) = 1, i = 1, . . . , n,
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so that they have only one generator in degree α.

On the other side, it is possible to produce ideals with a basis of essential

elements and with no upper limit on e(I). For instance, every ideal I whose

∂M(I) is defined by

di(i+1) = 1, i = 1, . . . , n; dii = 1, i = 1, . . . , n − 1; dnn = h ≥ 2

satisfies the condition of Proposition 3.15 and has multiplicity

e(I) =
n(n + 1)

2
+ h − 1, which is arbitrarily large if h ≫ 0.

We see that if e(I) ≥
n2 + 3n

2
the situation is hard to be examined , also

if I is a perfect height 2 ideal. That is a reason why we restrict our attention

to the subfamily F [n] (see Section 2), starting with n = 2.

4. An e-maximal basis of I ∈ F [2]

Relation (1.10) in Remark 1 to Theorem 17 in [3] gives a good description of

every I ∈ F [2]. With some change of notation, we rewrite it as follows:

I =

r∑

i=0

Φi+1 . . .Φr+1Sβi
S, (3)

where Φi is a form of degree δi, Φr+1 = 1 and St is the subset of S = K[X, Y ]

consisting of the forms of degree t.

Let us denote ∆0 = 0, ∆i = δ1 + . . .+ δi, i = 1, . . . , r and ∆r = δ the degree

of Φ = Φ1 . . .Φr, so that we have

δ =

r∑

i=1

δi, βi = βi−1 + δi + ti,

where ti = αi − αi−1 > 0, i = 1, . . . , r is the difference between two successive

different degrees of the generators appearing in a standard basis and α0 =

α(I) = α.

In (3), r + 1 is the number of distinct elements appearing in any degree

vector a of a standard basis of I; moreover, we have

a = ((β0 + δ)[β0+1], . . . , (βi + δ − ∆i)
[δi], . . . , β[δr]

r )

= (α
[β0+1]
0 , α

[δ1]
1 , . . . , α

[δi]
i , . . . , α[δr]

r ),

where c[n] is the sequence (c, . . . , c), with c repeated n times.
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The degree matrix ∂M(I) = (dij) is completely determined by its elements

in position (i, i + 1) (which are necessarily 1, as M(I) is a α× (α + 1) matrix)

and by a, or, equivalently, by its elements in position (i, i), which are

dii = 1 if i 6= β0 + 1 + ∆j , j = 0, . . . , r − 1 ,

dii = tj+1 + 1 if i = β0 + 1 + ∆j .

Our aim is to produce an e-maximal basis of I (see Definition 3.4), that

allows to prove the following theorem.

Theorem 4.1. Let I be as in (3) and let

Φ = Φ1 . . .Φr = Hµ1

1 . . . Hµv
v ,

v∑

i=1

µi = δ ≥ 1 (4)

be a factorization of Φ as a product of linear forms pairwise linearly indepen-

dent. The number of s.i. elements appearing in every e-maximal basis of I is

δ − v. If δ = 0, then I = SαS does not contain s.i. elements.

In order to prove Theorem 4.1 it is convenient (and possible) to produce an

e-maximal basis B(I) satisfying the following condition.

(*) There is a basis of its module of syzygies linking only couples of adjacent

elements .

The Hilbert matrix corresponding to such a basis of Syz(B(I)) will be called

the canonical matrix of B(I) or a canonical matrix of I.

Condition (*) will be of help in checking that B(I) is an e-maximal basis.

Let us consider first two special cases, useful to face the general situation.

Case 1. I = SαS.

Thanks to Proposition 3.4 of [4], we know that an ideal generated in minimal

degree cannot have s.i. elements. However, in the sequel we need an e-maximal

basis, satisfying condition (*), constructed according to the following Proposi-

tion. The notation L̂ will always mean that the element L is omitted.

Proposition 4.2. Let I = SαS. If {L0, . . . , Lα} is a set of linear forms, pair-

wise linearly independent, then B(I) = (Fi), i = 0, . . . , α, Fi = L0 . . . L̂i . . . Lα,

is a standard basis, consisting entirely of essential elements, whose canonical

matrix M looks as follows:

M = (mij), i = 1, . . . , α, j = 1, . . . , (α + 1),

where: mii = Li−1, mi(i+1) = −Li, mij = 0 otherwise.
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Proof. It is immediate to verify that the Fi’s are a set of α + 1 linearly in-

dependent elements of Sα, so that they are a basis of it as a K-space. The

rows of M are syzygies linking adjacent elements; as they are linearly inde-

pendent, they are a basis of Syz (B(I)) ( see Hilbert-Burch Theorem, [13]), so

that M is a matrix of syzygies of I. The entries of every column Ci generate a

principal ideal ICi
; so, Proposition 3.2 says that all the elements of B(I) are

essential.

Case 2. I is generated in two different degrees and in the lower one there

is just one generator, so that

I = ΦS + SbS, deg Φ = δ = α(I), b = β(I) = δ + t, t > 0. (5)

Let us consider the decomposition of Φ as in (4), with r = 1. We prove first

the following lemma.

Lemma 4.3. Let Φ = Hµ1

1 . . . Hµv
v be any form of degree δ in S = K[X, Y ].

The K-space Sb, b = δ + t, t ≥ 0, admits a decomposition

Sb = ΦSt

⊕
T, T =

v⊕

i=1

Ti, (6)

where a K-basis of Ti is the ordered set Bi = (Fij), j = 1, . . . , µi, described as

follows:

Fij = AijCi, (7)

with

Aij = Hµi−j
i H

µi+1

i+1 . . . Hµv
v U j−1, GCD(U,Hh) = 1, h = 1, . . . , v, (8)

and Ci any form of degree t+µ1+. . .+µi−1+1, (µ0 = 0), satisfying the relation

GCD(Ci, Hi) = 1. (9)

Proof. We use induction on v.

For v = 1 we have Φ = Hµ, δ = µ and the statement becomes T = T1,

with basis B1 = (F1j), j = 1, . . . , µ, where

F1j = Fj = AjC = Hµ−jU j−1C, deg C = t + 1, GCD(C,H) = 1. (10)

It is immediate to prove that F1, . . . , Fµ are linearly independent, so we only

have to show that ΦSt

⋂
T = (0).

For Λ ∈ St, let us suppose ΛΦ =
∑µ

j=1 ajFj = (
∑µ

j=1 ajH
µ−jU j−1)C. This

implies that Hµ must divide A =
∑µ

j=1 ajH
µ−jU j−1. For degree reason, A

must be zero, so that aj = 0, j = 1, . . . , µ.
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Let us suppose the statement true until v − 1 and prove it for v. We set

Φ = ΨHµv
v and use the decomposition of case v = 1 with Hµ replaced by Hµv

v ,

so obtaining

Sb = Hµv
v Sb−µv

⊕
Tv,

where Tv = (Fv1, . . . , Fvµv
), with Fvj = AvjCv, Avj = Hµv−j

v U j−1,
GCD(Cv, Hv) = 1, deg Cv = b − µv + 1, according to (10).

Using induction, we have Sb−µv
= ΨSt

⊕
T ′, T ′ =

⊕v−1
i=1 T ′

i , where T ′

i

has the basis (F ′

ij) described in the statement of Lemma 4.3, that is F ′

ij =

Hµi−j
i H

µi+1

i+1 . . . H
µv−1

v−1 U j−1Ci. So, we finally obtain

Sb = Hµv
v (ΨSt

⊕
T ′)

⊕
Tv = ΦSt

⊕
T,

where T =
⊕

Hµv
v T ′

⊕
Tv =

⊕v−1
i=1 Hµv

v T ′

i

⊕
Tv. It is immediate to check

that (Fij) = (Hµv
v F ′

ij), j = 1, . . . , µi, is the required basis of Ti = Hµv
v T ′

i , i =

1, . . . , (v − 1).

Remark 4.4. Each space Ti depends on the choice of the form Ci, with the

link (9). So, there are infinitely many decompositions of the type described

in (6). Later on, we will use some of them, properly chosen accordingly to the

situation.

Remark 4.5. The basis of Sb, b = α, used in Proposition 4.2 is obtained

accordingly to Lemma 4.3, with the choice Φ = L0 . . . Lb, t = −1, Ci =

H1 . . . Hi−1. In this situation, the first summand of (6) is empty, so that

Sb = T .

Proposition 4.6. Let us consider the ideal

I = ΦS + SbS, b = δ + t, t > 0, Φ = Hµ1

1 . . . Hµv
v , deg Φ = δ.

i) I has as a standard basis the set

B(I) = (Φ, Fij), i = 1, . . . , v, j = j(i) = 1, . . . , µi,

where:

Fij = AijCi, (11)

Aij = Hµi−j
i H

µi+1

i+1 . . . Hµv
v U j−1, GCD(Hi, U) = 1 (12)

C1 = U t+1, Ci = H1H2 . . . Hi−1U
νi ,

νi = t + µ1 + . . . + µi−1 − i + 2, i > 1,
(13)
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ii) The basis B(I) satisfies condition (*). Its canonical matrix M(I) has as

rows the basis of syzygies {sij}, i = 1, . . . , v, j = j(i) = 1, . . . , µi, with

the lexicographic order, where:

s11 = (U t+1,−H1, 0, . . . , 0),

si1 = (0, . . . , 0, Hi−1,−Hi, 0, . . . 0), i = 2, . . . , v ,

−Hi in position µ1 + µ2 + . . . + µi+2,

sij = (0, . . . , 0, U,−Hi, 0, . . . , 0), i = 1, . . . , v, j = 2, . . . , µi ,

−Hi in position µ1 + . . . + µi−1 + j + 1, µ0 = 0.

So, M(I) looks as follows:

M(I) =




U t+1

A
O


 ,

where A = (aij) is a square δ×δ matrix, whose elements different from

aii, a(i+1)i are zero, and (a11, . . . , aδδ)=([−H1]
µ1, [−H2]

µ2, . . . , [−Hv]µv ),

a(i+1),i = −aii if aii 6= ajj , j > i and a(i+1),i = U otherwise.

iii) The essential elements of B(I) are : Φ, F(i,µi), i = 1, . . . , v. All the other

δ − v elements of B(I) are s.i..

Proof. i) This assertion is an immediate consequence of Lemma 4.3. In fact,

thanks to the inequality µ1 + µ2 + . . . + µi−1 ≥ i − 1, we can choose

Ci = H1 . . . Hi−1U
νi , so obtaining Fij as a basis of the K-space T com-

plementary to ΦSt in Sb.

ii) The fact that the {sij}’s are syzygies can be verified with an easy direct

computation. Moreover, they are clearly linearly independent, of the

expected degree and their number δ is the rank of the module of syzygies,

according to Hilbert theorem. It is easy to verify that the first maximal

minor of M(I) is Φ and (apart from a sign) the other maximal minors are

the Fij ’s. Using Proposition 3.2, we see immediately that the essential

columns of M(I) (that is the columns corresponding to essential elements,

see [4]) are the first one and the (µ1 + µ2 + . . . + µi + 1) − th, i = 1 . . . v;

so, the essential elements of B are {Φ, Fi,µi
, i = 1 . . . v}.

iii) The proof that all the inessential elements are s.i. is a consequence of the

following Lemma 4.8, stated in a form sufficiently general to be used later

in a more general situation. In fact, the submatrix A appearing in M(I)

satisfies the hypothesis of Lemma 4.8 .
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It is convenient to generalize the notion of inessential and strongly inessen-

tial columns of a matrix, as considered in [4].

Definition 4.7. Let A be a matrix whose entries aij are forms of K[X1, ..., Xn]

such that deg aij−deg ai(j+1) is independent from i. A column Cj is inessential

when the ideal ICj
generated by its entries contains a power of the irrelevant

ideal. Cj is strongly inessential when every column C ′

j =
∑

i λiCi = (a′

ij), λi ∈
K[X1, . . . , Xn], λj = 1, deg a′

ij = deg aij, replacing Cj, is still inessential.

Lemma 4.8. Let A = (aij), aij ∈ K[X, Y ], be a square m×m matrix such that

deg aij − deg ai(j+1) ≤ 0 is independent from i and satisfying the conditions:

i) aij = 0 if i 6= j, j + 1

ii) aii is a linear form Li,

iii) a(i+1)i, is any form Gi, such that Lj is not a factor of Gi if Lj 6= Li

and Gi is a multiple of Li iff every Lj , j > i is different from Li.

Then the inessential columns of A are s.i.

Proof. The inessential column we are considering is of the form

Cj =t (0, . . . , 0, Lj , Gj , 0, . . . , 0),

where Lj does not divide Gj , so that no Li divides Gj . Let us replace such a

Cj with C ′

j =
∑

i Ci, λj = 1 and prove that C ′

j is still inessential. If h is the

first index for which λh 6= 0, we point our attention on the column Ch (clearly,

h ≥ j). Let us distinguish two possible situations.

i) Ch is essential, so that Ch =t (0, . . . , 0,−Lh, aLh, 0, . . . , 0). In this case we

have Ch 6= Cj , so that h < j and the entries of Ch must have the same

degree of the corresponding entries of Cj (in particular, a ∈ K∗.)

- If λh+1 6= 0, let us consider Ch+1 =t (0, . . . 0, Lh+1, Gh+1, 0, . . . , 0). The

entries of C ′

j in position (h, j) and (h+1, j) are respectively c′hj = λhLh

and c′(h+1)j = aλhLh + λh+1Lh+1, so that IC′
j

= (Lh, Lh+1) = M, as

Lh is independent from Lh+1.

- If λh+1 = λh+2 = . . . λh+u−1 = 0, λh+u 6= 0, u > 1, then necessarily

h + u ≥ j, so that C ′

j has as elements c′hj = λhLh and c′h+u =

λh+uLh+u, λh+u ∈ K∗; as a consequence, also in this case IC′
j

= M.

ii) Ch is inessential, so that Ch =t (0, . . . , 0,−Lh, aLh, 0, . . . , 0), where Gh is

not divisible for Lq, q = 1, . . . ,m. ( As a special case, Ch might coincide

with Cj .) Let us denote h + u the least integer v for which Lv = Lh.

1- If u = 1, then c′h,j = λhLh, c′(h+1)j = λhGh + λh+1Lh, so that IC′
j
⊇

(Lh, Gh) ⊇ Mt, for some t ∈ N.

2- If u 6= 1 but λh+1 = 0, then c′hj = Lh, c′(h + 1)j = Gh, so that

IC′
j
⊇ (Lh, Gh), as in the previous case.
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3- If u 6= 1, λh+1 6= 0, then c′hj = λhLh, c′(h+1)j = λhGh + λh+1Lh+1,

where λh ∈ K∗ (as h ≤ j).

If λh+1 is such that c′(h+1)j is not a multiple of Lh, we get C ′

j ⊇ Mt,

for some t ∈ N. However, for some choice of λh+1 it may happen

c′(h+1)j = LhP . In fact, if Gh = M1 . . .Ms is a decomposition of Gh into

linear factors, there exists a ∈ K∗ such that λh+1 = aM1 . . .Ms−1 gives

c′(h+1)j = M1 . . .Ms−1(λhMs + aLh+1), where λhMs + aLh+1 = bLh, as

Ms, Lh+1 are linearly independent linear forms. Let us observe that such

a λh+1 cannot be a multiple of Lh, as Gh is not so. If we replace Ch

with C∗

h = λCh +λh+1Cλ+1Ch+1 and consider C ′

j = C∗

h +
∑m

i=h+2 λiCi,

we have a situation very similar to the previous one. In fact c∗hj =

λhLh, c∗(h+1)j = PLh, c∗h+2,j = λh+1Gh+1, so that Gh is replaced with

λh+1Gh+1, which is not a multiple of Lh. Now, we can repeat the same

reasoning until when we find either case 2, if λi = 0 for some i with

h + 1 < i ≤ h + u, or case 1, for i = h + u.

Remark 4.9. The essential generators of B(I)−{Φ} are exactly the ones that

do not contain as their factors all the linear factors of Φ; more precisely, Fiµi

does not contain Hi, while it contains as factors Hj , j 6= i.

In the sequel we will need also bases slightly different from the one produced

in Proposition 4.6. We introduce them in the following Remarks.

Remark 4.10. If, in the definition of Fij , i > k, Ci is replaced by C̃i =

H1 . . . Ĥk . . . Hi−1U
νi+1 (that is, if Hk is replaced with U), then B̃, obtained

from B by replacing Fij with F̃ij = AijC̃i, is still a standard basis, whose

Hilbert matrix M̃(I) differs from the M(I) described in Proposition 4.6 just in

the column corresponding to F̃kµk
, which becomes C̃k =t (0, ...,−Hk, U, 0, ...0).

The consequence is that the generator F̃kµk
= Fkµk

now is inessential, while

the other generators are changed but remain with unchanged nature. B̃ is not

an e-maximal basis, but it will erase in a splitting (see Remark 4.18).

Remark 4.11. Let us observe that the Fij’s have U t+1 as a common factor. If

we replace U t+1 by any form η, of degree t + 1, such that G.C.D.(η,Φ) = 1,

the matrix M∗(I) corresponding to the new basis B∗ differs from M(I) only in

the first column. In particular, B∗ is still an e-maximal basis.

Remark 4.12. Let us produce other H.B. canonical matrices of I, relative to

standard bases different from the one described in Proposition 4.6 . They are

defined as follows:
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M ′(I) =




U t+1

A′

O


 ,

where A′ = (a′

ij) is a square δ × δ matrix, whose elements different from

a′

ii, a
′

(i+1)i are zero, and

- (a′

11, . . . , a
′

δδ) = (−Hσ(1), . . . ,−Hσ(δ)), with σ any permutation of the

sequence ([1]µ1 , ([2]µ2 , . . . , ([v]µv ),

- a′

(i+1),i = −a′

ii if a′

ii 6= a′

jj , j > i and a′

(i+1),i = U otherwise.

In fact, Lemma 4.8 guaranties that all the inessential columns of M ′(I) are

s.i. and it is a matter of computation to check that the maximal minors of

the new matrix are still the basis of a subspace T such that ΦSt

⊕
T = Sb.

The maximal minors of M ′(I), different from Φ, apart from a sign are: (B′

i =

U t+1G1 . . . GiĤσ(i)Hσ(i+1) . . . Hσ(δ)), i = 1, . . . , δ. A reasoning analogous to

the one in the proof of Lemma 4.3 shows that they are linearly independent. In

fact the relation λ1Hσ(1) . . . Hσ(δ)+
∑δ−1

i=2 = 0, (λ1, . . . , λδ) 6= (0, . . . , 0) implies

that G1 divides Hσ(1) . . . Hσ(δ), against the hypothesis.

Moreover, let us denote T ′ the K-space generated by (B′

1, . . . ,B
′

δ). Then

ΦSt

⋂
T ′ = (0), because ΛΦ =

∑
aiU

t+1G1 . . . GiĤσ(i)Hσ(i+1) . . . Hσ(δ)), Λ 6=
0, implies that U must divide Φ, for degree reason, against the hypothesis.

Example 4.13. Let us consider the ideal

I = (H3
1H2

2H3)S + S8S,

where H1, H2, H3 are linearly independent linear forms. The basis consid-

ered in Proposition 4.6 is B(I) = (Φ, F11, F12, F13, F21, F22, F31), where Φ =

H3
1H2

2H3, F11 = H2
1H2

2H3U
3, F12 = H1H

2
2H3U

4, F13 = H2
2H3U

5, F21 =

H1H2H3U
5, F22 = H1H3U

6, F31 = H1H2U
6.

The corresponding H.B. matrix is

M(I) =




U3 −H1

U −H1

U −H1

H1 −H2

U −H2

H2 −H3




,

where the unwritten entries are zero forms. The essential elements are: Φ,

F13, F22, F31. All the other elements are s.i..

- If in each generator of degree 8 we replace U3 by any degree 3 form η,

with G.C.D.(η,Φ) = 1, we obtain a new e-maximal basis.
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- If we replace F21, F22, F31 respectively by F̃21 = H2H3U
6, F̃22 = H3U

7,
F̃31 = H2U

7, then in the new matrix M̃(I) the H1 in (4, 4) position is replaced

by U . As a consequence, F̃11 = F11 and F̃12 = F12 are s.i., while F̃13 = F13 is

inessential, but not strongly and F̃21 6= F21 is s.i..

- If we replace F31 by F̃31 = H1U
7 (or, equivalently, in M(I) the form

H2 in position (6, 6) is replaced by U), then F22 becomes inessential (but not

strongly), while the nature of the other generators does not change.

The two special cases just considered suggest us to afford the general case

pointing our attention on the H.B. matrix, more than on the standard basis.

We need a decomposition of the Φ’s appearing in (3) into pairwise independent

linear forms, as follows

Φk = Hµk1

k1 . . . Hµk2

k2 . . . H
µkvk

kvk
, k = 1, . . . , r. (14)

Moreover, it is convenient to choose a set of linear forms {U,L0, . . . , Lβ0
}

such that the elements of the set {U,Li, Hkj}, i = 0, . . . , β0, k = 1, . . . , r, j =

1, . . . , vk are pairwise linearly independent and define

Φ0 = L0 . . . Lβ0
. (15)

With this notation we can state the following proposition.

Proposition 4.14. A canonical matrix of the ideal I of (3) is the following

one

M(I) =

(
B O
C A

)
,

where:

i) B ∈ Sβ0×(β0+1), A ∈ Sδ×δ, C ∈ Sδ×(β0+1), O is a zero matrix, whose

elements are of degree ≤ 0.

ii) B = (bij), where: bii = Li−1; bi(i+1) = −Li; bij = 0 if j 6= i, i + 1.

iii) C = (cij), where: c1(β0+1) = U t1+1; cij = 0 if (ij) 6= (1(β0 + 1))

iv) A = (aij), where:

- aij = 0 if j 6= i, j 6= i − 1,

- (a11, . . . , aδ,δ) = ((−H11)
[µ11], (−H12)

[µ12], . . . , (−H1v1
)[µ1v1

], . . .

. . . , (−Hk1)
[µk1], (−Hk2)

[µk2], . . . , ((−Hkvk
)[µkvk

], . . .

. . . , (−Hr1)
[µr1], (−Hr2)

[µr2], . . . , (−Hrvr
)[µrvr ]),
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- a(i+1)i = −aii if aii 6= ajj , j > i, i 6= ∆k,

a(i+1)i = −aiiU
tk if aii 6= ajj , j > i, i = ∆k,

a(i+1)i = −U if (∃j > i) aii = ajj , j 6= ∆k, k < r,

a(i+1)i = U tk+1 if (∃j > i) aii = ajj , i = ∆k, k < r.

Moreover, the inessential columns of M(I) are s.i..

Proof. We first observe that the degree matrix of M(I) is the expected one. Let

us denote I the ideal generated by the maximal minors of M(I) and prove that

I is the one described in (3). As B is the matrix considered in Proposition 4.2,

it is immediate to see that Iα0
= ΦSβ0

and that the minors of B are linearly

independent.

The minors in degree α1 have as a common factor Φ/Φ1. So, it is enough to

prove that, divided by their common factor, they are a basis of a subspace T1

of Sβ1
such that Sβ1

= Φ1Sβ1−δ1

⊕
T1. But we are in the situation described

in Lemma 4.3, where:

t = t1, b = β1, Φ = Φ1, Hi = H1i ,

Ci = Φ0L
−1
β0

U t1+1a21 . . . a(j+1)j , j = µ11 + µ12 + . . . + µ1(i−1), i = 1, . . . , v1 .

So, let us suppose the statement true until the degree αk−1 and prove it for αk.

Just as in the case k = 1, we see that all the minors have as a common factor

Φk+1 . . .Φr = Φ/Φ1 . . .Φk. So, it is enough to show that, divided by this factor,

they are a basis of a subspace Tk of Sβk
such that Sβk

= ΦkSβk−δk

⊕
Tk. We

are again in the situation of Lemma 4.3, with:

t = tk, b = βk, Φ = Φk, Hi = Hki

Ci = Φ0L
−1
β0

U t1+1a21 . . . a(∆k−1+j+1)(∆k−1+j),

j = µk1 + µk2 + . . . + µk(i−1), i = 1, . . . , vk.

Thanks to Proposition 3.2, we immediately see that the inessential columns are

exactly the ones in which a(i+1)i is not a multiple of aii or, equivalently, the

ones whose element aii is equal to some ajj , with j > i. The proof that they

are s.i. is a consequence of Lemma 4.8.

Extending the notation used in Proposition 4.6, we denote the basis linked

to the canonical matrix of Proposition 4.14 as follows:

B(I) = (B0,B1, . . . ,Bk . . . ,Br), where

B0 = (F 0
j ), j = 0, . . . , β0, Bk = (F k

ij),

k = 1, . . . , r, i = 1, . . . , vk, j = 1, . . . , µki.

With this notation we can state the following corollary.
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Corollary 4.15. i) All the elements of B0 are essential. The generator F k
ij ∈

Bk is essential iff j = µki and Hki is not a factor of it.

ii) B(I) is an e-maximal basis and the number of its essential elements in

degree bigger then α(I) is equal to the number v of the distinct linear

factors appearing in a factorization of Φ.

iii) In any e-maximal basis the essential generators appearing in degree αk are

as many as the linear factors of Φk that do not divide Φk+1 . . .Φr.

iv) I admits a basis of essential elements iff Φ is a product of distinct linear

factors.

Proof. i) From Proposition 4.14 iv) we easily see that the essential columns

of A are the ones whose entry ahh is different from every ajj , j > h. This

happens iff ahh = −Hki, where Hki does not appear any more in the

diagonal of A, in position (j, j), j > h. A necessary condition for such

a situation is that the generator corresponding to that column is of the

kind F k
iµki

. In this case we have:
∏

j>h ajj = RΦk+1 . . .Φr, where Hki is

not a factor of R. So, the condition characterizing the essential F k
iµki

’s

is that Φk+1 . . .Φr is not a multiple of Hki. From the equality F k
iµki

=∏
j>h ajj

∏
j<h a(j+1)j we see that the previous condition is equivalent to

say that Hki does not divide F k
iµki

.

ii) B(I) is an e-maximal basis, because its inessential elements are s.i. (The-

orem 3.5). Moreover, the Hki appearing in an essential column corre-

sponding to F k
iµki

is a linear factor of Φ, making there its last appearing

as an element of the diagonal of A. So, the essential columns of A are as

many as the distinct linear factors of Φ.

iii) As the number of essential elements in an e-maximal basis does not depend

on the e-maximal basis chosen, it is enough to verify the statement on

the basis B(I) of Proposition 4.14. In the proof of i) we observed that

the essential elements of Bk are as many as the linear factors Hki of Φk

that are not divisors of Φk+1 . . .Φr.

iv) This is an obvious consequence of ii).

Corollary 4.15 completes the proof of Theorem 4.1.

Corollary 4.16. Let I be represented as in (3), with Φk = Hµk1

k1 . . . H
µkvk

kvk
.

If τk is the number of distinct linear factors that Φk has in common with

Φk+1 . . .Φr, then any e-maximal basis of I has exactly
∑vk

j=1(µkj − 1) + τk

strongly inessential generators in degree αk.
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Corollary 4.16 implies that it is possible to find I ∈ F [2] with a prescribed

number of strongly inessential elements in a prescribed number of sufficiently

high degree, as we see in the following proposition.

Proposition 4.17. Let (d1 < d2 < . . . < ds) and (r1, r2, . . . , rs) be sequences

of natural numbers. There exist ideals I ∈ F [2] with exactly ri s.i. elements in

degree di, i = 1, . . . , s, iff

d1 >

s∑

i=1

ri + 1. (16)

Proof. Let us observe that the minimal degree δ of a form Φ satisfying the

condition δ−v =
∑s

i=1 ri is obtained with v = 1, so that Φ looks as Φ = Hm+1,

where m =
∑s

i=1 ri and H is any linear form. So, condition (16) is necessary.

It is also sufficient, because the ideal

I = Hm+1S + Hm+1−r1Sd1−(m+1−r1) + . . .

. . . + Hm+1−
∑ j

i=1
riS

dj−(m+1−
∑ j

i=1
ri)

+ . . . + Sds
(17)

obtained with the choice Φj = Hrj , j = 1, . . . , (s−1), Φs = Hrs+1, satisfies the

required condition. If d1 =
∑s

i=1 ri +2, then (17) is the unique ideal satisfying

the condition. If d1 >
∑s

i=1 ri + 2, there are many other possibilities. In fact,

the set of the ideals satisfying the required condition increases with the degree

δ = v + m, or, equivalently, with the number v of different linear factors of Φ.

Let us observe that the degree vector of the ideal I considered in (17) is the

least compatible with the required condition.

Remark 4.18. Every I ∈ F [2] satisfies condition (2) ( maximality with respect

to Dubreil-Campanella inequality) in each degree αi. So, for every j, I splits

into two ideals, I′ = (I : (Φj+1 . . .Φr)) and I′′ = (I, Φj+1 . . .Φr), both ele-

ments of F [2]. The first β0 + 1 + ∆j rows and β0 + ∆j columns of the matrix

M(I) produced in Proposition 4.14 form a H.B. matrix of I′, whose inessential

columns are not necessarily s.i.. In fact, it may happen that a linear factor of

Φi, i ≤ j does not divide Φi+1 . . .Φj but divides Φj+1 . . .Φr; so the assertion of

Remark 3.11 is justified.

Examples 4.19. In the following examples U,H,K,L0, L1, L2 are linear forms,

pairwise linearly independent.

1- I = H3K2S2S + K2S6S + S10S.

In this case we have: Φ = H3K2, Φ1 = H3, Φ2 = K2, GCD(Φ1, Φ2) = 1.

According to Proposition 4.14, we get
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M(I) =




L0 −L1

L1 −L2

L2U −H
U −H

U −H
HU2 −K

U −K




.

The corresponding canonical basis is

B(I) = (H3K2(L1L2, L0L2, L0L1); K
2L0L1L2U(H2, HU,U2);

L0L1L2HU5(K, U)) .

There are 3 s.i. generators, according to the fact that δ = 5, v = 2. Let us

observe that in this example a s.i. generator gives rise to a s.i. generator

in any splitting.

2- I = H3K2S2S + HKS6S + S10S.

In this case we have: Φ = H3K2, Φ1 = H2K, Φ2 = HK, so that all

the linear factors of Φ1 are also divisors of Φ2. According to Proposition

4.14, we get

M(I) =




L0 −L1

L1 −L2

L2U −H
U −H

U −K
U3 −H

H −K




.

The corresponding canonical basis is

B(I) = (H3K2(L1L2, L0L2, L0L1); HKL0L1L2U(HK,UK, U2);

L0L1L2U
6(K, H)) .

There are 3 s.i. generators, according to the fact that δ = 5, v = 2.

Let us observe that in this case the splitting in degree p = 8 gives rise to

the matrices

M(I′) =




L0 −L1

L1 −L2

L2U −H
U −H

U −K




,
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and, respectively,

M(I′′) =

(
U9 −H

H −K

)
.

The 6-th column of M(I′) is inessential, but not s.i.. A H.B. matrix of

I′, whose corresponding inessential generators are s.i., can be obtained

from M(I′) just by replacing U with H in its 6-th column.

3- I = H3S2 + H2S4 + HS8 + S10.

In this case we have: Φ = H3, Φ1 = Φ2 = Φ3 = H. According to

Proposition 4.14, we get:

M(I) =




L0 −L1

L1 −L2

L2U −H
U4 −H

U2 −H




.

There are 2 s.i. generators and the corresponding canonical basis is:

B(I) = (H3(L1L2, L0L2, L0L1); H
2L0L1L2U ; HL0L1L2U

5; L0L1L2U
7)

The splittings in degrees 8 and 9 produce a new inessential, but not s.i.,

element in I′.

5. Behaviour of I ∈ F [3] with respect to essentiality:

special cases and examples

According to Theorem 1.5 of [3], every element I ∈ F [3] has a shape very

similar to the one described in (3) for the elements of F [2]. The difference is

that Sβi
is replaced by a linear subspace Tβi

⊆ Sβi
of S = K[X, Y, Z], where

dim Tβi
= βi + 1. The subspaces Tβi

are characterized by Theorem 3.4 of [3].

That theorem says that, up to a change of cohordinates, every element I ∈ F [3]

is generated by the maximal minors of an α×(α+1) matrix, obtained by lifting

to K[X, Y, Z] a H.B. matrix of its image Ī ⊂ K[X, Y ] = S̄, modulo a regular

linear form Z. So, I looks like

I = Φ1 . . .ΦrTβ0
S + . . . + Φi . . .ΦrTβi−1

S + Φi+1 . . .ΦrTβi
S + . . .

. . . + ΦrTβr−1
S + Tβr

S =

r∑

i=0

Φi+1 . . .Φr+1Tβi
S, , (18)
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where Φi is a form in S and Φr+1 = 1, and its image modulo Z becomes

Ī = Φ̄1 . . . Φ̄rS̄β0
S̄ + . . . + Φ̄i . . . Φ̄rS̄βi−1

S̄ + Φ̄i+1 . . . Φ̄rS̄βi
S̄ + . . .

. . . + Φ̄rS̄βr−1
S̄ + S̄βr

S̄ =

r∑

i=0

Φ̄i+1 . . . Φ̄r+1S̄βi
S̄, Φ̄r+1 = 1. (19)

The problem of stating if a lifting of Ī ∈ F [2] to I ∈ F [3] preserves the

strong inessentiality of the entries of B(Ī) becomes a lifting problem of H.B.

matrices, which seems not easy to be solved. So, we start to consider a very

special case. More precisely, we focus our attention on the ideals I ∈ F [3] with

the largest number of s.i. generators in any e-maximal basis. If α = α(I) =

α(Ī) is the minimal degree of the generators of I, we will see that the maximal

expected number is α−2; we’ll prove that such a number is reached. Let us first

state a property for every homogeneous saturated ideal I of S = K[X1, . . . , Xn].

Proposition 5.1. Let B = (b1, . . . , bh, c1, . . . , ck), k ≥ 1, be an e-maximal basis

of the saturated homogeneous ideal I ⊂ S = K[X1, . . . , Xn], where b1, . . . , bh

are essential and c1, . . . , ck are s.i. elements. The condition depth I = r implies

h > r.

Proof. Thanks to Corollary 5.3 of [4], (c1, . . . , ck) is an inessential set ([4], Def-

inition 5.2), so that I = (b1, . . . , bh)sat. As depth I = depth (b1, . . . , bh), the

hypothesis implies h ≥ r; however, the equality holds iff (b1, . . . , bh) is a c.i.

and, as a consequence, a saturated ideal, against the hypothesis k ≥ 1.

Choosing h = 2, we get immediately the following statement.

Corollary 5.2. The largest possible number of s.i. generators in an e-maxi-

mal basis of an ideal I ∈ F [3] is α(I) − 2.

If α(I) = 2, then I ∈ F [3] has 3 generators and Corollary 5.2 says that

in every e-maximal basis they are essential. Let us point our attention on the

case α(I) > 2.

We will use the following Notation

S = {I ∈ F [3] : νe(I) = 3, α(I) > 2},

where νe(I) denotes the number of essential elements of any e-maximal basis

of I (see [4], Definition 5.1).

Let us observe that any dehomogenization I∗ with respect to a regular linear

form of an ideal I ∈ S has just 3 generators (that is the least number for a non

complete intersection), while the number of generators of I is the maximum

allowed by Dubreil’s inequality.



STRONGLY INESSENTIAL ELEMENTS 497

Proposition 5.3. For every I ∈ S the form Φ appearing in (18) is of degree

δ = α(I) and Φ has necessarily one of the following shapes:

i) Φ = Hδ,

ii) Φ = HrKs, r + s = δ,

iii) Φ = Cγ , 2γ = δ,

where H and K are independent linear forms and C is a quadratic irreducible

form in K[X, Y, Z].

Proof. An immediate consequence of Proposition 3.8 is that if I ⊂ K[X, Y, Z]

has α − 2 s.i. generators, then the number of s.i. generators of its quotient Ī

modulo a regular linear form is either α − 2 or α − 1. Applying Theorem 4.1

to Ī, we immediately get

δ − v = α − 1, δ ≤ α, (20)

or

δ − v = α − 2, δ ≤ α. (21)

Relation (20) is equivalent to δ = α, v = 1, while relation (21) gives two

possible situations:

δ = α, v = 2 (22)

and

δ = α − 1, v = 1. (23)

Let us verify that (23) is not realized. In fact in this case we have (Ī)α =

H̄α−1S̄1 and the s.i. generators lie all in degree bigger than α; so, a splitting

in degree α ( see Theorem 3.9) gives rise to an ideal I′′, with α(I′′) = α − 1

and α − 2 s.i. generators, against Corollary 5.2.

So, Φ must be a form, of degree α, whose quotient modulo any regular linear

form splits into a product of powers of at most two different linear factors. This

means that the curve Φ = 0 meets a generic line in at most two different points,

so that Φ is necessarily as described in i), ii), iii).

Remark 5.4. 1- We do not have examples in which the situation iii) appears.

Let us observe that it requires every ν(I, j), j = 1, . . . , r, to be a power

of 2.

2- Proposition 5.3 says that the schemes corresponding to ideals with α − 2

s.i. generators lie necessarily either on a multiple line or on two multiple

lines or (may be) on a multiple irreducible conic. However this condition

is not sufficient. For instance, by lifting the canonical matrix M of an

ideal J of K[X, Y ] with α − 1 s.i. generators with M itself, we obtain a

basis for an ideal I ⊂ K[X, Y, Z] without inessential elements.
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3- In case i), Φ̄ has the same structure of Φ, for every regular form L, while

in case ii) and iii) we have generically Φ̄ = H̄rK̄s, but we get Φ̄ = M̄r+s,

M a linear form in K[X, Y ], iff the line L = 0 either is tangent to

Φ = 0 (case iii)) or meets it in its singular point (case ii)). So, it is

possible to represent an element I ∈ S as a lifting of ideals Ī ⊂ k[X, Y ]

such that Φ̄ = M̄ δ, except for the case in which Φ = HrKs and the

intersection between the two lines H = 0 and K = 0 is in the support of

the corresponding scheme.

Proposition 5.5. If I is an element of S, let us consider its splitting into I′

and I′′ (see Theorem 2.3), in degree αk, with k < r if deg Φr ≥ 2 and k < r−1

if deg Φr = 1. Then I′′ is still an element of S.

Proof. Theorem 3.9 says that if B(I) = (Φ,B1,B2, . . . ,Br) is an e-maximal

basis of I, then B(I′′) = (Φ′′,Bk+1, . . . ,Br), where Φ′′ = Φk+1 . . .Φr, is an

e-maximal basis of I′′ and the forms of B(I′′), different from Φ′′, maintain the

same nature they had in B(I). So, as B(I) has two essential elements different

from Φ, B(I′′) cannot contain more then two essential elements different from

Φ′′; the hypothesis on the choice of k guaranties that it has at least 3 elements;

then, Corollary 5.2 says that B(I′′) must have exactly 3 essential elements, so

that I′′ ∈ S.

Corollary 5.6. In any e-maximal basis of an ideal I ∈ S the degree of the

three essential generators are: α = α(I), αr(I) and either αr(I) or αr−1(I).

The latter possibility takes place iff in degree αr(I) there is just one generator.

Proof. It is enough to apply Proposition 5.5, with k = r− 1 if in degree αr the

basis B(I) contains at least two forms and with k = r − 2 otherwise. In fact

the two essential elements of B(I′′), not in minimal degree, must be essential

also in B(I).

Now, let us produce examples of ideals of S.

Proposition 5.7. Every Ī ⊂ K[X, Y ] with α − 1 s.i. generators in any e-

maximal basis has at least a lifting in S.

Proof. After a possible change of coordinates, a H.B. matrix of Ī is

M(Ī) =




Y t0 −X
Y t1 −X

Y t2 −X
. . . . . . . . . . . . . . . . . .

Y tδ−2 −X
Y tδ−1 −X




(24)
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A lifting M(I) of M(Ī), with α − 2 s.i. columns, is




Y t0 −X
ZP1 Y t1 −X
ZP2 Zt1+t2−1 Y t2 −X
ZP3 Zt2+t3−1 Y t3

. . . . . . . . . . . . . . . . . .
ZPδ−2 Y tδ−2 −X
ZPδ−1 Ztδ−2+tδ−1−1 Y tδ−1 −X




, (25)

where Pi ∈ K[X, Y, Z] is a form of degree
∑i

j=0 tj − i − 1 and, as usual, the

unwritten entries are zero. M(I) is obtained from M(Ī) by leaving unchanged

the last two columns and replacing the zero entries in position (i + 1, i), i =

2, . . . , δ − 1, with Zti−1+ti−1 and the ones in position (i, 1) with ZPi−1. It is

immediate to verify that the second column is s.i. and Lemma 5.3 of [4] says

that the same reasoning can be repeated for the following ones with three non

zero entries.

Finally, let us point our attention on the ideals I ∈ S with the smallest α(I)

allowing the presence of s.i. generators. Corollary 5.2 implies that if I has a s.i.

generator then α(I) ≥ 3. So, let us look for the ideals with α(I) = 3 and just

one s.i. generator in every e-maximal basis; they are the elements of S with the

smallest number of generators. Let us consider the special case of generators

in two different degrees. Proposition 5.3 says that, apart from a coordinates

change, they can be obtained by lifting an ideal of one of the following types

Ī1 = X3S + SβS, β > 3, (26)

Ī2 = X2Y S + SβS, β > 3. (27)

Let us first consider all the required liftings of Ī1 or, equivalently, all the

liftings M(I1) of the matrix

M(Ī1) =




Y t −X 0 0

0 Y −X 0

0 0 Y −X


 , t = β − 2, (28)

having a s.i. column. M(I) has the following shape (see [3])

M(I1)=




Y t+ZP1(X, Y, Z) −X+a11Z a12Z a13Z
ZP2(X, Y, Z) Y +a21Z −X+a22Z a23Z
ZP3(X, Y, Z) a31Z Y +a32Z −X+a33Z


, (29)
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where aij ∈ K, deg Pi = t − 1. The forms P1, P2, P3 can be chosen arbitrarily

among the ones of degree t− 1, so that we just have to characterize the matrix

A = (aij), i, j = 1, 2, 3. As the first column of M(I1) is essential for every

choice of the aij ’s, let us consider the second and third columns. The second

column is s.i. iff the forms L1 = −X + a11Z + λ2a12Z + λ3a13Z, L2 =

Y +a21Z +λ2(−X +a22Z)+λ3a23Z, L3 = a31Z +λ2(Y +a23Z)+λ3(−X +

a33Z) are linearly independent, for every choice of λ2, λ3 or, equivalently, iff

the matrix

B =




−1 0 a11 + λ2a12 + λ3a13

−λ2 1 a21 + λ2a22 + λ3a23

−λ3 λ2 a31 + λ2a32 + λ3a33




has determinant different from zero. Such a condition gives the relation

−a12λ
3
2 − a13λ

2
2λ3 + (a22 − a11)λ

2
2 + a13λ

2
3 + (a12 + a23)λ2λ3

+(−a32 + a21)λ2 + (−a33 + a11)λ3 − a31 6= 0. (30)

An easy computation shows that the matrices A for which this condition is

satisfied are

A =




a11 0 0

a21 a11 0

a31 a21 a11


 , a31 6= 0. (31)

Considerations very similar to the previous ones lead to the conclusion that

the second column is s.i. iff the matrix A has the following shape

A =




a11 a12 0

a21 a11 −a12

0 a21 a11


 , a12 6= 0. (32)

In case (31), after the coordinate change −a11Z + X = X ′, a21Z + Y =

Y ′, a31Z = Z ′ and dropping the apostrophes, the required matrix can be

written

M(I11) =




Y t + ZQ1 −X 0 0

ZQ2 Y −X 0

ZQ3 Z Y −X


 (33)

In case (32), after the coordinate change −a11Z + X = X ′, −a21Z + Y =

Y ′, a12Z = Z ′ and dropping the apostrophes, the required matrix can be

written

M(I12) =




Y t + ZQ1 −X Z 0

ZQ2 Y −X −Z
ZQ3 0 Y −X


 , t = β − 2. (34)

Let us observe that both schemes relative to I11 and I12 are supported at

at most t + 1 points lying on a triple line (X = 0 in our basis) and that their

multiplicity is e(I) = 3 + 3t ([6]).
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With a very similar computation it is possible to see that, apart from a

coordinate change, a lifting I2 of Ī2 belongs to S iff its H.B. matrix has the

following shape

M(I2) =




(X + Y )t + ZQ1 −X 0 0

ZQ2 X + Y −X 0

ZQ3 Z X −Y


 , (35)

where P1, P2, P3 are forms of degree t − 1 in K[X, Y, Z]. The corresponding

schemes, still of multiplicity e(I) = 3t + 3, are all supported at two different

lines (X = 0 and Y = 0). The intersection of the two lines is one of the points

in the support of the scheme; as a consequence, the ideals cannot be obtained

by lifting an ideal of type (28).

The characterization of the elements of S with α(I) > 3 is more difficult to

be faced, also for ideals generated in two degrees. In fact, the request of (28)

(and the analogous for the lifting of Ī2) are replaced by the requirement that a

system of non linear equations {Eu(aij , λv) = 0}, in a set {λv, v = 1, . . . , α−1}
of variables, admits no solutions. Such a condition defines the entries aij ’s of

the matrix A as the elements for which the ideal generated by the Eu’s is the

whole ring K[λ1, . . . , λα−1].
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Katětov order, Fubini property and

Hausdorff ultrafilters
1

Michael Hrušák and David Meza-Alcántara

Abstract. We study the Fubini property of ideals on ω and prove that

the Solecki’s ideal S is critical for this property in the Katětov order.

We show that a well-known Fσ-ideal is critical for Hausdorff ultrafilters

in the Katětov order and, by investigating the position of this ideal in

the Katětov order, we show some of the known properties of this class

of ultrafilters, including the Fubini property.

Keywords: Hausdorff ultrafilter, Katětov order, Fubini property
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1. Introduction

An ultrafilter U on an infinite set is Hausdorff if the ultrapower of N modulo

U , equipped with the S-topology, is Hausdorff. The S-topology is defined for

non-standard models ∗X of a topological space X, as the generated by the ∗A
sets, for open sets A ⊆ X. In the particular case of the ultrapower N

N/U as a

non-standard model for the first-order arithmetic, we consider N equipped with

the discrete topology, and then, the S-topology on N
N/U is Hausdorff if and

only if, for every f, g ∈ N
N there exists U ∈ U such that either f ↾ U = g ↾ U

or f ′′U ∩ g′′U = ∅ (see Proposition 2.1).

Hausdorff ultrafilters have been studied recently by several authors, see

e.g. by M. di Nasso and M. Forti [6]. The main question about them is their

existence, that is, does ZFC prove the existence of a Hausdorff ultrafilter? In

this note we characterize this class of ultrafilters by using the Katětov order

and an Fσ-ideal on the integers that we call Gfc.

The Katětov order is defined as follows: for any two ideals I, J on countable

sets X and Y respectively, I ≤K J if there is a function f from Y to X so that

f−1[I] ∈ J for all I ∈ I. We write I ≤KB J (the Katětov-Blass order) when f
is a finite-to-one function. An introduction to the Katětov order can be found

in [8].

1The research of first and second authors was partially supported by PAPIIT grant
IN101608 and CONACYT grant 80355. Second author was supported by grants PROMEP-
UMSNH-NPTC-284 and UMSNH-CIC-9.30.
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Katětov order is closely connected to Baumgartner’s notion of I-ultrafilter.

An ultrafilter U is an I-ultrafilter if and only if I �K U∗. Several classes of

ultrafilters are characterized as I-ultrafilters, for example, selective ideals are

exactly the ED-ultrafilters (see [7, 10, 14]).

Information about the position of ideals in the Katětov order provides in-

formation about belonging to classical families of ultrafilters, like P-points,

Q-points and selective ultrafilters, since the I-ultrafilters (in the sense of Baum-

gartner [1]) are exactly the ultrafilters U such that I �K U∗.

We also study a property that Kanovei and Reeken [12] call the Fubini

property. It concerns ideals (and filters) in general. For simplicity, we use

a common notation: for any A ⊆ ω × 2ω, n ∈ ω and x ∈ 2ω we denote

(A)n = {y ∈ 2ω : (n, y) ∈ A} and (A)x = {k ∈ ω : (k, x) ∈ A}.

Definition 1.1. I satisfies the Fubini property if for any Borel subset A of

ω × 2ω and any ε > 0, {n < ω : λ((A)n) > ε} ∈ I+ implies λ∗({x ∈ 2ω : (A)x ∈
I+}) ≥ ε (here λ∗ means the Lebesgue outer measure on 2ω).

Particularly relevant for this work are the following ideals:

1. ED = {A ⊆ N
2 : ∃n∀m > n|A ∩ ({m} × N)| ≤ n} is critical for selective

ultrafilters in the Katětov order.

2. Let us denote by ∆ the set {(n, m) : m ≤ n}. Then, the ideal EDfin =

{I ∩ ∆ : I ∈ ED} on ∆ is critical for Q-point ultrafilters in the Katětov-

Blass order.

3. The Solecki’s ideal S on the countable set Ω of all the clopen subsets of

2N with Lebesgue-measure equal to 1
2 , is generated by the family {A ⊆

Ω :
⋂

A 6= ∅}. It was defined in [16], where the author proved that S is

critical for the Fatou’s property.

4. Gfc = {A ⊆ [N]2 : ch(A) < ∞}, the ideals of graphs with finite chromatic

number,1 was used by Solecki in [16], where he asked if this ideal is critical

for the Fatou property. This question was answered in the negative in

[11].

5. Gc = {A ⊆ [N]2 : ∀B ∈ [N]ℵ0([B]2 \ A 6= ∅)}, the ideal of graphs without

infinite complete subgraphs.

The first four ideals are Fσ while the last is co-analytic.

1The chromatic number ch(A) of a graph A on ω is defined as the minimal cardinal
number κ for which there is a coloring c : ω → κ so that c(a) 6= c(b) for all {a, b} ∈ A.
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2. Hausdorff ultrafilters and Gfc

We now prove that Gfc is critical for Hausdorff ultrafilters in the Katětov order,

i.e. U is Hausdorff if and only if Gfc �K U . First we prove the following easy

characterizations of Hausdorff ultrafilters. Note that f and g are U-equivalent

if and only if there is U ∈ U such that f ↾ U = g ↾ U .

Proposition 2.1 ([6]). The following conditions are equivalent, for any ultra-

filter U on N.

1. U is Hausdorff,

2. for every f, g ∈ N
N, f and g are U-equivalent or f ′′U ∩g′′U = ∅ for some

U ∈ U , and

3. for every f, g ∈ N
N, if f(U) = g(U) then there is U ∈ U such that

f ↾ U = g ↾ U .

Proof. We denote by [h] the equivalence class of h ∈ N
N modulo U . (1 ⇒ 2)

If f and g are not U-equivalent then there is A ⊆ N such that [f ] ∈ ∗A and

[g] ∈ ∗(N \ A), which means that there are V and W in U so that f ′′V ⊆ A
and g′′W ⊆ N \ A. Let U = V ∩ W .

(2 ⇒ 3) Assume f ↾ X 6= g ↾ X for all X ∈ U , and take U as in (2). From

f ′′(U) ∈ f(U) and g′′(U) ∈ g(U) follows f(U) 6= g(U).

(3 ⇒ 1) If f and g are non-U-equivalent then by (3) there is A ∈ f(U) \ g(U),

and then [f ] ∈ ∗A and [g] ∈ ∗(N \ A).

Now we describe a useful characterization of the ideal Gfc. For each ordered

pair 〈A, B〉 of nonempty disjoint subsets of N, we define de set

I〈A,B〉 = {{n, m} : n ∈ A, m ∈ B, n < m}

Proposition 2.2. Gfc is generated by the sets I〈A,B〉.

Proof. On the one hand, it is clear that ch(I〈A,B〉) ≤ 2. On the other hand, note

that bipartite graphs are a base for Gfc, since if ch(G) = n then pick a coloring

c : ω → n so that {a, b} ∈ G implies c(a) 6= c(b), and for each pair 0 ≤ i < j < n
define Gi,j = {{a, b} : c(a) = i, c(b) = j}. Then, G ⊆

⋃
0≤i<j<n Gi,j . Finally,

note that I〈A,B〉 ∪ I〈B,A〉 is the bipartite graph defined by A and B.

We now prove the characterization of Hausdorff ultrafilters in the Katětov

order, and additionally two graph-theoretic characterizations.

Theorem 2.3. The following conditions are equivalent for any ultrafilter U
on N

1. U is Hausdorff,
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2. for every graph (G, E) and every ϕ : N → E, there exists U ∈ U such

that ϕ′′U is contained in a bipartite graph.

3. for every graph (G, E) on N and every ϕ : N → E, there exists U ∈ U
such that ch(ϕ′′U) < ∞, and

4. Gfc �K U∗,

Proof. (1 → 2) Let us assume U is Hausdorff, and let ϕ be a function from N

to [N]2. Define f(n) = min(ϕ(n)) and g(n) = max(ϕ(n)). It is clear that f 6= g
mod U . By 2.1 there is U ∈ U such that f ′′U ∩ g′′U = ∅. Clearly, I〈f ′′U,g′′U〉 is

contained in a bipartite graph, and ϕ′′U ⊆ I〈f ′′U,g′′U〉).

(2 → 3) and (3 → 4) are immediate.

(4 → 1) Let us assume Gfc � U∗, and let f and g two non U-equivalent

functions. Since {n : f(n) = g(n)} /∈ U , either {n : f(n) > g(n)} ∈ U
or {n : f(n) < g(n)} ∈ U . Let us assume the first case (the other one is

analogous), and define ϕ(n) = {g(n), f(n)} if g(n) < f(n), and ϕ(n) = {0, 1}
if not. Since there is V ∈ U such that ϕ′′V ∈ Gfc, and each element in Gfc is

covered by a finite family of basic sets, there exist disjoint sets A and B so that

for some W ⊆ {n ∈ V : g(n) < f(n)} in U , ϕ′′W ⊆ I〈A,B〉, but this implies

f ′′W ⊆ A and g′′W ⊆ B.

About the position of Gfc some results are known: The identity function in

[N]2 witnesses Gfc ≤K Gc. Solecki proved in [16] that S ≤K Gfc.

Lemma 2.4. [14] Gfc ≥KB EDfin

Proof. Define f from [N]2 to N × N by

f({n, m}) = (max{m, n}, min{m, n}).

This f witnesses the Katětov relation since the chromatic numbers of the

f -preimages of sets {k} × N are equal to 2, and the chromatic numbers the

f -preimages of sets H = {(n, h(n)) : n ∈ ω} (h ∈ N
N) are also equal to 2, since

we can construct recursively a coloring c by letting c(0) = 0, c(1) = 1 and for

n ≥ 2, c(n) = 1 − c(h(n)) if h(n) < n. Hence, if {n < m} ∈ f−1[H] then

n = h(m) and then c(n) 6= c(m).

Since ED ≤KB EDfin (inclusion of ∆ into ω×ω witnesses the Katětov-Blass

relation), we get immediately the following corollary.

Corollary 2.5 (Daguenet-Teissier [5]). Every selective ultrafilter is Hausdorff.
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3. Fubini property

In [12, Proposition 24], Kanovei and Reeken claimed without a proof that

Fubini property is equivalent to the validity of Fatou’s lemma. We will prove

this as a corollary of the following Theorem, which is obtained by mimicking

Solecki’s proof of [16, Theorem 2.1].

Theorem 3.1. Let I be an ideal on ω. Then, there exists an I-positive set X
such that I ↾ X ≥K S if and only if I does not satisfy the Fubini property.

Proof. Let f : X → Ω be a witness of I ↾ X ≥K S, and define A = {(n, x) : x ∈
f(n)}. Note that (A)n = f(n) and then λ((A)n) = 1

2 for all n ∈ X. For any

x ∈ 2ω, {S ∈ Ω : x ∈ S} ∈ S and then {n < ω : x ∈ (A)n} ∈ I for all x ∈ 2ω.

On the other hand, assume that I does not satisfy the Fubini property, and

take a Borel set A ⊆ ω × 2ω such that for some ε > 0, the set X := {n < ω :

λ((A)n) > ε} is I-positive, and if R := {x ∈ 2ω : (A)x ∈ I+} then λ∗(R) < ε.
First, we can assume that (1) R = ∅, (2) for any n ∈ X, An is closed and

(3) for any n ∈ X, λ(An) = ε. If it is not the case, we could replace (a) ε with

ε′ = ε − λ∗(R) and (b) for each n, An with a closed subset A′

n of An \ R′, so

that λ(A′

n) = ε′, where R′ is a Gδ-set so that R′ ⊇ R and λ(R′) = λ∗(R).

Let k < ω be so that (1 − ε)k < 1
3 . Recall that the power of Can-

tor space (2ω)k endowed with the product measure λk is isomorphic to the

Cantor space 2ω endowed with the Lebesgue measure λ, via a homeomor-

phism between those spaces. For any n < ω, we define a subset Bn of (2ω)k

by Bn =
⋃k

i=1 proj−1
i [An]. Then (2ω)k \ Bn =

∏k

i=1(2
ω \ An) and then

λk(Bn) > 2
3 . Note that the family {Bn : n ∈ X} fulfils that R′′ := {x ∈

(2ω)k : {n < ω : x ∈ Bn} ∈ I+} = ∅, since if x = 〈xi : 1 ≤ i ≤ k〉 then

{n < ω : x ∈ Bn} =
⋃k

i=1{n < ω : xi ∈ An} ∈ I.
Now, for n ∈ X choose a clopen subset Un of (2ω)k such that λk(Un) ≥ 7

12
and λk(Un \ Bn) < 1

3·2n+2 . If S := {x ∈ (2ω)k : {n ∈ ω : x ∈ Un} ∈ I+} then

S ⊆
⋂

m<ω

⋃
n≥m(Un \ Bn), proving that λk(S) = 0. Let {Cn : n < ω} be an

increasing family of clopen sets such that S ⊆
⋃

n<ω Cn and λk(
⋃

n<ω Cn) ≤ 1
12 .

Finally, by taking for any n ∈ X a clopen subset f(n) of Un\Cn with λk(f(n)) =
1
2 we get the Katětov function f wanted, since for any x ∈ 2ω = (2ω)k, if

{n ∈ X : x ∈ f(n)} is infinite then x /∈
⋃

Cn and then x /∈ S. Hence

{n ∈ X : x ∈ f(n)} ∈ I for all x ∈ 2ω.

From Solecki’s [16, Theorem 2.1] and the previous theorem we get:

Corollary 3.2. If I is a universally measurable ideal on ω then I has the Fubini

property if and only if I fulfils Fatou’s lemma. �

Example 3.3. Fin and Z have the Fubini property.
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Proof. (Fin) Since S is a tall ideal and Fin is K-uniform we have that S �K

Fin ↾ X, for all infinite subset X of ω.

(Z) Let f : ω → Ω be a function. By the classical Fubini’s Theorem, for

every n < ω, there is An ∈ Ω such that for all x ∈ An,

|{m ∈ [2n, 2n+1) : x ∈ f(m)}| ≥ 2n−1.

Since Fin has the Fubini property, there is x ∈ 2ω and there is an increasing

sequence 〈nk : k ∈ ω〉 such that x ∈ Ank
. Then, for any k < ω,

lim sup
n→∞

|f−1[Ix] ∩ [2n, 2n+1)|

2n
≥ lim

k→∞

|f−1[Ix] ∩ [2nk , 2nk+1)|

2nk

≥
1

2

proving that f is not a witness for S ≤K Z.

4. Fubini and Hausdorff ultrafilters

Let U be an ultrafilter on ω, and An a Borel subset of Cantor space 2ω, for all

n < ω. The U-limit of the sequence of sets is the set defined by

U- lim An = {x ∈ 2ω : {n ∈ ω : x ∈ An} ∈ U}.

If 〈xn : n < ω〉 is a sequence of real numbers then l ∈ R is the U-limit of the

sequence provided that {n < ω : |xn − l| < ε} ∈ U for all ε > 0.

As usual, an S-ultrafilter is a free ultrafilter U whose dual ideal is not

Katětov above the Solecki’s ideal S.

Theorem 4.1. Let U be a free ultrafilter. Then the following are equivalent:

1. U is an S-ultrafilter,

2. U∗ satisfies the Fubini property and

3. for any sequence 〈An : n < ω〉 of Borel subsets of 2ω,

if U- limλ(An) > 0 then U- limAn 6= ∅.

Proof. Theorem 3.1 claims that the ideals I which do not have I-positive sets X
such that I ↾ X ≥K S, are exactly those ideals satisfying the Fubini property,

and since every maximal ideal is Katětov equivalent to all its restrictions to

positive sets, we have that dual ideals of S-ultrafilters are exactly the maximal

ideals with the Fubini property. Now, Fubini property among maximal ideals

(or ultrafilters) means: for any sequence 〈An : n < ω〉 of Borel subsets of

2ω and any ε > 0, if {n < ω : λ(An) > ε} ∈ U then λ∗({x ∈ 2ω : {n <
ω : x ∈ An} ∈ U}) ≥ ε. Hence, if S �K U∗ and U- limλ(An) > 0 then

λ∗(U- limAn) > 0 and then U- limAn 6= ∅. On the other hand, let suppose that
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U- limλ(An) > ε and λ∗(U limAn) = δ < ε, for some sequence 〈An : n < ω〉
and some ε > 0. For any k < ω let us choose a Borel set A′

k ⊆ Ak \ U limAn,

with λ(A′

k) = ε − δ. Then, U- limλ(A′

n) ≥ ε − δ but U- lim A′

n = 0, since for

any x ∈ 2ω, {n : x ∈ An} ∈ U∗.

Corollary 4.2 (Benedikt). Every Fubini ulfrafilter is a Hausdorff ultrafilter.

Proof. Solecki proved in [16] that Gfc ≥K S and if U is Fubini then by 4.1

U∗
� S. Hence, U∗

�K Gfc.

5. Final remarks and questions

The known Katětov relations are displayed in the following diagram:2

Gc

nwd
(Nowhere dense)

Gfc

(Hausdorff)

OO

S
(Fubini)

88
r

r
r

r
r

r
r

r
r

r
r

r
r

OO

EDfin

(Q-points

in RB-order)

OO

Fin × Fin
(P-Points)

ED
(Selective)

ddI
I
I
I
I
I
I
I
I

OO

Of course, the main question about Hausdorff ultrafilters is if ZFC implies

their existence. As a consequence of the fact that S ≤K nwd ([11, Theo-

rem 5.10]), every Fubini ultrafilter is a nowhere dense ultrafilter. This fact was

proved by Shelah ([15, Proposition 26]). The same does not hold for nowhere

dense and Hausdorff ultrafilters since in [11] it was proved that Gfc �K nwd,

which is a consequence of 2.4 and the following

Proposition 5.1. ED � nwd.

2An ultrafilter U is:
(1) nowhere dense if for each function f from N to R, there is U ∈ U such that f ′′U is
nowhere dense.
(2) Q-point if for each partition {An : n < ω} of N such that each An is finite, there is U ∈ U
such that |U ∩ An| ≤ 1 for all n.
(3) P-point if for each partition {An : n < ω} of N, there is U ∈ U such that |U ∩ An| < ℵ0

for all n.
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Proof. Let f be an arbitrary function from Q to ω × ω and let {Un : n < ω}
be a base for the open sets of Q. Assume that f−1(n× ω) ∈ nwd for all n < ω
(if it is not the case we finished). Choose q0 arbitrarily and recursively, choose

qn ∈ Un so that proj1(f(qn)) > max{proj1(f(qj)) : j < n}. This is possible

by our assumption. Then, {f(qn) : n < ω} ∈ ED but {qn : n < ω} is dense in

Q.

Di Nasso and Forti proved that if U and V are two isomorphic ultrafilters

then U × V is not Hausdorff. On the other hand, it is easy to prove that if U
is nowhere dense and V is P-point then U × V is a nowhere dense ultrafilter.

Since every P-point is nowhere dense, for any P-point U we have that U ×U is

nowhere dense but not Hausdorff. Hence, from the consistency of the existence

of a P-point ultrafilter it follows that there is a nowhere dense non Hausdorff

ultrafilter. Consequently, a natural question is:

Problem 5.2: Are there consistently Hausdorff ultrafilters that are not no-

where dense?

It is well known that there is no P-point ultrafilter extending the filter nwd∗,
however we would like to know if (consistently) there is a Hausdorff ultrafilter

extending nwd∗, which is clearly a little stronger than Problem 5.2.

Di Nasso and Forti [6] asked about a set-theoretic hypothesis weaker than

those providing selective ultrafilters, which implies the existence of Hausdorff

ultrafilters, e.g. an equality or inequality between cardinal invariants of the

continuum. We think it would be interesting to understand generic existence

of Hausdorff ultrafilters3. For some classes of ideals this cardinal conditions are

well known, for example, Canjar [3] proved that cov(M) = c is equivalent to

generic existence of selective ultrafilters, and Benedikt [2] proved that cov(E) =

c is equivalent to generic existence of Fubini ultrafilters. The natural question

is

Problem 5.3: Is there a suitable cardinal condition which is equivalent to

generic existence of Hausdorff ultrafilters?

Finally, we want to ask about the existence of Gc ultrafilters.

Problem 5.4: Does ZFC prove that there exists a Gc-ultrafilter?
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Università degli Studi di Trieste - Via Valerio 12/1 - 34127 Trieste (Italy)

Tel. +39-040-5582635 — Fax +39-040-5582636 — Pagina web: http://rendiconti.dmi.units.it

Direttore Responsabile: DANIELE DEL SANTO

Periodico registrato il 25 Settembre 1968 al n. 358 del registro dei periodici del Tribunale di Trieste

Annual subscription rate: e50,00 (one issue, inclusive of any supplements).

Subscription inquiries should be sent to
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