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RH-regular transformation
of unbounded double sequences

Richard F. Patterson

Abstract. At the Ithaca meeting in 1946 it was conjectured that it
is possible to construct a two-dimensional regular summability matrix
A = {an,k} with the property that, for every real sequence {sk}, the
transformed sequence

tn =
1X

k=0

an,ksk

possesses at least one limit point in the finite plane. It was also counter-
conjectured that, for every regular summability matrix A, there exists
a single sequence {sk} such that the transformed sequence tn tends
to infinity monotonically. In 1947 Erdos and Piranian presented an-
swers to these conjectures. The goal of this paper is to present a mul-
tidimensional version of the above conjectures. The first conjecture
is the following: A four-dimensional RH-regular summability matrix
A = {am,n,k,l} can be constructed with the property that every double
sequence {sk,l} transformed into the double sequence

tm,n =
1,1X

k,l=0,0

am,n,k,lsk,l

possesses at least one Pringsheim limit point in the finite plane. The
multidimensional counter-conjecture is the following. For every RH-
regular summability matrix A there exists a double sequence {sk,l} such
that the four-dimensional transformed double sequence {tm,n} tends to
infinity monotonically Pringsheim sense. This paper established that
both multidimensional conjectures are false.

Keywords: RH-regular, double sequences Pringsheim limit point, p-convergent
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1. Definitions, Notations, and Preliminary Results

Definition 1.1. [Pringsheim, [4]] A double sequence x = [xk,l] has a Pring-
sheim limit L (denoted by P-lim x = L) provided that, given an ✏ > 0 there
exists an N 2 N such that |xk,l � L| < ✏ whenever k, l > N . Such an x is
described more briefly as “P-convergent”.

Definition 1.2. [Patterson, [3]] A double sequence y is a double subse-
quence of x provided that there exist increasing index sequences {nj} and
{kj} such that, if xj = xnj ,kj , then y is formed by

x1 x2 x5 x10

x4 x3 x6 �
x9 x8 x7 �
� � � �.

In [5] Robison presented the following notion of conservative four-dimen-
sional matrix transformation and a Silverman-Toeplitz type characterization of
such notion.

Definition 1.3. A four-dimensional matrix A is said to be RH-regular if it
maps every bounded P-convergent sequence into a P-convergent sequence with
the same P-limit.

This assumption of boundedness is made because a double sequence which
is P-convergent is not necessarily bounded. Along these same lines, Robison
and Hamilton presented a Silverman-Toeplitz type multidimensional charac-
terization of regularity in [2] and [5].

Theorem 1.4. (Hamilton [2], Robison [5]) The four dimensional matrix A is
RH-regular if and only if

RH1: P-limm,n am,n,k,l = 0 for each k and l;
RH2: P-limm,n

P1,1
k,l=0,0 am,n,k,l = 1;

RH3: P-limm,n
P1

k=0 |am,n,k,l| = 0 for each l;
RH4: P-limm,n

P1
l=0 |am,n,k,l| = 0 for each k;

RH5:
P1,1

k,l=0,0 |am,n,k,l| is P-convergent;
RH6: there exist finite positive integers � and � such thatP

k,l>� |am,n,k,l| < �.

Definition 1.5. Let A be a four dimensional matrix with pairwise column
(m,n). Then the (i, j)-reverse L-string , denoted by, Lm,n

i,j is

{am,n,1,j , am,n,2,j , am,n,3,i, · · · , am,n,i,j , am,n,i,j�1, am,n,i,j�2, · · · , am,n,i,1, } .

Given a double sequence x the (i, j)-reverse L-string , denoted by, Li,j is

{x1,j , x2,j , x3,i, · · · , xi,j , xi,j�1, xi,j�2, · · · , xi,1, } .
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2. Main Results

Theorem 2.1. If A is a pairwise-row finite RH-regular summability matrix then
there exists a double sequence {sk,l} such that the corresponding transformed
double sequence |tm,n| tends to infinity, in the Pringsheim with arbitrary rapid-
ity.

Proof. Let A be a pairwise-row finite RH-regular summability matrix. If m0

and n0 are su�ciently large, then each pairwise index whose indices exceed m0

and n0, respectively, contains a non-zero element. For fixed pairwise column
index (m,n) let C-string denote the last column of the pairwise row whose sum
is non-zero, and R-string denote the last row of the pairwise row whose sum is
non-zero. Using the terms from C-string and R-string along with Definition 1.5
we can now construct a last reverse L-string whose sum is non-zero. Therefore
a terminal reverse L-string exists. Let ↵1,↵2,↵3, · · · and �1,�2,�3, · · · be the
indices of the pairwise-columns that contain terminal reverse L-string. Without
of loss of generality we may assume that ↵1 < ↵2 < ↵3 < · · · and �1 < �2 <
�3 < · · · . Define the terms of {sk,l} such that

k 6= ↵1,↵2,↵3, · · ·

and
l 6= �1,�2,�3, · · ·

be arbitrary. Since A is pairwise row finite, each pairwise-column contains at
most a finite number of pairwise-terminal reverse L-string of elements, that is,
for each pairwise column the pairwise-terminal reverse L-string of element are
bounded away from zero. If f(m,n) is any arbitrary real function the terms

sk1,l1 sk1,l2 · · ·
sk2,l1 sk2,l2 · · ·

· · · · · ·
. . .

can be chosen large enough so that |tm,n| > f(m,n); m > m0 and n > n0.

Theorem 2.2. If A is an RH-regular summability matrix then there exists a
double sequence {sm,n} such that the transformed double sequence {tm,n} has
no P-limit points in the finite plane.

Proof. Let c be a constant such that
P1,1

k,l=0,0 |am,n,k,l| < c
5 for all (m,n). Such

a constant exists by RH5 of the RH-regularity conditions of A. We can choose
m0 = n0 su�ciently large such that, regularity conditions RH3, RH4, and RH5

of A assure us, that there exists a pair (↵1,�1) such that
X

{(k,l):k>↵1 or l>�1}

|am0,n0,k,l| <
1
c2

.
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Now choose m1 and n1 with m1 > m0 and n1 > n0 such that
X

{(k,l):0k↵1;0l�1}

|am,n,k,l| <
1
5

for m > m1 and n > n1 by RH1. Let us construct the second stage. Conditions
RH3, RH4, and RH5 assure us that we can choose (↵2,�2) with ↵2 > ↵1 and
�2 > �1 such that X

{(k,l):k>↵2 or l>�2}

|am,n,k,l| <
1
c4

whenever m,n  m1, n1, respectively. Using RH1, we can now choose m2 and
n2 with m2 > m1 and n2 > n1 such that

X

{(k,l):0k↵2;0l�2}

|am,n,k,l| <
1
5

for m > m2 and n > n2. Using the RH-regularity conditions of A the general
stage is constructed as follows. Let (↵r,�s)be such that ↵r > ↵r�1 and �s >
�s�1 with

X

{(k,l):k>↵r or l>�s}

|am,n,k,l| <
1

cr+s

where m,n  mr�1, ns�1, respectively. Now we choose mr and ns with mr >
mr�1 and ns > ns�1 such that

X

{(k,l):0k↵r;0l�s}

|am,n,k,l| <
1
5

for m > mr and n > ns, where r, s = 1, 2, 3, . . .. Let us now consider following
double sequence

sk,l =

8
<

:

�
1 + 1

c

�r+s if ↵r�1 < k  ↵r and/or �s�1 < l  �s

0 if otherwise
r, s = 1, 2, 3, . . .

.

Let us now partition the A transformation of {sk,l} into three parts with

mr�1 < m  mr and/or ns�1 < n  ns.

The first partition satisfy the following inequality

↵r�1,�s�1X

k,l=0,0

|am,n,k,l| <
1
5

✓
1 +

1
c

◆r+s�2

with r, s = 2, 3, 4, . . . (1)
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and the second satisfies the inequality

1,1X

k,l=↵r+1+1,�s+1+1

|am,n,k,l| (2)

<
1

cr+s+2

✓
1 +

1
c

◆r+s+4

+
1

cr+s+4

✓
1 +

1
c

◆r+s+6

+ · · ·

=
1

cr+s+2

✓
1 +

1
c

◆r+s+4
"
1 +

1
c2

✓
1 +

1
c

◆2

+
1
c4

✓
1 +

1
c

◆4

+ · · ·
#

=
1

cr+s+2

✓
1 +

1
c

◆r+s+4 1X

i=0

1
c2i

✓
1 +

1
c

◆2i

=
1

cr+s+2

✓
1 +

1
c

◆r+s+4 1

1� 1
c2

�
1 + 1

c

�2

 1
cr+s+2

✓
1 +

1
c

◆r+s+4 ✓
1

1� 4
25

◆

 1
cr+s+2

✓
1 +

1
c

◆r+s+4 25
21

 1
21cr+s

✓
1 +

1
c

◆r+s+4

with r, s = 0, 1, 2, . . . .

The final partition satisfies the equality

↵r+1,�s+1X

k,l=↵r�1+1,�s�1+1

am,n,k,lsk,l =
↵r,�sX

k,l=↵r�1+1,�s�1+1

am,n,k,lsk,l

+
↵r+1,�s+1X

k,l=↵r+1,�s+1

am,n,k,lsk,l

=
↵r,�sX

k,l=↵r�1+1,�s�1+1

am,n,k,l

✓
1 +

1
c

◆r+s

+
↵r+1,�s+1X

k,l=↵r+1,�s+1

am,n,k,l

✓
1 +

1
c

◆r+s+2

(3)
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In addition,the final partition also satisfies the following inequality

↵r+1,�s+1X

k,l=↵r�1+1,�s�1+1

am,n,k,lsk,l =
✓

1 +
1
c

◆r+s
2

4
↵r,�sX

k,l=↵r�1+1,�s�1+1

am,n,k,l

+
✓

1 +
1
c

◆2 ↵r+1,�s+1X

k,l=↵r+1,�s+1

am,n,k,l

3

5

>

✓
1 +

1
c

◆r+s
2

4
↵r,�sX

k,l=↵r�1+1,�s�1+1

am,n,k,l

+
↵r+1,�s+1X

k,l=↵r+1,�s+1

am,n,k,l

+
1
c

↵r+1,�s+1X

k,l=↵r+1,�s+1

am,n,k,l

3

5 .

Observe that, if m and n are su�ciently large the following is true by the
RH-regularity of A:

1
c

↵r+1,�s+1X

k,l=↵r+1,�s+1

am,n,k,l <
1
5

(4)

and

������

↵r,�sX

k,l=↵r�1+1,�s�1+1

am,n,k,l +
↵r+1,�s+1X

k,l=↵r+1,�s+1

am,n,k,l

������
>

3
5
. (5)

Therefore, for m and n su�ciently large, inequalities (1) through (5) imply the
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following
������

1,1X

k,l=0,0

am,n,k,lsk,l

������
=

������

↵r�1,�s�1X

k,l=0,0

am,n,k,lsk,l

+
↵r+1,�s+1X

k,l=↵r�1+1,�s�1+1

am,n,k,lsk,l +
1,1X

k,l=↵r+1+1,�s+1+1

am,n,k,lsk,l

������

�

������

↵r+1,�s+1X

k,l=↵r�1+1,�s�1+1

am,n,k,lsk,l

������

�
↵r�1,�s�1X

k,l=0,0

|am,n,k,l|sk,l

�
1,1X

k,l=↵r+1+1,�s+1+1

|am,n,k,l|sk,l

>

✓
1 +

1
c

◆r+s
"

2
5
� 1

5(1 + 1
c )
� 1

21cr+s

✓
1
1
c

◆4
#

>
1

100

✓
1 +

1
c

◆r+s

.

Theorem 2.3. If A is a four-dimensional RH-regular summability matrix then
there exists a double sequence {sk,l} such that tm,n = ⇢m,nei✓m,n , with

P� lim
m,n

⇢m,n =1 and P� lim
m,n

✓m,n = 0.

If the matrix A is also real then the double sequence sm,n can be chosen so that
the double sequence tm,n is real and positive.

In the proof of Theorem 2.2, replace 1
5 with a Pringsheim null double se-

quence and replace {sk,l} with the following sequence, or a sequence similar to
the following, with respect to order.

s
0

k,l =

8
<

:

�
1 + 1

c

�pr+s if ↵r�1 < k  ↵r and/or �s�1 < l  �s

0 if otherwise
r, s = 1, 2, 3, . . .

.

The result then follows from RH1, RH3, RH4, and RH5 of the RH-regularity
conditions of A.
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Theorem 2.4. If the double real valued function f(m,n) is such that

P� lim
m,n

f(m,n) =1

then there exists an RH-regular summability matrix A such that, for every
double sequence {sm,n} to which transformation A is applicable, the inequality

|tm,n| < f(m,n) (6)

is satisfied for infinitely many ordered pairs (m,n).

Proof. This asserts that there exists an RH-regular transformation that trans-
forms every double sequence to which it is summable either into a double
sequence with at least one finite Pringsheim limit point or else into a double
sequence whose terms tend to infinity at an arbitrary slow rate, independent
of the double sequence. The following four-dimensional summability matrix
satisfies the conditions of the theorem.

am,n,k,l =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

1 if both m and n are even with k = m
2 and l = n

2
0 if both m and n are even with k 6= m

2 and l 6= n
2

1 if both m and n are odd with k = m�1
2 and l = n�1

2
0 if both m and n are odd with k < m�1

2 and l < n�1
2

0 if both m and n are odd with k > m�1
2 and l > n�1

2
except when k = k1, k2, k3, . . . and l = l1, l2, l3, . . .

2�(r+s) if both m and n are odd with k < m�1
2 and l < n�1

2
k = k1, k2, k3, . . . and l = l1, l2, l3, . . .

r, s = 1, 2, 3, . . . .

.

Suppose that the double sequence {sm,n} is such that inequality (6) does not
hold infinitely often in the Pringsheim sense. Choose index sequences {kr}, {ls}
such that f(kr, ls) > 2r+s; and if each element of (m,n) is odd and kr > m�1

2
and ls > n�1

2 , am,n,kr,ls = 1
2r+s .

Since A is such that its pairwise row contains only one nonzero element,
then |sm,n| > f(m,n) for all su�ciently large m and n. Therefore, for odd m
and n, the series

1,1X

k,l=1,1

am,n,k,lsk,l

contains infinity many terms whose absolute value is 1. Therefore the four-
dimensional A transformation is not applicable to the double sequence {sm,n}.
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Manifolds over Cayley-Dickson algebras

and their immersions

Sergey V. Ludkowski

Abstract. Weakly holomorphic manifolds over Cayley-Dickson alge-
bras are defined and their embeddings and immersions are studied.

Keywords: manifold, noncommutative, weakly holomorphic, Cayley-Dickson algebra
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1. Introduction

Real and complex manifolds are widely used in di↵erent branches of mathemat-
ics [4, 16, 17, 18, 20, 21, 22, 34]. On the other hand, Cayley-Dickson algebras
Ar, particularly, the quaternion skew field H = A2 and the octonion algebra
O = A3, have found many-sided applications not only in mathematics, but also
in theoretical physics (see [2], [7] - [14], [16, 22, 36, 35] and references therein).
Theory of functions of quaternion and octonion variables is presented in these
works and cited below. Various classes of such functions and di↵erent variants
of their super-di↵erentiability were investigated and described depending on
needs of mathematics and theoretical physics over quaternions, octonions and
some other alternative algebras.

This paper continues previous works of the author, where di↵erent theory
from the cited above publications was developed. Functions of Cayley-Dickson
variables were studied earlier [23, 24, 29, 33]. Their super-di↵erentiability
was defined in terms of representing them words and phrases as a di↵eren-
tiation which is real-linear, additive and satisfying Leibniz’ rule on an algebra
of phrases over Ar (see in details Chapter 1 §§2.1 and 2.2 in the book [28] or in
the articles [23, 29]). That is a weak version of a super-di↵erentiability used in
super-analysis. Though such weak super-di↵erentiability over Ar of a function
f on an open domain implies that f is locally analytic in an Ar-variable with
Ar-coe�cients in power series with definite order of the multiplication in each
additive. A super-di↵erentiable function on a domain U in A

n
r or l2(Ar) of

Ar-variables is also called Ar-di↵erentiable (or weakly Ar-holomorphic). For
r � 4 the Cayley-Dickson algebras are non-associative and non-alternative.
This approach appeared to be e↵ective for investigations of problems of anal-
ysis, partial di↵erential equations, operator theory, noncommutative geometry
[25], [26] - [32].



12 SERGEY V. LUDKOWSKI

This article is devoted to investigations of Ar-di↵erentiable manifolds (weak-
ly holomorphic manifolds). Their embeddings and immersions are studied.
Results and notations of previous papers [23, 24, 29, 33] are used below.

Main results of this paper are obtained for the first time.

2. Manifolds over Cayley-Dickson algebras

Definition 2.1. An R linear space X which is also left and right Ar module
will be called an Ar vector space. We present X as the direct sum

(DS) X = X0i0 � ... � Xmim � ..., where X0,...,Xm, ... are pairwise
isomorphic real linear spaces, where i0, ..., i2r�1 are generators of the Cayley-
Dickson algebra Ar such that i0 = 1, i2k = �1 and ikij = �ijik for each k � 1
and j � 1 so that k 6= j, 2  r.

Let X and Y be two R linear normed spaces which are also left and right
Ar modules, where 1  r, such that

(1) 0  kaxkX  |a|kxkX and kxakX  |a|kxkX and
(2) kaxjkX = |a|kxjkX and
(3) kx + ykX  kxkX + kykX

for all x, y 2 X and a 2 Ar and xj 2 Xj. Such spaces X and Y will be called
Ar normed spaces.

Suppose that X and Y are two normed spaces over the Cayley-Dickson
algebra Av. A continuous R linear mapping ✓ : X ! Y is called an R linear
homomorphism. If in addition ✓(bx) = b✓(x) and ✓(xb) = ✓(x)b for each b 2 Av

and x 2 X, then ✓ is called a homomorphism of Av (two sided) modules X and
Y .

If a homomorphism is injective, then it is called an embedding (R linear or
for Av modules correspondingly).

If a homomorphism h is bijective and from X onto Y so that its inverse
mapping h�1 is also continuous, then it is called an isomorphism (R linear or
of Av modules respectively).

Definition 2.2. We say that a real vector space Z is supplied with a scalar
product if a bi-R-linear bi-additive mapping <,>: Z2

! R is given satisfying
the conditions:

(1) < x, x > � 0, < x, x >= 0 if and only if x = 0;
(2) < x, y >=< y, x >;
(3) < ax + by, z >= a < x, z > +b < y, z > for each real numbers a, b 2 R

and vectors x, y, z 2 Z.
Then an Ar vector space X is supplied with an Ar valued scalar product, if

a bi-R-linear bi-Ar-additive mapping < ⇤, ⇤ >: X2
! Ar is given such that

(4) < f, g >=
P

j,k < fj , gk > i⇤j ik,
where f = f0i0 + ...+fmim + ..., f, g 2 X, fj , gj 2 Xj, each Xj is a real linear
space with a real valued scalar product, (Xj , < ⇤, ⇤ >) is real linear isomorphic
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with (Xk, < ⇤, ⇤ >) and < fj , gk >2 R for each j, k. The scalar product induces
the norm:

(5) kfk :=
p

< f, f >.
An Ar normed space or an Ar vector space with Ar scalar product complete

relative to its norm will be called an Ar Banach space or an Ar Hilbert space
respectively.

A Hilbert space X over Ar is denoted by l2(�,Ar), where � is a set of
the cardinality card(�) � @0 which is the topological weight of X0, i.e. X0 =
l2(�,R).

A mapping f : U ! l2(�,Ar) can be written in the form

f(z) =
X

j2�
f j(z)ej ,

where {ej : j 2 �} is an orthonormal basis in the Hilbert space l2(�,Ar), U
is a domain in l2( ,Ar), f j(z) 2 Ar for each z 2 U and every j 2 �. If
f is Frechét di↵erentiable over R and each function f j(z) is di↵erentiable by
each Cayley-Dickson variable kz on U , then f is called Ar-di↵erentiable on U ,
where

z =
X

k2 
kzqk,

while {qk : k 2  } denotes the standard orthonormal basis in l2( ,Ar), kz 2
Ar.

Definition 2.3. Let M be a set such that
(1) M =

S
j Uj, M is a Hausdor↵ topological space,

(2) each Uj is open in M ,
(3) �j : Uj ! �j(Uj) ⇢ X are homeomorphisms, �j(Uj) is open in X for

each j,
(4) if Ui \Uj 6= ;, the transition mapping �i ��

�1
j of charts is bijective and

is Ar-di↵erentiable on its domain, while
(5) �i : M ! X with �i � �

�1
j being Ar-di↵erentiable on �j(Uj) for each

i 6= j;
where X is either Am

r with m 2 N or a Hilbert space l2(�,Ar) over the Cayley-
Dickson algebra Ar. Then M is called an Ar-di↵erentiable manifold (or a
weakly holomorphic manifold).

Proposition 2.4. Let M be an Ar- di↵erentiable manifold. Then there exists
a tangent bundle TM which has the structure of an Ar- di↵erentiable manifold
such that each fibre TxM is the vector space over the Cayley-Dickson algebra
Ar.

Proof. The Cayley-Dickson algebra Ar has the real shadow, which is the Eu-
clidean space R2r

, since Ar is the algebra over R. Therefore, a manifold M
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has also a real manifold structure. Each Ar- di↵erentiable mapping is infinite
di↵erentiable in accordance with Theorems 2.15 and 3.10 in [33, 23]. Then the
tangent bundle TM exists, which is C1-manifold such that each fibre TxM is a
tangent space, where x 2 M , T is the tangent functor. If At(M) = {(Uj ,�j) :
j}, then At(TM) = {(TUj , T�j) : j}, TUj = Uj ⇥ X, where X is the Ar

vector space on which M is modeled, T (�j ���1
k ) = (�j ���1

k , D(�j ���1
k )) for

each Uj \ Uk 6= ;. Each transition mapping �j � ��1
k is Ar- di↵erentiable on

its domain, then its (strong) di↵erential coincides with the super-di↵erential
D(�j � ��1

k ) = Dz(�j � ��1
k ), since @̃(�j � ��1

k ) = 0. Therefore, the super-
di↵erential D(�j � ��1

k ) is R-linear and Ar-additive, hence it is an automor-
phism of the Ar vector space X. But Dz(�j ���1

k ) is Ar- di↵erentiable as well,
consequently, TM is the Ar- di↵erentiable manifold.

Definition 2.5. A C1-mapping f : M ! N is called an immersion, if the
real rank of df is rang(df |x : TxM ! Tf(x)N) = mM for each x 2 M , where
mM := dimRM . An immersion f : M ! N is called an embedding, if f is a
homeomorphism on its image.

Theorem 2.6. Let M be a compact Ar- di↵erentiable manifold, dimArM =
m < 1, where 2  r 2 N.

(I). Then there exists an Ar- di↵erentiable embedding ⌧ : M ,! A

2m+1
r and

an Ar- di↵erentiable immersion ✓ : M ! A

2m
r correspondingly.

(II). If M is a paracompact Ar- di↵erentiable manifold with countable
atlas on l2(�,Ar), where card(�) � @0, then there exists a Ar- di↵erentiable
embedding ⌧ : M ,! l2(�,Ar).

Proof. (I). For the proof of this theorem identities of Cayley-Dickson algebras
are used below. This permits to supply the unit sphere of suitable dimension
multiple of 2r with the structure of an Ar di↵erentiable manifold (see below),
where 2  r 2 N. Then charts of a suitable refined atlas with Ar- di↵erentiable
transition mappings are used.

Let at first M be compact. Since M is compact, then it is finite dimen-
sional over the Cayley-Dickson algebra Ar, dimArM = m 2 N, such that
dimRM = 2rm is its real dimension. Take an atlas At0(M) refining the ini-
tial atlas At(M) of M such that (U 0

j ,�j) are charts of M , where each U 0
j is

Ar- di↵erentiable di↵eomorphic to an interior of the unit ball Int(B(Am
r , 0, 1)),

where B(Am
r , y, ⇢) := {z 2 A

m
r : |z � y|  ⇢}. In view of compactness of the

manifold M a covering {U 0
j : j} has a finite subcovering, hence At0(M) can be

chosen finite. Denote for convenience the latter atlas as At(M). Let (Uj ,�j)
be the chart of the atlas At(M), where Uj is open in M , hence M \Uj is closed
in M .

Consider the space A

m
r ⇥ R as the R-linear space R2rm+1, i.e. its real

shadow. The unit sphere S2rm := S(R2rm+1, 0, 1) := {z 2 R2rm+1 : |z| = 1}
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in A

m
r ⇥ R can be supplied with two charts (V1,�1) and (V2,�2) such that

V1 := S2rm
\ {0, ..., 0, 1} and V2 := S2rm

\ {0, ..., 0,�1}, where �1 and �2 are
stereographic projections from poles {0, ..., 0, 1} and {0, ..., 0,�1} of V1 and
V2 respectively onto A

m
r . Then the transition mapping between two charts

�2 ���1
1 : E \ {0}! E \ {0} is given by the formula �2 ���1

1 (y) = y/|y|2 where
y = (y1, ..., y2rm) 2 E \ {0}, E = R2rm (see §1.1.3 [20]). On the other hand
the Euclidean space E is the real shadow of Am

r . We denote the unit sphere in
A

m
⇥R by S2rm also.
To rewrite a function from the real variables zj in the z-representation or

vice versa the following identities are used:

zj =
1
2

"
�zij + ij(2r

� 2)�1

 
�z +

2r�1X

k=1

ik(zi⇤k)

!#
(1)

for each j = 1, 2, ..., 2r
� 1,

z0 =
1
2

"
z + (2r

� 2)�1

 
�z +

2r�1X

k=1

ik(zi⇤k)

!#
(2)

where 2  r 2 N, z is a Cayley-Dickson number decomposed as

z = z0i0 + ... + z2r�1i2r�1 2 Ar (3)

with zj 2 R for each j, i⇤k = ĩk = �ik for each k > 0, i0 = 1, since ij(ijik) = �ik
and (ikij)ij = �ik for each j > 0, also ijik = �ikij for each j 6= k with j > 0
and k > 0, while ik(i0i⇤k) = 1 for each k. Formulas (1)-(3) define the real-linear
projection operators ⇡j : Ar ! R so that

⇡j(z) = zj (4)

for each Cayley-Dickson number z 2 Ar and every j = 0, 1, ..., 2r
� 1.

The conjugation is given by the formula:

z⇤ = �(2r
� 2)�1

2r�1X

p=0

(ipz)ip (5)

in A

m
r due to formulas (1)-(3), which provides z⇤ in the z-representation, where

i0, ..., i2r�1 are the standard generators of the Cayley-Dickson algebra Ar.
Therefore the transition mapping �2 � ��1

1 : A

m
r \ {0} ! A

m
r \ {0} has the

form in the z-representation:

�2 � ��1
1 (z) = �

(2r
� 2)z

Pm
k=1[kz

P2r�1
p=0 (ip kz)ip]

, (6)
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where z = (1z, ..., mz) with jz 2 Ar for each j = 1, ...,m, z 2 A

m
r \ {0}.

The transition mapping is presented as the fraction of two polynomials on
the domain on which the denominator is non-zero. The fraction of two Ar-
di↵erentiable functions is Ar-di↵erentiable on a domain where the denominator
is non-zero [24, 29]. Therefore, �2 � ��1

1 (z) is the Ar-di↵erentiable di↵eomor-
phism in A

m
r \ {0}, i.e. the (weak) super-di↵erential Dz(�2 ���1

1 ) exists. Thus
in the Ar realization �l(Vl) = A

m
r \ {0} for l = 1 and l = 2 the unit sphere

S2rm is supplied with the structure of the Ar-di↵erentiable manifold.
If g : M ! A

N
r is a continuous mapping, then g(M) is compact, since M is

compact (see Theorem 3.1.10 [6]). Therefore, g(M) is bounded and closed in
A

N
r (see Theorems 3.1.8 and 3.1.23 [6]). Thus there exists a shift h(z) = z + q

on A

N
r such that h(g(M)) does not contain zero and hence inf{|z| : z 2

h(g(M))} > 0.
We consider [Int(B(Am

r , 0, 1))+q] ⇢ A

m
r \{0} with q 2 A

m
r such that |q| > 1

and At0(M) as above. The finite union of such balls [Int(B(Am
r , 0, 1)) + q] is

bounded in A

m
r \{0}. The shift mapping z 7! z + q is Ar-di↵erentiable on A

m
r .

On the other hand, the manifold M is compact and each its atlas has a finite
subatlas, where an atlas of M satisfies Conditions 3(1� 5) above.

Simplifying the notation we can choose an atlas {(Ej , ⇠j) : j = 1, ..., n}
of M with mappings ⇠j satisfying the following properties: each ⇠j : Ej !

⇠j(Ej) is the Ar-di↵erentiable di↵eomorphism onto the subset ⇠j(Ej) in the
ball B(Am

r , q, b) with |q| > 4b > 0, whilst ⇠j : M ! A

m
r is Ar-di↵erentiable,

clM (Ej) ⇢ Hj , Ej ⇢ Hj , Hj is open in M for each j, the restriction ⇠j |Hj is
bijective, ⇠j(M) ⇢ B(Am

r , q, 2b),
inf{|x� y| : x 2 @⇠j(Ej), y 2 @⇠j(Hj)} > b/2,

where
S

j Ej = M , clM (E) denotes the closure of E in M , @V := clAm
r

(V ) \
IntAm

r
(V ) for a subset V in A

m
r .

The function of the form

fj(z) = exp

 
mX

k=1

bk,j

"
(kz � kwj)

2r�1X

p=0

�
ip(kz � kwj)

�
ip

#!
(7)

with positive constants bk,j and a marked point wj 2 A

m
r is positive Ar-

di↵erentiable bounded on Am
r and tending to zero when |z| tends to the infinity,

see (5). For each bounded canonical closed subset W in A

m
r and its open

covering W it is possible to choose a finite open covering {Wj : j = 1, ..., l}
of W which refines W, since W is compact. We take Wj being intersections
of open balls in A

m
r with W . There exist constants cj > 0 and bk,j > 0 and

wj 2 A

m
r such that

gj(z) =
cjfj(z)

Pl
j=1 cjfj(z)

(8)

is positive and Ar-di↵erentiable on W and gj(z) < gj(y) for each z 2 W \Wj
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and y 2 Wj . We can choose constants so that

c1gj(z) > c2gj(y) (9)

for each z 2 ⇠j(Ej) and y 2 ⇠j(M \ Hj), where c1 = inf{|x| : x 2 ⇠j(Ej)} and
c2 = sup{|x| : x 2 ⇠j(M \ Hj)}.

Evidently, g(z) =
Pl

j=1 gj(z) is identically unit on A

m
r . The product of

Ar-di↵erentiable functions is Ar-di↵erentiable.
Using charts (Ej , ⇠j) and of the atlas of M , the open covering {Hj : j} of

M as above and such functions gj one can choose Ar-di↵erentiable mappings
 j for each j so that  j(M) ⇢ V m

k , where either k = 1 or k = 2, Uj and Aj

are open subsets in M with Uj ⇢ Aj for each j = 1, ..., n,
Sn

j=1 Uj = M ,  j |Aj

is bijective for each j, and

|�̄k �  j(y)| < |�̄k �  j(z)| (10)

for each z 2 Uj and y 2 M \ Aj , where �̄k = (�k, ...,�k) : V m
k ! A

m
r , while

�k : Vk ! A

m
r is given above.

The family of such component mappings  j induces an Ar-di↵erentiable
di↵eomorphism:  : M ! (S2rm)n with n equal to the number of charts,
where  (z) := ( 1(z), ..., n(z)) for each z 2 M .

Then the mapping  (z) is the embedding into (S2rm)n and hence into
Ar

n(m+1), since the rank is rank[dz (z)] = 2rm at each point z 2 M . Indeed,
the rank is rank[dz j(z)] = 2rm for each z 2 Uj and the dimension is bounded
from above dimAr (Uj)  dimArM = m. If y and z are two distinct points
in M , then there exists j so that z 2 Uj . If y 2 Aj , then  j(z) 6=  (y), since
 j |Aj is bijective. If y 2 M \ Aj , then from inequality (10) it follows, that
 j(z) 6=  j(y). Therefore,  (z) 6=  (y) for each two distinct points z and y in
M , since a natural number j exists so that  j(z) 6=  j(y).

Let M ,! A

N
r be the Ar- di↵erentiable embedding as above. There is also

the Ar- di↵erentiable embedding of M into (S2rm)n as it is shown above, where
(S2rm)n is the Ar- di↵erentiable manifold as the product of Ar- di↵erentiable
manifolds.

Let PRn denote the real projective space formed from the Euclidean space
Rn+1, denote by � : Rn+1

\{0}! PRn the corresponding projective mapping.
Geometrically PRn is considered as Sn/⌧ , where Sn := {y 2 Rn+1 : kyk = 1}
is the unit sphere in Rn+1, while ⌧ is the equivalence relation making identical
two spherically symmetric points, i.e. points belonging to the same straight
line containing zero and intersecting the unit sphere.

We consider An
r as the algebra of all n⇥ n diagonal matrices

A = diag(a1, ..., an)

with entries a1, ..., an 2 Ar. It naturally has the structure of the left- and
right- Ar-module. Then A

n
r is isomorphic with the tensor product of algebras
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A

n
r = Ar⌦RRn over the real field, where Rn is considered as the algebra of all

diagonal n ⇥ n matrices C = diag(b1, .., bn) with entries b1, ..., bn 2 R. Using
this realization of An

r we get an extension of � from Rn+1 onto Ar ⌦R Rn+1

by the formulas:
�(ax) = a�(x) (11)

and
�(xa) = �(x)a (12)

for each a 2 Ar with |a| = 1 and every x 2 Rn+1
\ {0}, also

�(x0i0 + ... + x2r�1i2r�1) = �(x0)i0↵0 + ... + �(x2r�1)i2r�1↵2r�1 (13)

for each non-zero vector x = x0i0 + ... + x2r�1i2r�1 2 A

n+1
r , where ↵j :=

kxjk/kxk, xj 2 Rn+1 for each j, the norm is given by the usual formula

kxk2 = kx0k
2 + ... + kx2r�1k

2 . (14)

Then we put by our definition PA

n
r = �([Ar⌦R Rn+1]\{0}) to be the Cayley-

Dickson projective space.
If z 2 PA

n
r , then by our definition ��1(z) is the Ar straight line in A

n+1
r .

To each element x 2 A

n+1
r we pose an Ar straight line < Ar, x} := ��1(�(x)).

That is the bundle of all Ar straight lines < Ar, x} in A

n+1
r is considered,

where x 2 A

n+1
r , x 6= 0. Then < Ar, x} is the Ar vector space of dimension

1 over Ar due to formulas (11)-(14) above. Therefore, < Ar, x} has the real
shadow isomorphic with R2r

, since the standard generators i0, i1, ..., i2r�1 are
linearly independent over the real field R.

Fix the standard orthonormal base {e1, ..., eN} in A

N
r and projections on

Ar-vector subspaces relative to this base

PL(x) :=
X

ej2L

xjej (15)

for the Ar vector span L = spanAr{ei : i 2 ⇤L}, ⇤L ⇢ {1, ..., N}, where

x =
NX

j=1

xjej , (16)

xj 2 Ar for each j, ej = (0, ..., 0, 1, 0, ..., 0) with 1 at j-th place. This means
in particular that the projective space PA

n
r has the dimension n � 1 over the

Cayley-Dickson algebra Ar. In this base consider the Ar-Hermitian scalar
product

< x, y >:=
NX

j=1

x⇤jyj . (17)
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Let l 2 PAN�1
r , take an Ar-hyperplane denoted by (AN�1

r )l and given by the
condition:

< x, y >= 0 for each x 2 (AN�1
r )l and y 2 l . (18)

We take a vector 0 6= [l] 2 A

N
r as a representative characterizes the equiv-

alence class l =< Ar, [l]} of unit norm k[l]k = 1. Then the orthonormal
base {q1, ..., qN�1} in (AN�1

r )l and the vector [l] =: qN compose the orthonor-
mal base {q1, ..., qN} in A

N
r . This provides the Ar- di↵erentiable projection

⇡l : AN
r ! (AN�1

r )l relative to the orthonormal base {q1, ..., qN}. Indeed, the
operator ⇡l is Ar left ⇡l(bx0) = b⇡l(x0) and also right ⇡l(x0b) = ⇡l(x0)b linear
for each x0 2 X0 and b 2 Ar, but certainly non-linear relative to Ar. Therefore
the mapping ⇡l is Ar- di↵erentiable.

To construct an immersion it is su�cient, that each projection ⇡l : TxM !

(AN�1
r )l has ker[d(⇡l(x))] = {0} for each x 2 M . The set of all points x 2 M

for which ker[d(⇡l(x))] 6= {0} is called the set of forbidden directions of the
first kind. Forbidden are those and only those directions l 2 PAN�1

r for which
there exists a point x 2 M such that l0 ⇢ TxM , where l0 = [l] + z, z 2 A

N
r .

The set of all forbidden directions of the first kind forms the Ar- di↵erentiable
manifold Q due to formulas (11)-(18) and (1)-(3).

This manifold Q consists of points (x, l) with x 2 M and l 2 PAN�1
r so

that [l] 2 TxM . The manifold M is m-dimensional over the Cayley-Dickson
algebra Ar. The tangent bundle TM has the structure of an Ar- di↵erentiable
manifold of dimension 2m over the Cayley-Dickson algebra Ar in accordance
with Proposition 4 above. Each point x in the manifold M has an open neigh-
borhood locally homeomorphic with an open neighborhood of zero in TxM .
Then dimArTxM = m and hence P (TxM)2 is isomorphic with PA2m�1

r . On
the other hand, the dimension of the projective space PA2m�1

r over the Cayley-
Dickson algebra Ar is 2m�1 (see also Formulas (1�4)). Therefore, the manifold
Q has the Ar dimension (2m�1). Take the mapping g : Q ! PAN�1

r given by
g(x, l) := l. Then this mapping g is Ar- di↵erentiable in view of Proposition 2.4
and formulas (11)-(18) and (1)-(3).

Each paracompact manifold A modeled on A

p
r can be supplied with the

Riemann manifold structure also. Therefore, on a manifold A there exists
a Riemann volume element. In view of the Morse theorem µ(g(Q)) = 0, if
N � 1 > 2m� 1, that is, 2m < N , where µ is the Riemann volume element in
PAN�1

r . In particular, g(Q) is not equal to the whole PAN�1
r and there exists

l0 /2 g(Q), consequently, there exists ⇡l0 : M ! (AN�1
r )l0 . This procedure

can be prolonged, when 2m < N � k, where k is the number of the step of
projection. Hence M can be immersed into A

2m
r .

Consider now the forbidden directions of the second type: l 2 PAN�1
r ,

for which there exist x 6= y 2 M simultaneously belonging to l after suitable
parallel translation [l] 7! [l] + z, z 2 A

N
r . The set of the forbidden directions

of the second type forms the manifold � := M2
\ �, where � := {(x, x) :
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x 2 M}. Consider  : � ! PAN�1
r , where  (x, y) is the straight Ar-line

with the direction vector [x, y] in the orthonormal base. Then µ( (�)) = 0 in
PAN�1

r , if 2m+1 < N . Then the closure cl( (�)) coincides with  (�)[g(Q) in
PAN�1

r . Hence there exists l0 /2 cl( (�)). Then consider ⇡l0 : M ! (Ar)N�1
l0

.
This procedure can be prolonged, when 2m+1 < N�k, where k is the number
of the step of projection. Hence M can be embedded into A

2m+1
r .

(II). Let now M be a paracompact Ar- di↵erentiable manifold with count-
able atlas on l2(�,K). Spaces l2(�,Ar) � A

m
r and l2(�,Ar) � l2(�,Ar) are

isomorphic as Ar Hilbert spaces with l2(�,Ar), since card(�) � @0. Take an
additional variable z 2 Ar, when z = j 2 N. Then it gives a number of a
chart. Each TUj is Ar- di↵erentiably di↵eomorphic with Uj ⇥ l2(�,Ar). Con-
sider Ar- di↵erentiable functions  on domains in l2(�,Ar) � l2(�,Ar) � Ar.
Then there exists an Ar- di↵erentiable mapping  j : M ! l2(�,Ar) such that
 j : Uj !  j(Uj) ⇢ l2(�,Ar) is an Ar- di↵erentiable di↵eomorphism. Then
the mapping ( 1, 2, ...) provides the Ar- di↵erentiable embedding of M into
l2(�,Ar).

Remark 2.7. Theorem 2.6 is the extension of the immersion and embedding
Whitney theorems to Ar-di↵erentiable manifolds (see also Theorems 1, 2 and
Footnote 4 in [37]; or Theorems 1.3.4, 1.3.5 and Proposition 2.1.0 in [18]; or
Theorem in §11 Chapter II.2 [4]).
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A Lewy-Stampacchia estimate for

variational inequalities in the
Heisenberg group

Andrea Pinamonti and Enrico Valdinoci

Abstract. We consider an obstacle problem in the Heisenberg group
framework, and we prove that the operator on the obstacle bounds point-
wise the operator on the solution. More explicitly, if ū minimizes the
functional Z

⌦
|rHnu|

2

among the functions with prescribed Dirichlet boundary condition that
stay below a smooth obstacle  , then

0  �Hn ū 
⇣
�Hn 

⌘+
.

Moreover, we discuss how it could be possible to generalize the previ-
ous bound to a quasilinear setting once some regularity issues for the
equation

divHn

⇣
|rHnu|

p�2
rHnu

⌘
= f

are satisfied.

Keywords: obstacle problem, dual estimates, Heisenberg group
MS Classification 2010: 35R03, 35H20, 49M29

1. Introduction

In this paper, we extend the so called Dual Estimate of [11] to the obstacle
problem for the Kohn-Laplacian operator in the Heisenberg group.

The notation we use is the standard one: for n � 1, we consider R2n+1
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endowed with the group law
�
x(1), y(1), t(1)

�
�

�
x(2), y(2), t(2)

�

:=
⇣
x(1) + x(2), y(1) + y(2), t(1) + t(2) + 2(x(2)

· y(1)
� x(1)

· y(2))
⌘
,

for any (x(1), y(1), t(1)), (x(2), y(2), t(2)) 2 Rn
⇥ Rn

⇥ R, where the “·” is the
standard Euclidean scalar product.

Then, we denote by Hn the n-dimensional Heisenberg group, i.e., R2n+1

endowed with this group law.
The coordinates are usually written as (x, y, t) 2 Rn

⇥ Rn
⇥ R, and, as

customary, we introduce the left invariant vector fields (X, Y ) induced by the
group law

Xj :=
@

@xj
+ 2yj

@

@t
and Yj :=

@

@yj
� 2xj

@

@t
,

for j = 1, . . . , n, and the horizontal gradient rHn := (X, Y ). The main issue of
the Heisenberg group is that X and Y do not commute, that is

[X, Y ] = �4
@

@t
6= 0.

We are interested in studying the obstacle problem in this framework. For this,
we consider a smooth function  : Hn

! R, which will be our obstacle (more
precisely,  is supposed to have continuous derivatives of second order in X
and Y ).

Fixed a bounded open set ⌦ with smooth boundary, and p 2 (1,+1), we
consider the space W 1,p

Hn (⌦) to be the set of all functions u in Lp(⌦) whose
distributional horizontal derivatives Xju and Yju belong to Lp(⌦), for j =
1, . . . , n.

Such space is naturally endowed with the norm

kukW 1,p
Hn (⌦) := kukLp(⌦) +

nX

j=1

⇣
kXjukLp(⌦) + kYjukLp(⌦)

⌘
.

We call W 1,p
Hn,0(⌦) the closure of C10 (⌦) with respect to this norm.

We fix a smooth domain ⌦? c ⌦, u? 2 W 1,2
Hn (⌦?)\L1(⌦?) and we introduce

the space

K :=
�
u 2 W 1,2

Hn (⌦) s.t. u   , and u� u? 2 W 1,2
Hn,0(⌦)

 
. (1)

Loosely speaking, K is the space of all the functions having prescribed Dirichlet
boundary datum equal to u? along @⌦ and that stay below the obstacle  .

We deal with the variational problem

inf
u2K

F(u;⌦), where F(u;⌦) :=
Z

⌦
|rHnu|

2. (2)
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By direct methods, it is seen that such infimum is attained (see, e.g., the
compactness result in [18, 5] or references therein) and so we consider a mini-
mizer ū. It is worth pointing out that such minimizer may be written in terms
of a variational inequality, namely

Z

⌦
rHn ū ·rHn(v � ū) � 0, (3)

for any v 2 W 1,2
Hn (⌦) with v   , and v � ū 2 W 1,2

Hn,0(⌦). These kind of
variational inequalities1 are now receiving a considerable attention (see, e.g., [6]
and references therein).

Our main result is:

Theorem 1.1. Let ū and  as above then

0  �Hn ū 
⇣
�Hn 

⌘+
(4)

in the sense of distributions. As usual, the superscript “+” denotes the positive
part of a function, i.e. f+(x) := max{f(x), 0}.

The result in Theorem 1.1 is quite intuitive: when ū does not touch the
obstacle, it is free to make the operator vanish. When it touches and sticks
to it, the operator computed in ū is driven by the positive part of the same
operator computed in the obstacle – and on these touching points the obstacle
has to bend in a somewhat convex fashion, which justifies the first inequality
in (4) and superscript “+” in the right hand side of (4).

Figure 1, in which the thick curve represents the touching between ū and
the obstacle, tries to describe this phenomena. On the other hand, the set in
which ū touches the obstacle may be very wild, so the actual proof of Theo-
rem 1.1 needs to be more technical than this.

In fact, the first inequality of (4) is quite obvious since it follows, for in-
stance, by taking v := ū � ' in (3), with an arbitrary ' 2 C10 (⌦, [0,+1))),
so the core of (4) lies on the second inequality: nevertheless, we think it is
useful to write (4) in this way to emphasize a control from both the sides of
the operator applied to the solution.

We remark that the right hand side of (4) is always finite (due to the
regularity of the obstacle). Hence, (4) is an L1-bound and may be seen as a
regularity result for the solution of the obstacle problem.

In the Euclidean setting, the analogue of (4) was first obtained in [11] for
the Laplacian case, and it is therefore often referred to with the name of Lewy-
Stampacchia Estimate. It is also called Dual Estimate, for it is, in a sense,
obtained by the duality expressed by the variational inequality (3).

1The proof of (3) is standard. See however the footnote on page 27 for a general argument.
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Figure 1: Touching the obstacle

After [11], estimates of these type became very popular and underwent
many important extensions and strengthenings: see, among the others, [15, 9,
8, 1, 14].

The paper is organized as follows. First, in § 2, we discuss some possible
extensions of Theorem 1.1 to the quasilinear case, once a more comprehensive
regularity theory will become available. This will lead to a somewhat more
general form of Theorem 1.1, namely Theorem 2.2 below (which will introduce
an auxiliary parameter " � 0). Then, in § 3, we prove Theorem 2.2 when " > 0.
The proof when " = 0 is contained in § 4–5 and it is based on a limit argument,
i.e., we consider the problem with " > 0, we use Theorem 2.2 in such a case,
and then we pass "& 0. The paper ends with an Appendix that collects some
ancillary results needed in § 4.

2. Possible extension to the quasilinear case (waiting for
a more exhaustive regularity theory)

Now we try to give some ideas of how Theorem 1.1 could be generalized to
the quasilinear setting. In particular, we prove that for a suitable set of expo-
nents P( , ⌦) (see Definition 2.1 and Theorem 2.2) an analogue of Theorem 1.1
holds for the Heisenberg group version of the p-Laplace operator2.

2We inform the reader that our result in Theorem 2.2 is far from being exhaustive in the
quasilinear case, since, in principle, we are only able to prove explicitly that 2 2 P( , ⌦). The
primary source of di�culties to decide whether p 2 P( , ⌦) is the absence of a satisfactory
Hölder regularity theory for the horizontal gradient for solutions of quasilinear equations in
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The notation we use is the following. Given p 2 (1,+1), a smooth do-
main ⌦? c ⌦, u? 2 W 1,p

Hn (⌦?) \ L1(⌦?) and " � 0, we consider the minimiza-
tion problem

inf
u2Kp

F"(u;⌦), where F"(u;⌦) :=
Z

⌦
("+ |rHnu|

2)p/2, (5)

and
Kp :=

�
u 2W 1,p

Hn (⌦) s.t. u   , and u� u? 2W 1,p
Hn,0(⌦)

 
. (6)

By comparing (1) and (6), we observe that Kp reduces to K when p = 2.
Hence, the minimization problem in (5) reduces to the one in (2) when p = 2
and " = 0.

We notice that ū" is a solution of the variational inequality3

Z

⌦
("+ |rHn ū"|

2)(p�2)/2
rHn ū" ·rHn(v � ū") � 0, (7)

for any v 2 W 1,p
Hn (⌦) with v   , and v � ū" 2 W 1,p

Hn,0(⌦). Now, we introduce
the set of p’s for which our main result holds. The definition we give is slightly
technical, but, roughly speaking, consists in taking the set of all the p’s for

the Heisenberg group. Namely, if one knew that for a given p bounded solutions of divHn (("+
|rHnu|

2)(p/2)�1
rHnu) = f , with f bounded, have Hölder continuous horizontal gradient,

with interior estimates (this would be the Heisenberg counterpart of classical regularity results
for the Euclidean case, see, e.g., Theorem 1 in [17]) then p 2 P( , ⌦). As far as we know,
such a theory has not been developed yet, not even for minimal solutions (see, however, [3,
12, 13, 19] where good C1,↵ estimates are proved for the case of homogeneous equations). On
the other hand, we think it is worth pointing out how Theorem 1.1 could be generalized in
the generality allowed by the set P( , ⌦), since once the regularity theory becomes available,
our result would be valid in general – and also because the setting we use is somewhat more
general and weaker than the regularity theory itself.

We stress that the quasilinear case in the Heisenberg group is more problematic than
expected at a first glance, and many basic fundamental questions are still open (see, e.g., [7],
[12], [13] and [19]).

3Formula (7) may be easily obtained this way. Fixed v 2 W 1,p
Hn (⌦) with v   , and v�ū" 2

W 1,p
Hn,0(⌦), for any t � 0, let u(t) := ū" + t(v � ū"). Notice that

u(t) := (1� t)ū" + tv  (1� t) + t   ,

hence u(t)
2 Kp. So, by the minimality of ū", we have F"(u(0); ⌦) = F"(ū"; ⌦)  F"(u(t); ⌦)

for any t � 0. Consequently,

0  lim
t&0

F"(u(t); ⌦)�F"(u(0); ⌦)

t

=

Z

⌦
("+ |rHn ū"|

2)(p�2)/2
rHn ū" ·rHn (v � ū"),

that is (7). Once again, (7) reduces to (3) when p = 2 (and in this case " does not play any
role).
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which a pointwise bound for the operator of a sequence of minimal solutions is
stable under uniform limits.

Definition 2.1. Let p 2 (1,+1). We say that p 2 P( , ⌦) if the following
property holds true: For any " > 0, any v 2 W 1,p

Hn (⌦), any M > 0, any
sequence Fk = Fk(r, ⇠) 2 C([�M,M ]⇥ ⌦), with Fk(·, ⇠) 2 C1([�M,M ]) and

0  @rFk 

⇣
divHn

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘⌘+
, (8)

if uk : ⌦! [�M,M ] is a sequence of minimizers of the functional
Z

⌦

1
p
("+ |rHnu(⇠)|2)p/2 + Fk(u(⇠), ⇠) d⇠ (9)

over the functions u 2 W 1,p
Hn (⌦), u � v 2 W 1,p

Hn,0(⌦), with the property that uk

converges to some u1 uniformly in ⌦, we have that

0  divHn

⇣
("+ |rHnu1|

2)(p/2)�1
rHnu1

⌘



⇣
divHn

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘⌘+ (10)

in the sense of distributions.

As remarked in Lemma 5.7 at the end of this paper, we always have that

2 2 P( , ⌦). (11)

We think that it is an interesting open problem to decide whether or not other
values of p belong to P( , ⌦), in general, or at least when the right hand side
of (10) is close to zero (e.g., when the obstacle is almost flat).

With this notation, the following result holds true:

Theorem 2.2. If p 2 P( , ⌦) then

0  divHn

⇣
("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘



⇣
divHn

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘⌘+ (12)

in the sense of distributions.

Notice that Theorem 1.1 is a particular case of Theorem 2.2 when p = 2,
thanks to (11). Therefore, in the sequel, we will prove Theorem 2.2 and so
Theorem 1.1 will follow as a consequence.

We point out that the arguments that we present are step-free, i.e. they do
not directly depend on the stratification step of Hn apart from the definition
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of the homogeneous dimension. More precisely, since our arguments are based
only on the intrinsic gradient concept rHn and the homogeneous dimension
of Hn, we can restate Theorems 1.1 and 2.2 in any nilpotent stratified Lie
groups of any step G simply changing divHn and rHn with divG and rG. Here
divG and rG are respectively the intrinsic divergence and the intrinsic gradient
in G (see [18]). So here we work in Hn only for the sake of notational simplicity.

3. Proof of Theorem 2.2 when " > 0

We prove (12) in the simpler case " > 0 (the case " = 0 will be dealt with
in § 5). The technique used in this proof is a variation of a classical penalized
test function method (see, e.g., [15, 9, 8, 1, 14] and references therein), and
several steps of this proof are inspired by some estimates obtained by [4] in the
Euclidean case.

First of all, we set

µ := �1 + min
�

inf
⌦
 , inf

⌦
u?

 
2 R

and we observe that
ū" � µ (13)

a.e. in ⌦. Indeed, let w := max{ū", µ}. Since  and u? are below µ in ⌦, we
have that w 2 K, thus

0  F"(w;⌦)� F"(ū";⌦) = �

Z

⌦\{ū"<µ}
("+ |rHn ū"|

2)p/2
 0,

and, from this, (13) plainly follows.
Now, let ⌘ 2 (0, 1), to be taken arbitrarily small in the sequel. Let also

h :=
⇣
divHn

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘⌘+
. (14)

Notice that
khkL1(⌦) < +1, (15)

because " > 0. For any t 2 R, we consider the truncation function

H⌘(t) :=

8
><

>:

0 if t  0,
t/⌘ if 0 < t < ⌘,
1 if t � ⌘.

Now, we take u⌘ to be a weak solution of
(

divHn

⇣
("+ |rHnu⌘|

2)(p/2)�1
rHnu⌘

⌘
= h ·

�
1�H⌘( � u⌘)

�
in ⌦,

u⌘ = ū" on @⌦.
(16)
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where, as usual, the boundary datum is attained in the trace sense: such a
function u⌘ may be obtained by the direct method in the calculus of variations,
by minimizing the functional

Z

⌦

1
p
("+ |rHnu(⇠)|2)p/2 + F⌘(u(⇠), ⇠) d⇠

over u 2W 1,p
Hn (⌦), u� ū" 2W 1,p

Hn,0(⌦), where

F⌘(r, ⇠) :=
Z r

0
h(⇠) ·

�
1�H⌘( (⇠)� �)

�
d�.

Now, we claim that
u⌘   a.e. in ⌦. (17)

To establish this, we use the test function (u⌘ �  )+ in (16). Since, on @⌦, we
have (u⌘ �  )+ = (ū" �  )+ = 0, we obtain that

�

Z

⌦

⇣
("+ |rHnu⌘|

2)(p/2)�1
rHnu⌘

⌘
·rHn(u⌘ �  )+

=
Z

⌦
h ·

�
1�H⌘( � u⌘)

�
(u⌘ �  )+ =

Z

⌦
h · (u⌘ �  )+.

Consequently, by (14),
Z

⌦

h⇣
("+ |rHnu⌘|

2)(p/2)�1
rHnu⌘

⌘

�

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘i
·rHn(u⌘ �  )+

=
Z

⌦

h
divHn

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘
� h

i
· (u⌘ �  )+

 0.

By the strict monotonicity of the operator (i.e., by the strict convexity of the
function R2n

3 ⇣ 7! (" + |⇣|2)p/2), it follows that (u⌘ �  )+ vanishes almost
everywhere in ⌦, proving (17).

Now, we claim that
ū" � u⌘ a.e. in ⌦. (18)

To verify this, we consider the test function

⌧ := ū" + (u⌘ � ū")+.

We notice that

⌧ =

(
ū" in {u⌘  ū"},

u⌘ in {u⌘ > ū"},
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hence ⌧   , due to (17). Furthermore, on @⌦, we have that ⌧ = ū", due
to the boundary datum in (16). Therefore the obstacle problem variational
inequality (3) gives that

0 
Z

⌦

⇣
("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘
·rHn(⌧ � ū")

=
Z

⌦

⇣
("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘
·rHn(u⌘ � ū")+.

(19)

On the other hand, from (16),
Z

⌦

⇣
("+ |rHnu⌘|

2)(p/2)�1
rHnu⌘

⌘
·rHn(u⌘ � ū")+

= �
Z

⌦
h ·

�
1�H⌘( � u⌘)

�
· (u⌘ � ū")+  0.

(20)

By (19) and (20), we obtain that
Z

⌦

h⇣
("+ |rHnu⌘|

2)(p/2)�1
rHnu⌘

⌘

�

⇣
("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘i
·rHn(u⌘ � ū")+  0.

This and the strict monotonicity of the operator implies that (u⌘�ū")+ vanishes
almost everywhere in ⌦, hence proving (18).

Now, we claim that
ū"  u⌘ + ⌘ in ⌦. (21)

To do this, we set
✓ := ū" � (ū" � u⌘ � ⌘)+.

Notice that ✓  ū"   , and also that, on @⌦, ✓ = ū". As a consequence, (3)
gives that

0 
Z

⌦

⇣
("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘
·rHn(✓ � ū")

= �
Z

⌦

⇣
("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘
·rHn(ū" � u⌘ � ⌘)+.

(22)

On the other hand, (ū" � u⌘ � ⌘)+ = 0 on @⌦, and

{ū" � u⌘ � ⌘ > 0} ✓ { � u⌘ > ⌘}

✓

�
1�H⌘( � u⌘) = 0

 
,
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and therefore, by (16),
Z

⌦

⇣
("+ |rHn(u⌘ + ⌘)|2)(p/2)�1

rHn(u⌘ + ⌘)
⌘

·rHn(ū" � u⌘ � ⌘)+

=
Z

⌦

⇣
("+ |rHnu⌘|

2)(p/2)�1
rHnu⌘

⌘
·rHn(ū" � u⌘ � ⌘)+

=�
Z

⌦
h ·

�
1�H⌘( � u⌘)

�
· (ū" � u⌘ � ⌘)+ = 0.

(23)

Then, (22) and (23) yield that
Z

⌦

h⇣
("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘

�

⇣
("+ |rHn(u⌘ + ⌘)|2)(p/2)�1

rHn(u⌘ + ⌘)
⌘i

·rHn(ū" � u⌘ � ⌘)+

 0.

Thus, in this case, the strict monotonicity of the operator implies that (ū" �

u⌘ � ⌘)+ vanishes almost everywhere in ⌦, and so (21) is established.
In particular, by (17), (21) and (13),

ku⌘kL1(⌦)  2 + k kL1(⌦) + ku?kL1(⌦). (24)

Moreover, by (18) and (21), we have that

u⌘ converges uniformly in ⌦ to ū" (25)

as ⌘ & 0.
Furthermore

0  @rF⌘(r, ⇠)  h(⇠) =
⇣
divHn

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘⌘+

hence (12) follows4 from (25) and the fact that p 2 P( , ⌦) (recall (10) in
Definition 2.1).

4. Estimating the Lp-distance between rHnū0 and rHnū"

The purpose of this section is to consider the solution ū" of the "-problem
and the solution ū0 of the problem with " = 0, and to bound the Lp-norm of
|rHn ū0�rHn ū"|. Such estimate is quite technical and it is di↵erent according
to the cases p 2 (1, 2] and p 2 [2,+1): see the forthcoming Propositions 4.1
and 4.2.

4It is worth pointing out that this is the only place in the paper where we use the condition
that p 2 P( , ⌦). In particular, all the estimates in § 4 are valid for all p 2 (1, +1).
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As a matter of fact, we think that the estimates proved in Propositions 4.1
and 4.2 are of independent interest, since they also allow to get around the
more di�cult (and in general not available in the Heisenberg group) Hölder-
type estimates.

We recall the standard notation of balls in the Heisenberg group (in fact,
we deal with the so called Folland-Korány balls, but the Carnot-Carathéodory
balls would be good for our purposes too). For all ⇠ := (z, t) 2 R2n

⇥ R, we
define

k⇠kHn := 4
p

|z|4 + t2.

Then, for any r > 0, we set

Br :=
�
⇠ 2 R2n+1 s.t. k⇠kHn < r

 
.

We denote by L the (2n + 1)-dimensional Lebesgue measure, and we observe
that L(Br) equals, up to a multiplicative constant rQ, where Q := 2(n + 1)
is the homogeneous dimension of Hn. Also, for all g 2 L1(Br), we define the
average of g in Br as

(g)r :=
1

L(Br)

Z

Br

g.

In what follows, we focus on Lp-estimates around a fixed point, say ⇠?, of ⌦.
Without loss of generality, we take ⇠? to be the origin, and we fix R 2 (0, 1) so
small that BR b ⌦.

Then, we denote by ū0 : ⌦ ! R the minimizer of problem (2) with " = 0.
Then, for a fixed " > 0, we take ū" : BR ! R to be the minimizer of F"(u;BR)
among all the functions u 2 W 1,p

Hn (BR), u   , and u � ū0 2 W 1,p
Hn,0(BR). We

can then extend ū" also on ⌦ \ BR by setting it equal to ū0 in such a set. By
construction

Z

BR

|rHn ū0|
p = F0(ū0;⌦)�

Z

⌦\BR

|rHn ū0|
p

 F0(ū";⌦)�
Z

⌦\BR

|rHn ū0|
p =

Z

BR

|rHn ū"|
p

(26)

and
Z

BR

("+ |rHn ū"|
2)p/2 = F"(ū";BR)

 F"(ū0;BR) =
Z

BR

("+ |rHn ū0|
2)p/2.

(27)

Proposition 4.1. Assume that

p 2 (1, 2]. (28)
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Then, there exists C > 0, only depending on n and p, such that
Z

BR

|rHn ū0 �rHn ū"|

p
 C

�
1 + (|rHn ū0|

p)R

�1�(p/2)
"(p/2)2RQ. (29)

Proof. The technique for this proof is inspired by the one of Lemma 2.3 of [16],
where a similar result was obtained in the quasilinear Euclidean case (however,
our proof is self-contained). We have

|rHn ū" �rHn ū0|

2


�
|rHn ū"| + |rHn ū0|

�2

 C
�
|rHn ū"|

2 + |rHn ū0|

2
�
.

(30)

Here, C is a positive constant, which is free to be di↵erent from line to line.
By (28), (27) and (30), we obtain

Z

BR

(" + |rHn ū0|

2 + |rHn ū"|

2)(p/2)�1
|rHn ū" �rHn ū0|

2

C

Z

BR

|rHn ū"|

2 + |rHn ū0|

2

(" + |rHn ū0|

2 + |rHn ū"|

2)1�(p/2)

=C

✓Z

BR

|rHn ū"|

2

(" + |rHn ū0|

2 + |rHn ū"|

2)1�(p/2)

+
Z

BR

|rHn ū0|

2

(" + |rHn ū0|

2 + |rHn ū"|

2)1�(p/2)

◆

C

✓Z

BR

|rHn ū"|

2

(" + |rHn ū"|

2)1�(p/2)
+

Z

BR

|rHn ū0|

2

(" + |rHn ū0|

2)1�(p/2)

◆

C

✓Z

BR

(" + |rHn ū"|

2)p/2 +
Z

BR

(" + |rHn ū0|

2)p/2

◆

C

Z

BR

(" + |rHn ū0|

2)p/2.

(31)

Thus, (31) and Lemma 5.4, applied here with a := rHn ū0 and b := rHn ū",
yield that

Z

BR

(" + |rHn ū0|

2 + |rHn ū"|

2)p/2

 C

Z

BR

(" + |rHn ū0|

2 + |rHn ū"|

2)(p/2)�1
|rHn ū" �rHn ū0|

2+

+ C

Z

BR

(" + |rHn ū0|

2)(p/2)

 C

Z

BR

(" + |rHn ū0|

2)(p/2).

(32)
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Now, from (26),
Z

BR

(" + |rHn ū0|

2)(p/2)
�

Z

BR

(" + |rHn ū"|

2)(p/2)



Z

BR

(" + |rHn ū0|

2)(p/2)
�

Z

BR

|rHn ū"|

p



Z

BR

(" + |rHn ū0|

2)(p/2)
�

Z

BR

|rHn ū0|

p.

(33)

Moreover, using (28) and some elementary calculus, we see that

|(1 + ⌧)p/2
� ⌧p/2

|  C

for any ⌧ � 0. Therefore, taking ⌧ := ✓/", we obtain that

|(" + ✓)p/2
� ✓p/2

|  C"p/2 (34)

for any ✓ � 0. Thus, using (33) and (34) with ✓ := |rHn ū0|

2, we conclude that
Z

BR

(" + |rHn ū0|

2)(p/2)
�

Z

BR

(" + |rHn ū"|

2)(p/2)
 C"p/2RQ. (35)

Now, we estimate the left hand side of (35) from below. For this scope, we
define

h := trHn ū0 + (1� t)rHn ū",

J := p

Z

BR

(" + |rHn ū"|

2)(p/2)�1
rHn ū" · (rHn ū0 �rHn ū")

and J̃ := p

Z

BR

h Z 1

0
(1� t)

d

dt

⇣
(" + |h|

2)(p/2)�1h · (rHn ū0 �rHn ū")
⌘

dt
i
.

We observe that the variational inequality in (3) for ū" gives that

J � 0. (36)

Also, using the Fundamental Theorem of Calculus, we obtain
Z

BR

(" + |rHn ū0|

2)(p/2)
�

Z

BR

(" + |rHn ū"|

2)(p/2)

=
Z

BR

h Z 1

0

d

dt
(" + |trHn ū0 + (1� t)rHn ū"|

2)(p/2) dt
i

= p

Z

BR

h Z 1

0
(" + |trHn ū0 + (1� t)rHn ū"|

2)(p/2)�1

⇥ (trHn ū0 + (1� t)rHn ū") · (rHn ū0 �rHn ū") dt
i

= p

Z

BR

h Z 1

0
(" + |h|

2)(p/2)�1h · (rHn ū0 �rHn ū") dt
i
.
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Integrating by parts the latter integral in t (by writing dt = d
dt (t� 1) dt), and

exploiting (36), we obtain
Z

BR

(" + |rHn ū0|

2)(p/2)
�

Z

BR

(" + |rHn ū"|

2)(p/2)

= J + J̃ � J̃ .

(37)

Making use of Lemma 5.3 – applied here with a := rHn ū0 and b := rHn ū" –
we have that

J̃ �
1
C

Z

BR

h Z 1

0
(1�t)("+|trHn ū0+(1�t)rHn ū"|

2)(p/2)�1
|rHn ū0�rHn ū"|

2 dt
i
.

From this and Lemma 5.5 – applied here with  := 1 and  (x) := x1�(p/2),
which is nondecreasing, thanks to (28) – we deduce that

J̃ �
1
C

Z

BR

(" + |rHn ū0|

2 + |rHn ū"|

2)(p/2)�1
|rHn ū0 �rHn ū"|

2. (38)

In view of (35), (37) and (38), we conclude that
Z

BR

(" + |rHn ū0|

2 + |rHn ū"|

2)(p/2)�1
|rHn ū0 �rHn ū"|

2
 C"p/2RQ. (39)

Then, (29) follows from (32), (39) and Lemma 5.6, applied here with f :=
rHn ū0 and g := rHn ū".

In the degenerate case p 2 [2,+1) the estimate obtained in Proposition 4.1
for the singular case p 2 (1, 2] needs to be modified according to the following
result:

Proposition 4.2. Suppose that

p 2 [2,+1). (40)

Then, there exists C > 0, only depending on n and p, such that
Z

BR

|rHn ū0 �rHn ū"|

p
 C

�
1 + (|rHn ū0|

p)R

�1�(1/p)
"RQ.

Proof. The variational inequalities (3) for ū0 and ū" imply that
Z

BR

|rHn ū0|

p�2
rHn ū0 · (rHn ū" �rHn ū0) � 0

and
Z

BR

(" + |rHn ū"|

2)(p/2)�1
rHn ū" · (rHn ū0 �rHn ū") � 0.
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Consequently,

Z

BR

⇣
|rHn ū0|

p�2
rHn ū0�("+ |rHn ū"|

2)(p/2)�1
rHn ū"

⌘
·(rHn ū0�rHn ū")  0.

Using this and (46) of Lemma 5.1, applied here with A := rHn ū0 and B :=
rHn ū", we obtain

Z

BR

|rHn ū0 �rHn ū"|

p

 C

Z

BR

⇣
|rHn ū0|

p�2
rHn ū0 � |rHn ū"|

p�2
rHn ū"

⌘
· (rHn ū0 �rHn ū")

 C

Z

BR

⇣
("+|rHn ū"|

2)(p/2)�1
rHn ū"�|rHn ū"|

p�2
rHn ū"

⌘
·(rHn ū0�rHn ū").

This and Corollary 5.2, applied here with a := rHn ū", give

Z

BR

|rHn ū0 �rHn ū"|

p

 C

Z

BR

⇣
(" + |rHn ū"|

2)(p/2)�1
� |rHn ū"|

p�2
⌘

|rHn ū"| |rHn ū0 �rHn ū"|

 C"

Z

BR

(" + |rHn ū"|

2)(p�2)/2
�
|rHn ū0| + |rHn ū"|

�
.

Therefore, recalling (40), noticing that

p� 2
p

+
1
p

+
1
p

= 1

and using the Generalized Hölder Inequality with the three exponents p/(p�2),
p and p, we obtain

Z

BR

|rHn ū0 �rHn ū"|

p

 C"

✓Z

BR

(" + |rHn ū"|

2)p/2

◆(p�2)/p ✓Z

BR

�
|rHn ū0|

p + |rHn ū"|

p
�◆1/p

RQ/p.
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Then, by the minimal property of ū0 in (26),
Z

BR

|rHn ū0 �rHn ū"|

p

 C"

✓Z

BR

(" + |rHn ū"|

2)p/2

◆(p�2)/p ✓Z

BR

|rHn ū"|

p

◆1/p

RQ/p

 C"

✓Z

BR

(" + |rHn ū"|

2)p/2

◆(p�1)/p

RQ/p

 C"

✓
RQ +

Z

BR

|rHn ū"|

p

◆(p�1)/p

RQ/p

 C"

✓
RQ +

Z

BR

|rHn ū0|

p

◆(p�1)/p

RQ/p,

from which the desired result follows.

Corollary 4.3. For all p 2 (1,+1), we have that

lim
"&0

krHn ū" �rHn ū0kLp(BR) = 0. (41)

Also, there exist a subsequence of "’s and a function G 2 Lp(BR) such that

|rHn ū"(x)|  G(x) (42)

for almost every x 2 BR.
Furthermore, if we set

�" := (" + |rHn ū"|

2)(p/2)�1
rHn ū", (43)

then there exist a subsequence of "’s and a function G? 2 L1(BR) such that

|�"(x)|  G?(x) (44)

for almost every x 2 BR.

Proof. We obtain (41) from Propositions 4.1 and 4.2, according to whether p 2
(1, 2) or p 2 [2,+1).

From (41), one deduces (42) (see, e.g., Theorem 4.9(b) in [2]).
Now, we define G? := 2(p/2)(G + Gp�1). We observe that G? 2 L1(BR),

since G 2 Lp(BR) ✓ L1(BR) and Gp�1
2 Lp/(p�1)(BR) ✓ L1(BR) . So, in

order to obtain the desired result, we have only to show that the inequality
in (44) holds true.



A LEWY-STAMPACCHIA ESTIMATE IN HN 39

For this, we notice that, if p 2 (1, 2),

|�"| =
|rHn ū"|

("+ |rHn ū"|
2)1�(p/2)

=
|rHn ū"|

p�1
|rHn ū"|

2�p

("+ |rHn ū"|
2)1�(p/2)



|rHn ū"|
p�1("+ |rHn ū"|

2)(2�p)/2

("+ |rHn ū"|
2)1�(p/2)

= |rHn ū"|
p�1

 Gp�1,

which implies (44) in this case.
On the other hand, if p 2 [2,+1),

|�"|  2(p/2)�1
�
"(p/2)�1 + |rHn ū"|

p�2
�
|rHn ū"|

 2(p/2)�1(1 + Gp�2)G,

which implies (44) in this case too.

5. Proof of Theorem 2.2 when " = 0

By Theorem 2.2 (for " > 0, which has been proved in § 3), we know that, for
a sequence "& 0,

0 
Z

BR

�" ·r' 

Z

BR

⇣
divHn

⇣
("+ |rHn |

2)(p/2)�1
rHn 

⌘⌘+
', (45)

for any ' 2 C10 (BR, [0,+1)), as long as BR ⇢ ⌦, where �" is as in (43).
By possibly taking subsequences, in the light of (41) and (44), we have that

lim
"&0

�" = |rHn ū0|
p�2
rHn ū0

almost everywhere in BR, and that �" is equidominated in L1(BR). Con-
sequently, we can pass to the limit in (45) via the Dominated Convergence
Theorem and obtain (12) for ū0. This completes the proof of Theorem 2.2 also
when " = 0.

Appendix

In this appendix, we collect some technical and well known estimates of general
interest that will be used in the proofs of the main results of this paper.

We start with some classical estimates (see, e.g. Lemma 3 in [10] and
references therein), which turns out to be quite useful to deal with nonlinear
operators of degenerate type:
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Lemma 5.1. Let M 2 N, M � 1, and p 2 [2,+1). Then, there exists C > 1,
only depending on M and p, such that, for any A, B 2 RM ,

|A�B|

p
 C

⇣
|A|

p�2A� |B|

p�2B
⌘

· (A�B) (46)

and ���|A|

p�2A� |B|

p�2B
���  C|A�B|

⇣
|A|

p�2 + |B|

p�2
⌘
. (47)

Corollary 5.2. Let N 2 N and and p 2 [2,+1). Then, there exists C > 1,
only depending on N and p, such that for any " > 0 and any a 2 RN

�
(" + |a|

2)(p/2)�1
� |a|

p�2
�

|a|  C"(" + |a|

2)(p�2)/2.

Proof. We let A := (a, ") and B := (a, 0) 2 RN+1 and we exploit (47). We
obtain

2C"(" + |a|

2)(p�2)/2

� C"
⇣
(" + |a|

2)(p�2)/2 + |a|

p�2
⌘

= C|A�B|

⇣
|A|

p�2 + |B|

p�2
⌘

�

���|A|

p�2A� |B|

p�2B
���

=
���(" + |a|

2)(p�2)/2(a, ")� |a|

p�2(a, 0)
���

=
���
⇣�

(" + |a|

2)(p�2)/2
� |a|

p�2
�
a, (" + |a|

2)(p�2)/2"
⌘���

�

�
(" + |a|

2)(p�2)/2
� |a|

p�2
�

|a|,

as desired.

In the subsequent Lemmata 5.3 and 5.4, we collect some simple, but inter-
esting, estimates that are used in Proposition 4.1:

Lemma 5.3. Let N 2 N, N � 1, t 2 [0, 1], " > 0, and a, b 2 RN . Let h(t) :=
ta + (1� t)b. Then, there exists C > 1, only depending on N and p, such that

d

dt

⇣
(" + |h|

2)(p/2)�1h · (a� b)
⌘
�

1
C

(" + |ta + (1� t)b|2)(p/2)�1
|a� b|2.
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Proof. We have

d

dt

⇣
(" + |h|

2)(p/2)�1h · (a� b)
⌘

=
d

dt

⇣
(" + |h|

2)(p/2)�1h
⌘

· (a� b)

= (" + |h|

2)(p/2)�2
�
" + (p� 1)|h|

2
�dh

dt
· (a� b)

�

1
C

(" + |h|

2)(p/2)�1
|a� b|2

=
1
C

(" + |ta + (1� t)b|2)(p/2)�1
|a� b|2,

as desired.

Lemma 5.4. Let
p 2 (1, 2]. (48)

Let N 2 N, N � 1, " > 0, and a, b 2 RN . Then, there exists C > 1, only
depending on N and p, such that

(" + |a|2 + |b|2)p/2
 C

h
(" + |a|2 + |b|2)(p/2)�1

|b� a|2 + (" + |a|2)(p/2)
i
.

Proof. We have

|b|2 = |b� a + a|2 
�
|b� a| + |a|

�2
 C

�
|b� a|2 + |a|2

�

and so

(" + |a|2 + |b|2)p/2

= (" + |a|2 + |b|2)(p/2)�1(" + |a|2 + |b|2)
 C(" + |a|2 + |b|2)(p/2)�1(" + |a|2 + |b� a|2)
= C(" + |a|2 + |b|2)(p/2)�1

|b� a|2 + C(" + |a|2 + |b|2)(p/2)�1(" + |a|2).

Therefore, by (48),

(" + |a|2 + |b|2)p/2

 C(" + |a|2 + |b|2)(p/2)�1
|b� a|2 + C(" + |a|2)(p/2),

that is the desired claim.

The following result deals with some technical estimates on monotone inte-
grands.

Lemma 5.5. Let N 2 N, N � 1. Let  2 {0, 1}. Let ", "0 > 0. Let a, b 2 RN .
Let  : [", +1)! ["0,+1) be a measurable and nondecreasing function. Then

Z 1

0

(1� t)

 (" + |ta + (1� t)b|2)
dt �

1
2 (" + |a|2 + |b|2)

. (49)
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Proof. If |a|  |b|, for any t 2 [0, 1],

|ta + (1� t)b|2  t2|a|

2 + (1� t)2|b|2 + 2t(1� t)|a||b|

 t2|b|2 + (1 + t2 � 2t)|b|2 + 2t(1� t)|b|2 = |b|2.

On the other hand, if |a| � |b|, for any t 2 [0, 1],

|ta + (1� t)b|2  t2|a|

2 + (1� t)2|b|2 + 2t(1� t)|a||b|

 t2|a|

2 + (1 + t2 � 2t)|a|

2 + 2t(1� t)|a|

2 = |a|

2.

In any case,
"+ |ta + (1� t)b|2  "+ |a|

2 + |b|2

and the claim follows from the monotonicity of  .

The next is a useful Hölder/Lp type estimate, that is exploited in Proposi-
tion 4.1.

Lemma 5.6. Let N 2 N, N � 1. Let f , g 2 Lp(BR, RN ). Suppose that

p 2 (1, 2]. (50)

Then
Z

BR

|f � g|

p



✓Z

BR

("+ |f |

2 + |g|

2)(p/2)�1
|f � g|

2

◆p/2

⇥

✓Z

BR

("+ |f |

2 + |g|

2)p/2

◆(2�p)/2

.

Proof. We observe that

|f � g|

p

=
h
("+ |f |

2 + |g|

2)(p/2)�1
|f � g|

2
ip/2h

("+ |f |

2 + |g|

2)p/2
i(2�p)/2

,

and so the desired result follows from the Hölder Inequality with exponents 2/p
and 2/(2� p), which can be used here due to (50).

To end this paper, we remark that Definition 2.1 is always nonvoid (inde-
pendently of  and ⌦), in the sense that

Lemma 5.7. 2 2 P( ,⌦).
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Proof. The functional in (9) when p = 2 boils down to
Z

⌦

1
2

|rHnu(⇠)|2 + Fk(u(⇠), ⇠) d⇠, (51)

up to an additive constant that does not play any role in the minimization.
Hence, if uk minimizes this functional, we have that

�

Z

⌦
rHnuk(⇠) ·rHn'(⇠) d⇠ =

Z

⌦
@rFk(uk(⇠), ⇠)'(⇠) d⇠

for any ' 2 C10 (⌦).
Accordingly, if also uk approaches some u1 uniformly in ⌦, it follows that

Z

⌦
u1�Hn' = lim

k!+1

Z

⌦
uk�Hn'

= lim
k!+1

�

Z

⌦
rHnuk ·rHn' = lim

k!+1

Z

⌦
@rFk(uk, ⇠)'

(52)

for any ' 2 C10 (⌦).

Also, from (8),
0  @rFk  (�Hn )+

and so (52) gives that

0 
Z

⌦
u1�Hn' 

Z

⌦
(�Hn )+ ' (53)

for any ' 2 C10 (⌦, [0,+1)).

On the other hand, since uk is a minimizer for (51), we have that

sup
k2N

krHnukkL2(⌦) < +1

and so, up to a subsequence, we may suppose thatrHnuk converges to some ⌫ 2
L2(⌦) weakly in L2(⌦). It follows from the uniform convergence of uk that

�

Z

⌦
⌫ ·rHn' = � lim

k!+1

Z

⌦
rHnuk ·rHn'

= lim
k!+1

Z

⌦
uk �Hn' =

Z

⌦
u1�Hn'

for any ' 2 C10 (⌦). That is, rHnu1 = ⌫ in the sense of distributions, and so
as a function. In particular, rHnu1 2 L2(⌦), and therefore (53) yields that

0 
Z

⌦
rHnu1 ·rHn' 

Z

⌦
(�Hn )+ ',

for any ' 2 C10 (⌦, [0,+1)). This shows that u1 satisfies (10) in the distribu-
tional sense.
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Classification of polarized manifolds by

the second sectional Betti number, II

Yoshiaki Fukuma

Abstract. Let X be an n-dimensional smooth projective variety de-
fined over the field of complex numbers, let L be a very ample line
bundle on X. Then we classify (X, L) with b2(X, L) = h2(X, C) + 2,
where b2(X, L) is the second sectional Betti number of (X, L).

Keywords: polarized manifold, ample line bundle, adjunction theory, sectional Betti

number.
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1. Introduction

Let X be a smooth projective variety of dimension n defined over the field of
complex numbers C and let L be an ample line bundle on X. Then we call this
pair (X, L) a polarized manifold. In [11], for every integer i with 0  i  n,
we defined the invariant bi(X, L) which is called the ith sectional Betti number
of (X, L). If L is spanned, then we can prove that bi(X, L) � hi(X, C) (see
Remark 2.3 (iii.1) below). So it is interesting to classify (X, L) by the value of
bi(X, L)� hi(X, C).

In this paper, we consider the case of i = 2. In [13, Theorem 4.1] (resp.
[14, Theorem 3.1]) we have classified polarized manifolds (X, L) such that L is
spanned and b2(X, L) = h2(X, C) (resp. b2(X, L) = h2(X, C) + 1).

In this paper we will consider the next step and we will classify polarized
manifolds (X, L) such that L is very ample and b2(X, L) = h2(X, C) + 2.

2. Preliminaries

In this paper we will use the customary notation in algebraic geometry.

2.1. Review on sectional invariants of polarized manifolds

In this subsection, we will review the theory of sectional invariants of polarized
manifolds which will be used in the main theorem (Theorem 3.1) and its proof.

Notation 2.1. (1) Let X be a projective variety of dimension n, let L be an
ample line bundle on X. Then the Euler-Poincaré characteristic �(L⌦t)
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of L⌦t is a polynomial in t of degree n, and we can describe �(L⌦t) as
follows.

�(L⌦t) =
n

X

j=0

�j(X, L)
✓

t + j � 1
j

◆

.

(2) Let Y be a smooth projective variety of dimension i, let TY be the tangent
bundle of Y , and let ⌦Y be the dual bundle of TY . For every integer j
with 0  j  i, we put

hi,j(c1(Y ), · · · , ci(Y )) := �(⌦j
Y )

=
Z

Y
ch(⌦j

Y )Td(TY ).

(Here ch(⌦j
Y ) (resp. Td(TY )) denotes the Chern character of ⌦j

Y (resp.
the Todd class of TY ). See [15, Examples 3.2.3 and 3.2.4].)

(3) Let (X, L) be a polarized manifold of dimension n. For every integers i
and j with 0  j  i  n, we put

Ci
j(X, L) :=

j
X

l=0

(�1)l

✓

n� i + l � 1
l

◆

cj�l(X)Ll,

wj
i (X, L) := hi,j(Ci

1(X, L), · · · , Ci
i (X, L))Ln�i.

(4) Let X be a smooth projective variety of dimension n. For every integers
i and j with 0  j  i  n, we put

H1(i, j) :=

8

>

<

>

:

i�j�1
X

s=0

(�1)shs(⌦j
X) if j 6= i,

0 if j = i,

H2(i, j) :=

8

>

<

>

:

j�1
X

t=0

(�1)i�tht(⌦i�j
X ) if j 6= 0,

0 if j = 0.

Definition 2.2. (See [10, Definition 2.1] and [11, Definition 3.1].) Let (X, L)
be a polarized manifold of dimension n, and let i and j be integers with 0 
j  i  n.

(1) The ith sectional geometric genus gi(X, L) of (X, L) is defined as follows:

gi(X, L) := (�1)i(�n�i(X, L)� �(OX)) +
n�i
X

j=0

(�1)n�i�jhn�j(OX).
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(2) The ith sectional Euler number ei(X, L) of (X, L) is defined by the fol-
lowing:

ei(X, L) := Ci
i (X, L)Ln�i.

(3) The ith sectional Betti number bi(X, L) of (X, L) is defined by the fol-
lowing:

bi(X, L) :=

8

>

>

<

>

>

:

e0(X, L) if i = 0,

(�1)i

0

@ei(X, L)�
i�1
X

j=0

2(�1)jhj(X, C)

1

A if 1  i  n.

(4) The ith sectional Hodge number hj,i�j
i (X, L) of type (j, i� j) of (X, L) is

defined by the following:

hj,i�j
i (X, L) := (�1)i�j

n

wj
i (X, L)�H1(i, j)�H2(i, j)

o

.

Remark 2.3. (i) For every integers i and j with 0  j  i  n, gi(X, L),
ei(X, L), bi(X, L) and hj,i�j

i (X, L) are integer (see [11, Proposition 3.1]).

(ii) Let (X, L) be a polarized manifold of dimension n. For every integers i
and j with 0  j  i  n, we have the following (see [11, Theorem 3.1]).

(ii.1) bi(X, L) =
i

X

k=0

hk,i�k
i (X, L).

(ii.2) hj,i�j
i (X, L) = hi�j,j

i (X, L).

(ii.3) hi,0
i (X, L) = h0,i

i (X, L) = gi(X, L).

(iii) Assume that L is ample and spanned. Then, for every integers i and j
with 0  j  i  n, the following inequalities hold (see [10, Theorem 3.1]
and [11, Proposition 3.3]).

(iii.1) bi(X, L) � hi(X, C).

(iii.2) hj,i�j
i (X, L) � hj,i�j(X).

(iii.3) gi(X, L) � hi(OX).

2.2. Adjunction theory of polarized manifolds

In this subsection, we will recall results on adjunction theory which will be
used later.

Definition 2.4. Let (X, L) be a polarized manifold of dimension n.
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(1) We say that (X, L) is a scroll (resp. quadric fibration, Del Pezzo fibra-
tion) over a normal projective variety Y of dimension m with 1  m < n
(resp. 1  m < n, 1  m < n � 1) if there exists a surjective morphism
with connected fibers f : X ! Y such that KX + (n �m + 1)L = f⇤A
(resp. KX + (n � m)L = f⇤A, KX + (n � m � 1)L = f⇤A) for some
ample line bundle A on Y .

(2) (X, L) is called a classical scroll over a normal variety Y if there exists a
vector bundle E on Y such that X ⇠= PY (E) and L = H(E), where H(E)
is the tautological line bundle.

(3) We say that (X, L) is a hyperquadric fibration over a smooth projective
curve C if (X, L) is a quadric fibration over C such that the morphism
f : X ! C is the contraction morphism of an extremal ray. In this case,
(F,LF ) ⇠= (Qn�1,OQn�1(1)) for any general fiber F of f , every fiber of f
is irreducible and reduced (see [18] or [7, Claim (3.1)]) and h2(X, C) = 2.

Remark 2.5. (1) If (X, L) is a scroll over a smooth projective curve C, then
(X, L) is a classical scroll over C (see [2, Proposition 3.2.1]).

(2) If (X, L) is a scroll over a normal projective surface S, then S is smooth
and (X, L) is also a classical scroll over S (see [3, (3.2.1) Theorem] and
[9, (11.8.6)]).

(3) Assume that (X, L) is a quadric fibration over a smooth curve C with
dim X = n � 3. Let f : X ! C be its morphism. By [3, (3.2.6) Theorem]
and the proof of [18, Lemma (c) in Section 1], we see that (X, L) is one
of the following:

(a) A hyperquadric fibration over C.

(b) A classical scroll over a smooth surface with dim X = 3.

Definition 2.6. (1) Let X (resp. Y ) be an n-dimensional projective man-
ifold, and L (resp. H) an ample line bundle on X (resp. Y ). Then
(X, L) is called a simple blowing up of (Y, H) if there exists a birational
morphism ⇡ : X ! Y such that ⇡ is a blowing up at a point of Y and
L = ⇡⇤(H)� E, where E is the ⇡-exceptional e↵ective reduced divisor.

(2) Let X (resp. M) be an n-dimensional projective manifold, and L (resp.
A) an ample line bundle on X (resp. M). Then we say that (M,A) is a
reduction of (X, L) if there exists a birational morphism µ : X !M such
that µ is a composition of simple blowing ups and (M,A) is not obtained
by a simple blowing up of any other polarized manifold.

Theorem 2.7. Let (X, L) be a polarized manifold with dim X = n � 3. Then
(X, L) is one of the following types.
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(1) (Pn,OPn(1)).

(2) (Qn,OQn(1)).

(3) A scroll over a smooth projective curve.

(4) KX ⇠ �(n� 1)L, that is, (X, L) is a Del Pezzo manifold.

(5) A hyperquadric fibration over a smooth projective curve.

(6) A classical scroll over a smooth projective surface.

(7) Let (M,A) be a reduction of (X, L).

(7.1) n = 4, (M,A) = (P4,OP4(2)).

(7.2) n = 3, (M,A) = (Q3,OQ3(2)).

(7.3) n = 3, (M,A) = (P3,OP3(3)).

(7.4) n = 3, M is a P2-bundle over a smooth curve C, the nef value of A
is 3

2 , and (F 0, A|F 0) ⇠= (P2,OP2(2)) for any fiber F 0 of it.

(7.5) KM + (n� 2)A is nef.

Proof. See [2, Proposition 7.2.2, Theorems 7.2.4, 7.3.2 and 7.3.4] and [9, (11.2),
(11.7) and (11.8)].

Notation 2.8. (1) Let (X, L) be a hyperquadric fibration over a smooth curve
C and let f : X ! C be its morphism. We put E := f⇤(L). Then E is
a locally free sheaf of rank n + 1 on C. Let ⇡ : PC(E) ! C be the pro-
jective bundle. Then X 2 |2H(E) + ⇡⇤(B)| for some B 2 Pic(C) and
L = H(E)|X , where H(E) is the tautological line bundle of PC(E). We
put e := deg E and b := deg B.

(2) (See [9, (13.10)].) Let (M,A) be a P2-bundle over a smooth curve C and
A|F = OP2(2) for any fiber F of it. Let f : M ! C be the fibration and
E := f⇤(KM + 2A). Then E is a locally free sheaf of rank 3 on C, and
M ⇠= PC(E) such that H(E) = KM +2A. In this case, A = 2H(E)+f⇤(B)
for a line bundle B on C, and by the canonical bundle formula we have
KM = �3H(E)+f⇤(KC +detE). Here we set e := deg E and b := deg B.

2.3. A classification of very ample vector bundles E on

surfaces with c2(E) = 3

Here we classify very ample vector bundles E on smooth projective surfaces
with c2(E) = 3. We will use this result later.
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Theorem 2.9. Let S be a smooth projective surface and let E be a very ample
vector bundle on S with c2(E) = 3 and rankE � 2. Then (S, E) is one of the
following types.

(i) (P2,OP2(1)�3).

(ii) (P2, TP2), where TP2 is the tangent bundle of P2.

(iii) (P1⇥P1, [p⇤1(OP1(1))⌦p⇤2(OP1(2))]� [p⇤1(OP1(1))⌦p⇤2(OP1(1))]), where pi

is the ith projection.

(iv) S is a blowing up of P2 at a point and E = (p⇤(OP2(2)) � E)�2, where
p : S ! P2 is the morphism and E is the exceptional divisor of p.

(v) (P2,OP2(1)�OP2(3)).

(vi) S is a Del Pezzo surface of degree 3 and E ⇠= O(�KS)�2.

Proof. By a result of Noma [22, Corollary], we see that (S, E) ⇠= (P2,OP2(1)�
OP2(3)) if c1(E)2 � 4c2(E) + 1 = 13. So we may assume that c1(E)2  12.
We consider (PS(E),H(E)) and let X := PS(E), L := H(E) and n := dim X.
Then H(E) is very ample and H(E)n = c1(E)2 � c2(E)  12 � 3 = 9. Let
⇡ : PS(E)! S be the projection. We use a classification of polarized manifolds
by the degree (see [17], [19] and [5]). First of all, we prove the following claim.

Claim 2.10. If g(X, L)  3 and c2(E) = 3, then (S, E) is one of the types (i),
(ii), (iii), (iv) and (v) in Theorem 2.9.

Proof. First we note that E is very ample.
If g(X, L) = 0, then by [8, (3.2) Theorem] or [4, (2.1) Theorem] we see that

c2(E) 6= 3.
If g(X, L) = 1 (resp. 2, 3) and c2(E) = 3, then by [8, (3.3) Theorem] or

[4, (2.2) Theorem] (resp. [8, (3.4) Theorem] or [4, (2.3) Theorem], [4, (2.11)
Theorem] and [20, Corollary 4.7]) we see that (X, L) is either (i) or (ii) (resp.
(iii) or (iv), (v)).

From now on, we assume that g(X, L) � 4. By the list of [17], we have
Ln � 6.

(A) The case where Ln = 6. Then we see from the list of [17] that X is
either a complete intersection of type (2, 3) or a hypersurface in Pn+1. But in
each case we have Pic(X) ⇠= Z and this is impossible.

(B) The case where Ln = 7. Then we see from the list of [17] and Table
II of [1, Page 55] that (X, L) is one of the following types.
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(B.1) (X, L) = (PT (F),H(F)) and g(X, L) = 4, where T is the blowing up of
P2 at 6 points and F is a locally free sheaf on T .

(B.2) n = 3, g(X, L) = 5 and �P : X ! Y is the blowing up of Y at a point P ,
where Y is a smooth complete intersection of type (2, 2, 2).

(B.3) g(X, L) = 6 and the morphism � : X ! P1 defined by the complete linear
system |KX + L| is a fibration over P1.

(B.4) X is a hypersurface of degree 7 in Pn+1.

(B.I) First we consider the case (B.2). Then Pic(X) ⇠= Z�2 and Pic(S) ⇠= Z.
Next we prove the following.

Claim 2.11. (S) = �1 holds.

Proof. In this case, there exists an e↵ective divisor E on X such that E ⇠= P2.
We note that ⇡(E) is not a point because every fiber of ⇡ is P1. Therefore
⇡E : E ! S is surjective because E ⇠= P2. Assume that ⇡E is not finite. Then
there exists a fiber F⇡ of ⇡ such that F⇡ is contracted by �P . Hence [2, Lemma
4.1.13] there exists a morphism � : S ! Y such that �P = � � ⇡. But this is
impossible because �P is surjective and dim S < dim Y . Therefore ⇡E is finite
and we have (S) = �1 because (E) = �1.

We see from Claim 2.11 and Pic(S) ⇠= Z that S ⇠= P2. We note that
rankE = 2 because dim X = 3 in this case. Hence by [20, Corollary 4.7]
g(X, L)  3 holds and this case is ruled out.
(B.II) Next we consider the case (B.3). Since h0(KX + L) = h0(KPS(E) +
H(E)) = 0, this case is also ruled out.
(B.III) Next we consider the case (B.4). This case is also ruled out because
Pic(X) 6⇠= Z.
(B.IV) Finally we consider the case (B.1). Then we have Pic(T ) ⇠= Z�7,
Pic(X) ⇠= Z�8 and Pic(S) ⇠= Z�7. Since c2(E) = 3 and Ln = 7, we have
c1(E)2 = 10. Hence we have KSc1(E) = �4 because g(S, c1(E)) = g(X, L) = 4.
Next we prove the following.

Claim 2.12. (S) = �1 holds.

Proof. Let ⇢ : X = PT (F)! T be the projection. Let D1, . . . , Dn�2 be general
members of |L| such that Xn�2 := D1\· · ·\Dn�2 is a smooth projective surface.
Here we note that ⇢Xn�2 : Xn�2 ! T and ⇡Xn�2 : Xn�2 ! S are birational
because Ln�2F⇢ = 1 (resp. Ln�2F⇡ = 1) for any general fiber F⇢ (resp. F⇡) of
⇢ (resp. ⇡). Therefore S is birationally equivalent to T . So we get the assertion
because (T ) = �1.
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Since (S) = �1, h1(OS) = 0 and Pic(S) ⇠= Z�7, we see that K2
S = 3.

Hence we get
(KSc1(E))2 = 16 < 30 = (KS)2(c1(E))2,

but this contradicts the Hodge index theorem. Therefore this case is also im-
possible.

(C) The case where Ln = 8. Then since we assume that g(X, L) � 4, we
see from the list of [19] that (X, L) is one of the following types.

(C.1) (X, L) = (PQ2(F),H(F)) and g(X, L) = 4, where F is a locally free sheaf
of rank two on Q2.

(C.2) X is a smooth complete intersection of type (2, 2, 2).

(C.3) The morphism � : X ! P1 defined by |KX + L| is a fibration over P1.

(C.4) X is a complete intersection of type (2, 4).

(C.5) X is a hypersurface of degree 8 in Pn+1.

(C.I) First we consider the cases (C.2), (C.4) and (C.5). These cases are ruled
out because PicX 6⇠= Z.
(C.II) Next we consider the case (C.3). Since h0(KX + L) = h0(KPS(E) +
H(E)) = 0, this case is also ruled out.
(C.III) Finally we consider the case (C.1). Since g(S, c1(E)) = g(X, L) = 4 and
c1(E)2 = 11, we have KSc1(E) = �5. Moreover Pic(X) ⇠= Z�3 and h1(OX) = 0.
Hence we have Pic(S) ⇠= Z�2 and h1(OS) = 0. By the same argument as in
the proof of Claim 2.12, we see that (S) = �1. So we have K2

S = 8, and

(KSc1(E))2 = 25 < 88 = (KS)2(c1(E))2.

But this contradicts the Hodge index theorem. Therefore this case is also im-
possible.

(D) The case where Ln = 9. In this case, since we assume that g(X, L) � 4,
we see from [6, Table III in page 104] (see also [5]) that (X, L) is one of the
following types.

(D.1) (X, L) = (PQ2(F),H(F)) and g(X, L) = 4, where F is a locally free sheaf
of rank two on Q2.

(D.2) (X, L) is a hyperquadric fibration over P1, g(X, L) = 4 and n = 3, 4, 5.

(D.3) X is the Segre embedding of P1 ⇥ Y in P7 and g(X, L) = 4, where Y is
a cubic surface in P3.
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(D.4) The reduction (M,A) of (X, L) is (Q3,OQ3(2)) and g(X, L) = 5.

(D.5) (X, L) is a scroll over P2 with five double points blown up, g(X, L) = 5
and n = 3.

(D.6) (X, L) is a scroll over the first Hirzebruch surface F1, g(X, L) = 5 and
n = 3.

(D.7) X is a blowing up of a Fano manifold Y at a point in P7, g(X, L) = 6
and n = 3.

(D.8) X is a hypercubic section of a cone over the Segre embedding of P1 ⇥ P2

in P5, g(X, L) = 7 and n = 3.

(D.9) (X, L) is a complete intersection of type (3, 3) and g(X, L) = 10.

(D.10) n = 3, X is linked to a P3 in the complete intersection of a quadric and
a quintic hypersurface, and g(X, L) = 12.

(D.11) n = 3, X is linked to a cubic scroll in the complete intersection of a cubic
and a quartic hypersurface, and g(X, L) = 9.

(D.12) n = 3, X is a P1-bundle over a minimal K3 surface and L is the tauto-
logical line bundle with g(X, L) = 8.

(D.13) X is a hypersurface of degree 9 in Pn+1 and g(X, L) = 28.

(D.I) First we consider the cases (D.9) and (D.13). These cases do not occur
because Pic(X) 6⇠= Z.

(D.II) Next we consider the case (D.1). In this case we have Pic(X) ⇠= Z�3.
Hence Pic(S) ⇠= Z�2. By the same argument as the proof of Claim 2.12, we
see that (S) = �1. Therefore S is a P1-bundle over P1. We also infer that
rankE = 2 because dim X = 3. So we see from [20, Corollary (2.11)] that (S, E)
is one of the following.

• S ⇠= P1 ⇥ P1 and E ⇠= (p⇤1OP2(1) ⌦ p⇤2OP2(1)) � (p⇤1OP2(1) ⌦ p⇤2OP2(2)),
where pi is the ith projection.

• S is the blowing up of P2 at a point and E = (p⇤(OP2(2))�E)�2, where
p : S ! P2 is the morphism and E is the exceptional divisor of p.

But here we assume that g(X, L) � 4, so these cases do not occur.

(D.III) Next we consider the case (D.3). First we note the following.

Claim 2.13. (S) = �1.
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Proof. Let p : X ! P1 be the projection map. If ⇡Fp : Fp ! S is finite for a
fiber Fp of p, then (S) = �1 because (Fp) = �1. If ⇡Fp : Fp ! S is not
finite for any fiber Fp of p, then there exists a fiber F⇡ of ⇡ such that p(F⇡) is
a point. So by [2, Lemma 4.1.13] there exists a surjective morphism r : S ! P1

such that p = r � ⇡. Since the irregurality of a general fiber of p is zero, so is
the irregurality of a general fiber of r. Therefore (S) = �1.

In this case we have Pic(X) ⇠= Z�8. Hence Pic(S) ⇠= Z�7. Since h1(OS) =
0, we have K2

S = 3. On the other hand we have g(S, c1(E)) = g(X, L) = 4
and c1(E)2 = H(E)3 + c2(E) = 12. Hence KSc1(E) = �6. Hence we have
(KSc1(E))2 = 36 = (K2

S)(c1(E)2). By the Hodge index theorem we have
c1(E) ⌘ �2KS , that is, S is a Del Pezzo surface of degree 3. Since rankE = 2,
we see from [20, Corollary (3.14)] that E ⇠= O(�KS)�2. This is the type (vi)
in Theorem 2.9.

(D.IV) Next we consider the case (D.4). Let µ : X ! Q3 be the reduction
map. Then µ is not the identity map because L3 = 9 and OQ3(2)3 = 16.
Hence there exists an e↵ective divisor E on X such that E ⇠= P2. If ⇡(E) 6= S,
then ⇡(E) is a point. But this is impossible because ⇡ is a P1-bundle. Hence
⇡(E) = S holds. Moreover ⇡E : E ! S is finite because E ⇠= P2. Hence we see
that (S) = �1 and h1(OS) = 0. Here we prove the following.

Claim 2.14. S ⇠= P2.

Proof. Assume that S 6⇠= P2. Then there exists a surjective morphism p : S !
P1. Hence p � ⇡E : E ! P1 is surjective. But this is impossible because
E ⇠= P2.

Therefore we see that K2
S = 9. We also have c1(E)2 = 12 and g(S, c1(E)) =

g(X, L) = 5. Therefore KSc1(E) = �4. But this is impossible because of the
Hodge index theorem.

(D.V) Next we consider the case (D.6). By the same argument as the proof of
Claim 2.12, we have (S) = �1.

In this case we have Pic(X) ⇠= Z�3. Hence Pic(S) ⇠= Z�2. Since h1(OS) =
0, we have K2

S = 8. On the other hand we have g(S, c1(E)) = g(X, L) = 5
and c1(E)2 = 12. Hence KSc1(E) = �4. But this is impossible because of the
Hodge index theorem.

(D.VI) Next we consider the case (D.7). In this case there exists an e↵ec-
tive divisor E on X such that E ⇠= P2. Then we see that ⇡E : E ! S is finite,
(S) = �1 and h1(OS) = 0 by the same reason as the case (D.4). By the
same argument as the proof of Claim 2.14 we see that S ⇠= P2. Therefore we
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have K2
S = 9. We also have c1(E)2 = 12 and g(S, c1(E)) = g(X, L) = 6. There-

fore KSc1(E) = �2. But this is impossible because of the Hodge index theorem.

(D.VII) Next we consider the case (D.8). Then by the proof of [5, Propo-
sition (2.5)], there exists a Del Pezzo fibration f : X ! P1. In particular
KX + L is nef.

Claim 2.15. (S) = �1 holds.

Proof. Let Ff be a fiber of f . If ⇡(Ff ) 6= S for a general fiber Ff of f , then
Ff contains a fiber of ⇡ and by [2, Lemma 4.1.13] there exists a morphism
� : S ! P1 such that f = � � ⇡. Since the irregularity of a general fiber of f is
0, we see that any general fiber of � is P1. Hence we get the assertion. So we
may assume that ⇡(Ff ) = S for any general fiber Ff of f . If ⇡Ff : Ff ! S is
not a finite morphism, then Ff contains a fiber of ⇡ and we get the assertion
by the same argument as above. So we may assume that ⇡Ff : Ff ! S is a
finite morphism. Since (Ff ) = �1, we have (S) = �1.

Let D be a general member of |L|. Then D is a smooth projective surface
and (D) � 0 because KX + L is nef. But since ⇡D : D ! S is birational, this
is a contradiction.

(D.VIII) Next we consider the case (D.10). In this case (X) = 1, see [1,
8) in Table I, pg 53]. But this is impossible.

(D.IX) Next we consider the case (D.11). Let D 2 |L| be a general mem-
ber. Then D is a smooth projective surface and ⇡D : D ! S is birational.
Hence �(OD) = �(OS). By 9) in Table I of [1, Page 53], we have �(OD) = 4.
On the other hand since hi(OX) = hi(OS), we have �(OX) = �(OS) = 4. But
this is impossible because �(OX) = 1, see 9) in Table I of [1, Page 53].

(D.X) Next we consider the case (D.2). Let f : X ! P1 be the fibration.
If n � 4, then ⇡(Ff ) is a point for a general fiber Ff of f because Pic(Ff ) ⇠= Z.
Hence by [2, Lemma 4.1.13] there exists a morphism � : P1 ! S such that
⇡ = � � f . But this is impossible because ⇡ is surjective and dim S = 2. So we
may assume that n = 3. Let Ff = aH(E) + ⇡⇤(B), where B 2 Pic(S). Then
we have

0 = F 3
f = 9a3 + 3a2c1(E)B + 3aB2, (1)

0 = LF 2
f = 9a2 + 2ac1(E)B + B2, (2)

2 = L2Ff = 9a + c1(E)B. (3)

By (1) and (2) we get a2c1(E)B + 2aB2 = 0.
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If a 6= 0, then B2 = �a
2 c1(E)B. Hence by (2) we have c1(E)B = �6a.

Therefore by (3) we get 2 = 9a + c1(E)B = 3a. But this is impossible because
a is an integer. Hence a = 0 and Ff = ⇡⇤(B). In particular a fiber of ⇡ is
contained in a fiber of f . So by [2, Lemma 4.1.13] there exists a morphism
h : S ! P1 such that f = h � ⇡. Since h1(OFf ) = 0, we see that h1(OFh) = 0
for any general fiber Fh of h. So we infer that any general fiber of h is P1.
We note that B = Fh for a fiber Fh of h. In particular we see from (3) that
Fhc1(E) = 2 for any fiber Fh of h. On the other hand since E is an ample
vector bundle of rank two, we infer that any fiber of h is P1 and therefore S is
relatively minimal and S is a P1-bundle over P1. Let C0 be the minimal section
and let e := �C2

0 . Since Fhc1(E) = 2, we can write c1(E) as c1(E) ⌘ 2C0 +bFh.
Hence c1(E)2 = 4(b� e). On the other hand c1(E)2 = H(E)3 + c2(E) = 12. So
we get b�e = 3. Since c1(E) is ample, by [16, Theorem 2.12 and Corollary 2.18
in Chapter V] we have e � 0 and b > 2e. Therefore 3 = b� e > 2e� e = e � 0,
namely we get (b, e) = (3, 0), (4, 1), (5, 2). We also note that 2  c1(E)C0

because C0
⇠= P1. Hence 2  c1(E)C0 = �2e+b and (b, e) = (5, 2) is impossible.

So by Ishihara’s result [20, Corollary (2.11)] we have

• S ⇠= P1 ⇥ P1 and E ⇠= (p⇤1OP2(1) ⌦ p⇤2OP2(1)) � (p⇤1OP2(1) ⌦ p⇤2OP2(2)),
where pi is the ith projection.

• S is a blowing up of P2 at a point and E = (p⇤(OP2(2)) � E)�2, where
p : S ! P2 is the morphism and E is the exceptional divisor of p.

But we see that g(X, L)  3 in these cases, and these cases are ruled out.

(D.XI) Next we consider the case (D.5). By the same argument as the proof
of Claim 2.12, we have (S) = �1.

In this case we have Pic(X) ⇠= Z�7. Hence Pic(S) ⇠= Z�6. Since h1(OS) =
0, we have K2

S = 4. On the other hand we have g(S, c1(E)) = g(X, L) = 5 and
c1(E)2 = H(E)3 + c2(E) = 12. Hence KSc1(E) = �4. But this is impossible
because of the Hodge index theorem.

(D.XII) Finally we consider the case (D.12). Let p : X ! Y be the pro-
jection, where Y is a minimal K3 surface. Then there exists a very ample
line bundle H on Y and a smooth member B 2 |H| such that g(B) � 2 and
p⇤(B) =: V is a smooth projective surface with (V ) = �1.
(i) Assume that ⇡V : V ! S is surjective. Then by the same argument as the
proof of Claim 2.12, we have (S) = �1. We note that h1(OS) = 0.

If S ⇠= P2, then since rankE = 2 we see from [20, Corollary (4.7)] that E ⇠=
OP2(1)�OP2(3) or TP2 . But in these cases we have g(X, L) = g(S, c1(E))  3
and this contradicts the assumption.

If S 6⇠= P2, then there exists a surjective morphism h : S ! P1 such that any
general fiber of h is P1. Let F be a general fiber of h � ⇡. If pF : F ! Y is not
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finite, then there exists a fiber Fp of p such that Fp is contained in F . Then by
[2, Lemma 4.1.13] there exists a morphism g : Y ! P1 such that g � p = h � ⇡.
But since Y is a minimal K3 surface, we infer that p is an elliptic fibration and
this is impossible because any general fiber of h is P1. Therefore pF : F ! Y
is finite. But this is impossible because (F ) = �1 and (Y ) = 0.
(ii) Assume that ⇡V : V ! S is not surjective. Then there exists a fiber F⇡ of
⇡ such that F⇡ is contained in V . Moreover p(F⇡) is a point because g(B) � 2
and F⇡

⇠= P1. So by [2, Lemma 4.1.13] there exists a morphism r : S ! Y such
that p = r � ⇡. Furthermore since p and ⇡ have connected fibers, we see that r
is birational. Since p and ⇡ are P1-bundles, we see that r is finite. Hence r is
an isomorphism and S is a minimal K3 surface. Since

8 = g(X, L) = g(S, c1(E)) = 1 +
c1(E)2

2
,

we have c1(E)2 = 14. Therefore c2(E) = c1(E)2�H(E)3 = 14� 9 = 5, and this
is impossible.

3. Main Theorem

Theorem 3.1. Let (X, L) be a polarized manifold of dimension n � 3 and let
(M,A) be a reduction of (X, L). Assume that L is very ample. If b2(X, L) =
h2(X, C) + 2, then (X, L) is one of the following types.

(i) (PS(E),H(E)), where S is a smooth projective surface and E is a very
ample vector bundle on S with c2(E) = 3. In particular (S, E) is described
in Theorem 2.9.

(ii) (M,A) is a Del Pezzo fibration over a smooth curve C with n = 3, 4.
Let f : M ! C be its morphism. In this case there exists an ample
line bundle H on C such that KM + (n � 2)A = f⇤(H), and we have
(g(C),deg H) = (1, 1), b2(M,A) = 14 and h2(M, C) = 12.

(iii) (M,A) is a quadric fibration over a smooth surface S with n = 3, 4. Let
f : M ! S be its morphism. In this case there exists an ample line
bundle H on S such that KM + (n � 2)A = f⇤(KS + H), and (S, H) is
one of the following types:

(iii.1) S is a P1-bundle, p : S ! B, over a smooth elliptic curve B, and
H = 3C0 � F , where C0 (resp. F ) denotes the minimal section of
S with C2

0 = 1 (resp. a fiber of p). In this case b2(M,A) = 12 and
h2(M, C) = 10.

(iii.2) S is an abelian surface, H2 = 2, and h0(H) = 1. In this case
b2(M,A) = 14 and h2(M, C) = 12.
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(iii.3) S is a hyperelliptic surface, H2 = 2, and h0(H) = 1. In this case
b2(M,A) = 10 and h2(M, C) = 8.

Proof. First we note that the following hold.

• b2(X, L) = 2g2(X, L) + h1,1
2 (X, L) by Remark 2.3 (ii.1) and (ii.3).

• g2(X, L) � h2(OX) by Remark 2.3 (iii.3).

• h1,1
2 (X, L) � h1,1(X) by Remark 2.3 (iii.2).

• h2(X, C) = 2h2(OX) + h1,1(X) by the Hodge theory.

Hence we see from b2(X, L) = h2(X, C) + 2 that one of the following holds.

(A) g2(X, L) = h2(OX) and h1,1
2 (X, L) = h1,1(X) + 2.

(B) g2(X, L) = h2(OX) + 1 and h1,1
2 (X, L) = h1,1(X).

(A) First we consider the case (A). Since L is very ample and g2(X, L) =
h2(OX), by [10, Corollary 3.5] we infer that (X, L) is one of the types from (1)
to (7.4) in Theorem 2.7. Since b2(X, L) = h2(X, C) + 2, by using [13, Example
3.1], we see that (X, L) is one of the following types as possibility.

(a) (P2 ⇥ P2,⌦2
i=1p

⇤
iOP2(1)), where pi is the ith projection.

(b) (PP2(TP2),H(TP2)), where TP2 is the tangent bundle of P2.

(c) A hyperquadric fibration over a smooth curve.

(d) (PS(E),H(E)), where S is a smooth projective surface and E is a very
ample vector bundle on S with c2(E) = 3.

(e) A reduction (M,A) of (X, L) is a Veronese fibration over a smooth curve
C, that is, M is a P2-bundle over C and A|F = OP2(2) for every fiber F
of it.

(A.1) The case (a) (resp. (b)) corresponds to the case (i.1) (resp. (i.2)) in
Theorem 3.1.

(A.2) Next we consider the case (c) and we use Notation 2.8 (1). Here we
note that h2(X, C) = 2 in this case (see Definition 2.4 (3)). Since b2(X, L) =
h2(X, C)+2 and h2(X, C) = 2, we see from [13, Example 3.1 (5)] that 2e+3b =
2. On the other hand, from the fact that Ln = 2e+ b > 0 and 2e+(n+1)b � 0
by [7, (3.3)], we get the following.

Claim 3.2. (e, b) = (1, 0) or (4,�2). Moreover n = 3 if (e, b) = (4,�2).
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Proof. If b > 0, then 2e + 3b = 2e + b + 2b � 3 and this is impossible. So
we have b  0. If b = 0, then e = 1. So we assume that b < 0. Then
2 = 2e + 3b = 2e + (n + 1)b � (n � 2)b � �(n � 2)b � �b because n � 3 and
b < 0. So we have b = �2 or �1. If b = �1, then 2 = 2e + 3b = 2e � 3. But
this is impossible because e is an integer. Hence b = �2 and we see from the
above inequality that n = 3. We also note that 2e + 3b = 2 implies e = 4.

(A.2.1) If (e, b) = (1, 0), then Ln = 2e + b = 2. Therefore we see that (X, L) ⇠=
(Qn,OQn(1)) because L is very ample. Since n � 3, we have Pic(X) ⇠= Z.
But this is impossible because (X, L) is a hyperquadric fibration over a smooth
curve.
(A.2.2) Assume that (e, b) = (4,�2). In this case n = 3 by Claim 3.2. Therefore
rankE = 4. On the other hand we see from L3 = 6 that h1(OX) = 0 holds by
Ionescu’s result [17]. Hence C = P1. Therefore by the Riemann-Roch theorem
we have

h0(L) = h0(E) = deg E + (rankE) �(OC) = 8

and X is embedded in P7. We see from the list of [17] that (X, L) is a Del Pezzo
manifold, but this is impossible because O(KX +(n�1)L) 6= OX in the case (c).

(A.3) Next we consider the case (e). We use Notation 2.8 (2). From [13,
Example 3.1 (7.4)] we have

2e + 3b = 2. (4)

Here we note that by [13, Remark 2.6]

g1(M,A) = 2e + 2b + 1. (5)

We also note that g1(M,A) � 2 in this case because KM +2A is ample. Hence
by (5) we have

2e + 2b � 1. (6)

Moreover by [13, Remark 2.6]

e + 2b + 2g(C)� 2 = 0. (7)

Hence we see from (4) and (7)

b = 2� 4g(C), (8)
e = 6g(C)� 2. (9)

By (6), (8) and (9), we get 2g(C) = b + e � 1
2 , that is, g(C) � 1.

Then we have L3  A3 = 8e+12b = 8. Since L is very ample and n = 3, we
have h0(L) � 4. Assume that h0(L) = 4. Then X is a 3-dimensional projective
space. But this is impossible because X is a fiber space over a smooth curve.
Next we consider the case h0(L) = 5. Then X is a hypersurface in P4 and we
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have Pic(X) ⇠= Z in this case. But this is also impossible. So we may assume
that h0(L) � 6.
(A.3.1) If L3  5, then L3 � 2�(X, L) + 1 and g(X, L) � 2 � L3 � 3 �
�(X, L). Hence we see from [9, (3.5) Theorem] that h1(OX) = 0. But this is
a contradiction because g(C) � 1.
(A.3.2) Assume that L3 = 6. If h0(L) � 7, then L3 = 6 > 5 � 2�(X, L) + 1
and g(X, L) � 2 � �(X, L). Hence we see from [9, (3.5) Theorem] that
h1(OX) = 0. But this is a contradiction.

If h0(L) = 6, then X is embedded in P5 and by Ionescu’s result [17] we have
h1(OX) = 0. But this is a contradiction.
(A.3.3) Assume that L3 = 7. If h0(L) � 7, then L3 = 7 � 2�(X, L) + 1 and
g(X, L) = g(M,A) = 2e + 2b + 1 = 4g(C) + 1 � 5 > 3 � �(X, L). Hence we
see from [9, (3.5) Theorem] that h1(OX) = 0. But this is a contradiction.

If h0(L) = 6, then X is embedded in P5 and by Ionescu’s result [17] we have
h1(OX) = 0. But this is a contradiction.
(A.3.4) Assume that L3 = 8. If h0(L) � 8, then L3 = 8 > 7 � 2�(X, L) + 1
and g(X, L) = g(M,A) = 2e + 2b + 1 = 4g(C) + 1 � 5 > 3 � �(X, L). Hence
we see from [9, (3.5) Theorem] that h1(OX) = 0. But this is a contradiction.

If h0(L) = 7 (resp. 6), then X is embedded in P6 (resp. P5) and by Ionescu’s
result [19] we have h1(OX) = 0. But this is a contradiction.

(A.4) Next we consider the case (d). In this case, since E is a very ample
vector bundle with c2(E) = 3, we see from Theorem 2.9 that (S, E) is one of
the types from (i.1) to (i.6) in Theorem 3.1.

(B) Next we consider the case (B). Let (M,A) be a reduction of (X, L). Since
L is very ample and g2(X, L) = h2(OX) + 1, by [10, Theorem 3.6] and [12,
Theorem 1] we infer that (X, L) is one of the following types.

(f) (M,A) is a Mukai manifold.

(g) (M,A) is a Del Pezzo fibration over a smooth curve C. Let f : M ! C
be its morphism. In this case there exists an ample line bundle H on C
such that KM + (n� 2)A = f⇤(H) and (g(C),deg H) = (1, 1).

(h) (M,A) is a quadric fibration over a smooth surface S. Let f : M ! S be
its morphism. In this case there exists an ample line bundle H on S such
that KM + (n � 2)A = f⇤(KS + H) and (S, H) is one of the following
types:

(h.1) S is a P1-bundle, p : S ! B, over a smooth elliptic curve B, and
H = 3C0 �F , where C0 (resp. F ) denotes the minimal section of S
with C2

0 = 1 (resp. a fiber of p).
(h.2) S is an abelian surface, H2 = 2, and h0(H) = 1.



THE SECOND SECTIONAL BETTI NUMBER, II 63

(h.3) S is a hyperelliptic surface, H2 = 2, and h0(H) = 1.

First we note that b2(X, L)� h2(X, C) = b2(M,A)� h2(M, C) by [13, Re-
mark 2.2 (3)].

(B.1) First we consider the case (f). Then we see from [10, Example 2.10
(7)] that (KM + (n � 2)A)2An�2 = 0, h1(OM ) = 0 and g2(M,A) = 1 holds.
Hence by [13, Proposition 3.1] we have

h1,1
2 (M,A)=10(1�h1(OM )+g2(M,A))�(KM+(n�2)A)2An�2+2h1(OM )=20.

Therefore b2(M,A) = 2g2(M,A) + h1,1
2 (M,A) = 22.

Next we calculate h2(M, C). Since L is very ample, there exist n� 3 mem-
bers D1, . . . , Dn�3 of |A| such that Mn�3 := D1\· · ·\Dn�3 is a smooth projec-
tive variety of dimension 3 and O(KMn�3 + AMn�3) = OMn�3 . By a classifica-
tion of 3-dimensional Fano manifolds (see [21]), we see that h2(Mn�3, C)  10
and by the Lefschetz theorem we get h2(M, C)  10. Therefore b2(X, L) �
h2(X, C) = b2(M,A)� h2(M, C) > 2 and this case is ruled out.

(B.2) Next we consider the case (g). We note that g2(M,A) = 1, h1(OM ) = 1
and (KM +(n� 2)A)2An�2 = 0 in this case. Hence by [13, Proposition 3.1] we
have

h1,1
2 (M,A)=10(1�h1(OM )+g2(M,A))�(KM+(n�2)A)2An�2+2h1(OM )=12.

Therefore b2(M,A) = 2g2(M,A) + h1,1
2 (M,A) = 14.

Next we calculate h2(M, C). First we note that ⌧(A) = n � 2 in this case,
where ⌧(A) is the nef value of A. Assume that n � 5. Then

⌧(A) = n� 2 >
n

2
=

n� dim C + 1
2

.

Hence by the proof of [3, (3.1.1) Theorem] we see that there exists a non-
breaking dominating family T of lines relative to A such that for any t 2 T the
curve lt corresponding to t satisfies (KM + (n� 2)A)lt = 0.

(B.2.1) If n � 6, then ⌧(A) = n � 2 � n
2 + 1 holds. Hence by (3.1.1.2)

in [3, (3.1.1) Theorem] we see that f is an elementary contraction because
dim C = 1. In particular ⇢(M) = ⇢(C) + 1 = 2 and we get h2(M, C) = 2,
where ⇢(M) (resp. ⇢(C)) is the Picard number of M (resp. C). Therefore
b2(X, L)� h2(X, C) = b2(M,A)� h2(M, C) > 2 and this case is ruled out.

(B.2.2) Next we consider the case n = 5. Let l be a line on M relative to A
such that l is the curve corresponding to a point of T and let ⌫ := �KM l � 2.
Since (KM + (n� 2)A)l = 0, we have �KM l = 3. Hence ⌫ = 1. On the other
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hand ⌧(A) = n � 2 = 3. So we get ⌫ = 1 � 1 = n�3
2 and ⌫ = 1 = ⌧(A) � 2.

Hence by [3, (2.5) Theorem] we see that either (2.5.1) or (2.5.2) in [3, (2.5)
Theorem] holds because dim C = 1.
If (2.5.1) in [3, (2.5) Theorem] holds, then f is an elementary contraction and
⇢(M) = ⇢(C)+1 = 2. So we get h2(M, C) = 2. Therefore b2(X, L)�h2(X, C) =
b2(M,A)� h2(M, C) > 2 and this case is ruled out.
If (2.5.2) in [3, (2.5) Theorem] holds, then there exist two morphism � : M ! W
and ⇡ : W ! C such that � is a P2-bundle over a smooth projective variety
W of dimension 3, ⇡ is a P2-bundle over C and f = ⇡ � �. In this case
⇢(M) = ⇢(W ) + 1 = ⇢(C) + 2 = 3. So we get h2(M, C) = 3. Therefore
b2(X, L)� h2(X, C) = b2(M,A)� h2(M, C) > 2 and this case is ruled out.

(B.3) Finally we consider the case (h). In this case, g2(M,A) = h2(OM ) + 1 =
h2(OS) + 1 and (KM + (n� 2)A)2An�2 = 2(KS + H)2. So we get

h1,1
2 (M,A) = 10(1�h1(OM )+g2(M,A))� (KM +(n�2)A)2An�2 + 2h1(OM )

= 10(�(OS) + 1)� 2(KS + H)2 + 2h1(OS).

(B.3.1) We consider the case (h.1). Then (KS + H)2 = 1, h2(S, C) = 2,
h1(OS) = 1 and h2(OS) = 0. Hence g2(M,A) = 1, h1,1

2 (M,A) = 10 and
b2(M,A) = 2g2(M,A) + h1,1

2 (M,A) = 12.

(B.3.2) We consider the case (h.2). Then (KS + H)2 = 2, h2(S, C) = 6,
h1(OS) = 2 and h2(OS) = 1. Hence g2(M,A) = 2, h1,1

2 (M,A) = 10 and
b2(M,A) = 2g2(M,A) + h1,1

2 (M,A) = 14.

(B.3.3) We consider the case (h.3). Then (KS + H)2 = 2, h2(S, C) = 2,
h1(OS) = 1 and h2(OS) = 0. Hence g2(M,A) = 1, h1,1

2 (M,A) = 8 and
b2(M,A) = 2g2(M,A) + h1,1

2 (M,A) = 10.

Next we calculate h2(M, C). First we note that ⌧(A) = n� 2 in this case.
Assume that n � 4. Then

⌧(A) = n� 2 >
n� 1

2
=

n� dim S + 1
2

.

Hence by [3, (3.1.1) Theorem] we see that there exists a non-breaking domi-
nating family of lines relative to A such that for any t 2 T the curve lt corre-
sponding to t satisfies (KM + (n� 2)A)lt = 0.

If n � 6, then ⌧(A) = n � 2 � n
2 + 1 holds. Hence by (3.1.1.2) in [3, (3.1.1)

Theorem] we see that f is an elementary contraction because dim S = 2. In
particular ⇢(M) = ⇢(S) + 1 and we get h2(M, C) = h2(S, C) + 1. Therefore
b2(X, L) � h2(X, C) = b2(M,A) � h2(M, C) > 2 for each case and the case
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where n � 6 is ruled out.

Next we consider the case n = 5. Let l be a line on M relative to A such
that l is the curve corresponding to a point of T and let ⌫ := �KM l � 2.
Since (KM + (n � 2)A)l = 0, we have �KM l = 3. Hence ⌫ = 1. On
the other hand ⌧(A) = n � 2 = 3. So we get ⌫ = 1 � 1 = n�3

2 and
⌫ = 1 = ⌧(A) � 2. Hence by [3, (2.5) Theorem] we see that (2.5.1) in [3,
(2.5) Theorem] holds because dim S = 2. Then f is an elementary contrac-
tion and ⇢(M) = ⇢(S) + 1. So we get h2(M, C) = h2(S, C) + 1. Therefore
b2(X, L) � h2(X, C) = b2(M,A) � h2(M, C) > 2 and the case where n = 5 is
also ruled out.

Therefore we get the assertion.

Corollary 3.3. Let (X, L) be a polarized manifold of dimension n � 3. As-
sume that L is very ample. If b2(X, L) = h2(X, C) + 2, then n = 3 or 4.
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Abstract. Let G(k, n) be the Grassmannian of k-subspaces in an n-

dimensional complex vector space, k � 3. Given a projective variety

X, its s-secant variety �s(X) is defined to be the closure of the union

of linear spans of all the s-tuples of independent points lying on X. We

classify all defective �s(G(k, n)) for s  12.
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1. Introduction

Let X ⇢ PN be a non-degenerate projective variety. The s-th secant variety

�s(X) is defined to be the closure of the union of linear spans of all the s-tuples
of independent points lying on X.

Let G(k, n) denote the Grassmannian parametrizing k-subspaces in an n-
dimensional complex vector space. It is embedded in PN = P(⇤kCn) via the
Plücker map, where N =

�n
k

�
� 1.

Consider the secant variety �s(G(k, n)). Its dimension is bounded by:

dim �s(G(k, n))  min{sk(n� k) + s� 1, N}. (1)

We say that �s(G(k, n)) has the expected dimension if equality holds in (1).
Otherwise �s(G(k, n)) is called defective and its defect is the di↵erence between
the right and left hand side in (1).

This short note is a contribution to the classification of defective �s(G(k, n)).
There is an extensive literature related to this highly non-trivial problem—not
only on Grassmannians, but on many other homogeneous varieties, such as
Veronese varieties [3], Segre products [1], Lagrangian Grassmannians [6] and
Spinor varieties [4]. The first one is the only case where the classification is
complete. For a recent survey on the subject and its applications we refer the
reader to [8].

Using a clever linear algebra observation and Terracini Lemma we prove
the following classification result:
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Theorem 1.1. If k � 3 then �s(G(k, n)) has the expected dimension for every

s  12, except for the cases (k, n; s) = (3, 7; 3), (4, 8; 3), (4, 8; 4) and (3, 9; 4).

If k = 2 then G(k, n) is a Grassmannian of (projective) lines and �s(G(k, n))
is almost always defective—it corresponds to the locus of skew-symmetric ma-
trices of rank at most 2s. Thus throughout the paper we assume k � 3. Only
four defective cases are known then, and in [5, Conjecture 4.1] it is hypothe-
sized that they are the only ones. Indeed this conjecture can be implicitly found
in previous works, for example in [7]. In [5] the authors use a computational
technique to check that the conjecture holds true for n  15. (The same result
for n  14 can be found in [9].)

In [7] explicit bounds on (k, n; s) were found for �s(G(k, n)) to have the
expected the dimension. Improving these bounds and using the monomial
technique Abo, Ottaviani and Peterson showed that the conjecture is true for
s  6 [2]. Exploiting the quoted results from [2], together with the explicit
computations perforemed in [5], Theorem 1.1 can be strenghtened; this is done
in Theorem 3.6, which concludes this note.

2. A lemma on tangent spaces

Let V ' Cn be a complex vector space of dimension n. The Grassmannian
G(k, V ) = G(k, n) is the variety parametrizing k-subspaces in V . The Grass-
mannian G(k, V ) embeds in P(

VkV ) via Plücker map. Remark that if we iden-
tify points in PN with general skew-symmetric tensors, then points in G(k, V )
correspond to decomposable skew-symmetric tensors.

We start by describing the a�ne tangent space to the Grassmannian. (Re-
call that the a�ne tangent space T̂X is the tangent space to the a�ne cone of
the variety X.)

Lemma 2.1. Let E = e1 ^ . . . ^ ek be a point of G(k, V ), where ei 2 V . The

a�ne tangent space to G(k, V ) at E is:

T̂EG(k, V ) =
kX

j=1

e1 ^ . . . ^ ej�1 ^ V ^ ej+1 ^ . . . ^ ek.

Using compact notation we can write: T̂EG(k, V ) =
Vk�1E ^ V .

The proof of Lemma 2.1 is an immediate consequence of Leibniz rule. Using
this description we can prove the following result.

Lemma 2.2. For i = 1 . . . s, let Ei = ei,1^. . .^ei,k be points of G(k, V ) such that

the spaces T̂EiG(k, V ) are linearly independent in

VkV . (Where (ei,j)j=1...k are

elements of V .)
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Let W be a complex vector space of dimension m > n, and consider V ,! W
any immersion. Then the spaces T̂EiG(k,W ) are linearly independent in

VkW .

(We keep the notation Ei for the image of the subspaces Ei inside W.)

Proof. The spaces:

T̂EiG(k, W ) =
Vk�1Ei ^W

=
Vk�1Ei ^ (V �W/V )

=
⇣Vk�1Ei ^ V

⌘
�

⇣Vk�1Ei ^W/V
⌘

live inside:

VkW =
Vk (V �W/V ) =

kM

h=0

Vk�hV ⌦
Vh(W/V ),

and more precisely the situation is:

T̂EiG(k, V ) =
Vk�1Ei ^ V �

Vk�1Ei ^W/V
\ \ \VkW ✓

VkV �
Vk�1V ⌦ (W/V )

(2)

The pieces
Vk�1Ei^V in the first summand of (2) are linearly independent

by our assumption, and since the sum is direct, the result follows if we prove
the linear independence of the pieces

Vk�1Ei ^W/V in the second summand
of (2). Elements of

Vk�1Ei ^W/V are of the form:

kX

j=1

ai,j(ei,1 ^ . . . ^ ei,j�1 ^ w ^ ei,j+1 ^ . . . ^ ei,k),

for some coe�cients ai,j and some nonzero element w 2 W/V . Without loss
of generality we ignore these coe�cients in what follows. Linear dependence
would mean that there exist ↵1, . . . ,↵s not all zero such that:

0 =
sX

i=1

↵i

0

@
kX

j=1

ei,1 ^ . . . ^ ei,j�1 ^ w ^ ei,j+1 ^ . . . ^ ei,k

1

A

=

0

@
sX

i=1

kX

j=1

(�1)✏↵i(ei,1 ^ . . . ^ ei,j�1 ^ ei,j+1 ^ . . . ^ ei,k)

1

A ^ w,

where we use (�1)✏ as a reminder that there might be a sign change. (That
can also be ignored without losing any generality.) Since w 6= 0 we get that:

sX

i=1

kX

j=1

(�1)✏↵i(ei,1 ^ . . . ^ ei,j�1 ^ ei,j+1 ^ . . . ^ ei,k) = 0
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in
Vk�1V . Now let µ 2 V be any vector and consider:

sX

i=1

kX

j=1

↵i(ei,1 ^ . . . ^ ei,j�1 ^ µ ^ ei,j+1 ^ . . . ^ ei,k) = 0.

The linear combination is now in
VkV ; hence we have found a contradiction,

and this concludes the proof.

3. Results

Recall from the introduction that given X ⇢ PN a non-degenerate projective
variety, its s-th secant variety �s(X) is defined to be the closure of the union
of linear spans of all the s-tuples of independent points lying on X:

�s(X) =
[

p1,...,ps2X

hp1, . . . , psi.

If X is non-degenerate and dim X = d, then

dim �s(X)  min{sd + s� 1, N}. (3)

If equality holds in (3) we say that �s(X) has the expected dimension, otherwise
we call �s(X) defective, and define its defect to be the di↵erence between the
two numbers. If dim �s(X) = N we say that �s(X) fills the ambient space.

We want to classify all defective �s(G(k, n)). Since dim G(k, n) = k(n� k)
note that (3) reduces to (1).
We recall the main tool to compute the dimension of secant varieties, Terracini
Lemma. (For a proof we refer to [10, Proposition 1.10].)

Lemma 3.1 (Terracini Lemma). Let p1, . . . , ps be general points in X and let z
be a general point of hp1, . . . , psi. Then the a�ne tangent space to �s(X) at z
is given by

T̂z�s(X) = T̂p1X + · · · + T̂psX

where T̂piX denotes the a�ne tangent space to X at pi.

Lemma 3.2. If �s(G(k, n)) has the expected dimension and does not fill the

ambient space, then �s(G(k, m)) has the expected dimension for every m � n.

Proof. The statement follows from the computation of Lemma 2.2 together
with Terracini Lemma 3.1.

Theorem 3.3. If �s(G(k, n)) has the expected dimension and does not fill the

ambient space, then �s(G(k + t, n + t)) has the expected dimension for every

t � 0.
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Proof. This is a consequence of the duality of Grassmannians: G(k, V ) ' G(n�
k, V ⇤). If �s(G(k, n)) has the expected dimension, so does �s(G(n � k, n)).
Then using Lemma 3.2 also �s(G(n� k, n+ t)) has the expected dimension for
every t � 0. Since G(n� k, n + t) ' G(n + t� (n� k), n + t) = G(k + t, n + t),
the statement follows.

We are now ready to give a proof of Theorem 1.1 from the Introduction.

Proof of Theorem 1.1. The proof is now an easy consequence of Theorem 3.3
together with the computational evidence provided in [5]. Duality of Grass-
mannians allows us to assume that k  n

2 . The case n  15 has been checked
in [5]. Now take �s(G(k, n)), with k, s as required and n > 15. Since for the
given values of s the secant variety �s(G(3, 15)) has the expected dimension
and does not fill the ambient space, using Lemma 3.2 we can conclude that
the statement is true for �s(G(3, n � (k � 3)). For our choice of range of s, k
and n we can also claim that �s(G(3, n � (k � 3)) does not fill the ambient
space. Theorem 3.3 with t = k � 3 then implies that the statement is true for
�s(G(3 + (k � 3), n� (k � 3) + (k � 3)) = �s(G(k, n)).

Remark 3.4. Theorem 1.1 can be restated in terms of the conjecture by Baur,

Draisma and De Graaf [5, Conjecture 4.1] quoted in the Introduction.

Remark that all defective cases mentioned in the conjecture have �s(G(k �
1, n � 1)) that is either defective or fills the ambient space, so Theorem 3.3 is

no contradiction to the conjecture.

To the detriment of its clean statement, Theorem 1.1 can be strengthened
using all of values of k in the computational results of [5] on G(k, 15). For a
more complete statement, we also include bounds on (k, n; s) proved in [2] using
the monomial technique. The result is in fact an extension of [7, Theorem 2.1].

Theorem 3.5. [2, Theorem 3.3] If 3(s�1)  n�k and k � 3 then �s(G(k, n))
has the expected dimension and does not fill the ambient space.

We conclude with this stronger statement. Its proof is immediate from the
proof of Theorem 1.1, Theorem 3.5 and an explicit computation of the maximal
s = s(k) such that the secant �s(G(k, 15)) does not fill the ambient space.

Theorem 3.6. If k � 3, k  n
2 then �s(G(k, n)) has the expected dimension:

1. for n  15, all k and s, except (k, n; s)=(3, 7; 3), (4, 8; 3), (4, 8; 4), (3, 9; 4);

2. for n > 15, k � 7, s  max{111, n�k+3
3 };

3. for n > 15, 3  k  6, s as follows:
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(a) k = 3, s  max{12, n
3 }

(b) k = 4, s  max{30, n�1
3 }

(c) k = 5, s  max{59, n�2
3 }

(d) k = 6, s  max{90, n�3
3 }.
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Increasing chains and discrete reflection

of cardinality
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Santi Spadaro

Abstract. Combining ideas from two of our previous papers ([26]
and [27]), we refine Arhangel’skii Theorem by proving a cardinal in-
equality of which this is a special case: any increasing union of strongly
discretely Lindelöf spaces without uncountable free sequences and with
countable pseudocharacter has cardinality at most continuum. We then
give a partial positive answer to a problem of Alan Dow on reflection
of cardinality by closures of discrete sets.

Keywords: discrete set, free sequence, elementary submodel, strongly discretely Lin-

delöf, Arhangel’skii Theorem
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1. Introduction and notation

All spaces are assumed to be Hausdor↵. A set is discrete if each one of its points
is isolated in the relative topology. While structurally very simple, discrete sets
play an important role in Set-theoretic Topology. For example, by an old result
of De Groot, the cardinality of every topological space where discrete sets are
countable cannot exceed 2c, where c denotes the cardinality of the continuum.

If discrete sets have a strong influence on cardinal properties of topological
spaces, their closure are often true mirrors of global properties of a topolog-
ical space (see [1] and [5]). A classical result of Tkachuk [28] states that a
topological space X is compact if and only if the closures of its discrete sets
are compact. Whether this remains true when compactness is replaced by the
Lindelöf property is a well-known open question of Arhangel’skii [3]. Partial
answers to this question have been provided in [3], [4] and [24].

Another well-studied open problem, also due to Arhangel’skii [2], is whether
closures of discrete sets reflect cardinality in compact spaces. More precisely,
Arhangel’skii asked whether |D| = |X| for every compact space X and discrete
set D ⇢ X. Dow provided consistent counterexamples to this question in [12],
while Efimov [13] proved that compact dyadic spaces reflect cardinality. In

1The content of this paper was presented at ItEs2012 (Italia - España 2012).
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answer to a question of Alan Dow, Juhász and Szentmiklóssy [20] proved that
under a slight weakening of the GCH, compact spaces of countable tightness
also reflect cardinality.

Aurichi noted in [5], that if X is an L-space, left separated in order type
!1, then |D| < |X|, for every discrete set D ⇢ X, so, by Justin Moore’s
construction of a ZFC L-space, there are non-discretely reflexive Tychono↵
spaces in ZFC. But as far as we know, the ZFC existence of a non-discretely
reflexive compact space is still open.

Arhangel’skii’s question continues to inspire attempts at partial positive
solutions. In particular, the following question of Alan Dow is still open.
Problem 1.1: ([12]) Is g(X) = |X| for every compact separable space X?

Where g(X) is defined as the supremum of the cardinalities of the closures
of discrete sets in X. We will provide a partial positive answer to the above
question in the final part of our paper.

One of the most central results in the theory of cardinal invariants is
Arhangel’skii’s Theorem, which solved a 50 year old question of Alexandro↵
(see [17] for a survey).

Theorem 1.2. Let X be a Lindelöf first-countable space. Then |X|  c.

Arhangel’skii’s original proof of his theorem made use of a particularly
strong kind of discrete set called free sequence. A set {x

↵

: ↵ < } is called
a free sequence if for every � <  we have {x

↵

: ↵ < �} \ {x
↵

: ↵ � �} = ;.
In [27] we showed how the supremum of the sizes of free sequences in the space
X (F (X)) could replace the tightness in a generalization of the Arhangel’skii
Theorem due to Juhász. With some additional help from the technique of
elementary submodels, this resulted in a considerably shorter proof of Juhász’s
Theorem.

Theorem 1.3. ([27]) Let {X
↵

: ↵ < �} be an increasing chain of topolog-
ical spaces such that F (X

↵

) · L(X
↵

) ·  (X
↵

)  , for every ↵ < �. Then
|
S

↵<�

X
↵

|  2.

Given a topological space (X, ⌧), L(X) (the Lindelöf number of X) is the
minimum cardinal  such that every cover of X has a subcover of cardinal-
ity  and  (X) (the pseudocharacter of X) is defined as follows:  (X) =
sup{ (x,X) : x 2 X}, and  (x, X) = min{ : (9U 2 [⌧ ])(

T
U = {x})}.

The above theorem has been generalized by various authors, especially with
the aim of improving it in a non-regular setting and to provide bounds for
the cardinality of power-homogeneous spaces (see, for example, [6], [7] and [9]
and [10]). Here we present a new refinement in a completely di↵erent direc-
tion. Putting together ideas from [26] and [27] we are able to replace the
Lindelöf number with its supremum on closures of free sequences (FL(X)) in
Theorem 1.3. As a byproduct we obtain that the cardinality of the union of
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an increasing chain of a strongly discretely Lindelöf spaces of countable pseu-
docharacter with countable free sequences does not exceed the continuum. Al-
though in [4], Arhangel’skii and Buzyakova proved that L(X)  F (X) ·FL(X)
for every Tychono↵ space X, their proof uses the Tychono↵ separation axiom
in an essential way (they consider a compactification of X), while we are only
assuming X to be Hausdor↵. Notation and terminology follow [14] for Topology
and [21] for Set Theory.

Kunen’s book [21] contains a good introduction on elementary submodels
submodel. Dow’s article [11] is the most comprehensive survey on applications
of elementary submodels to Topology. Other good introductions to this last
topic are [15] [16], [17] and [29].

2. Closures of discrete sets and increasing chains

The proof of Theorem 2.1 does not present significant changes from that of the
case � = 1 in Theorem 1.3, as presented, for example, in [25]. We nevertheless
include it, for the reader’s convenience.

Theorem 2.1. (Juhász, essentially) Let (X, ⌧) be a space. Then

|X|  2FL(X)· (X)·F (X)

Proof. Let FL(X)· (X)·F (X) =  and M be a -closed elementary submodel
of H(✓) where ✓ is a large enough regular cardinal, such that X, ⌧, 2 M ,
 ⇢ M and |M | = 2.

We claim that X ⇢ M . Suppose this is not the case and let p 2 X \ M .
For every x 2 X \M use the fact that  (x, X)   to pick a -sized family
U

x

2 M such that
T

U
x

= {x}. We actually have U
x

⇢ M (see, for example,
Theorem 1.6 of [11]), and we can use that to pick U

x

2 U
x

such that x 2 U
x

and p /2 U
x

.
Let U = {U 2 M \ ⌧ : x 2 U ^ p /2 U}. Then U covers X \M . Suppose

that for some � < + we have constructed points {x
↵

: ↵ < �} ⇢ X \ M
and subcollections {U

↵

: ↵ < �} of U such that |U
↵

|   for every ↵ < � and
{x

↵

: ↵ < �} ⇢
S S

↵� U↵ for every � < �.
Let A ⇢ X be a -sized free sequence. Note that |A|  2. Indeed, the

set RC(X) of all regular closed sets of A has cardinality at most 2. The
closed pseudocharacter of a Hausdor↵ space is bounded by the product of the
pseudocharacter and the Lindelöf number, so  

c

(A)  . Now, for every x 2 A
choose a -sized family U

x

⇢ RC(X) such that x 2 Int(F ) for every F 2 U
x

and
T

U
x

= {x}. The map x ! U
x

is injective and hence |A|  (2) = .
From this observation it follows that if A 2 M and |A|   then A ⇢ M .

In particular, since M is -closed we have that {x
↵

: ↵ < �} 2 M and
hence {x

↵

: ↵ < �} ⇢ M . Therefore, we can choose a  sized subcollection
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U
�

of U covering {x
↵

: ↵ < �}. If
S

↵�

U
↵

does not cover X \ M pick a
point x

�

2 X \ M \
S

↵�

U
↵

. If we didn’t stop before reaching +, then
{x

↵

: ↵ < +} would be a free sequence of size + in X. Therefore, there is
V ⇢ U of size  such that X \M ⇢

S
V. Note that since M is -closed we

have V 2 M .Therefore M |= X ⇢
S

V and hence H(✓) |= X ⇢
S

V. So there
is V 2 V such that p 2 V , which is a contradiction.

The proof of the increasing chain version of Theorem 2.1 relies on the fol-
lowing Lemmas.

Lemma 2.2. Let X be a space such that FL(X)   and U be an open cover
for X. Then there is a free sequence F ⇢ X and a subcollection V ⇢ U such
that |V| = |F | ·  and X = F [

S
V.

Proof. Suppose you have constructed, for some ordinal �, a free sequence {x
↵

:
↵ < �} and -sized subcollections {U

↵

: ↵ < �} of U such that {x
↵

: ↵ < �} ⇢S
↵�

S
U

↵

for every � < �.
Let U

�

be a -sized subcollection of U covering the subspace {x
↵

: ↵ < �}
and, if you can, pick a point x

�

2 X \
S

↵�

S
U

�

. Let µ be the least ordinal
such that

{x
↵

: ↵ < µ} [
[

↵<µ

[
U

↵

= X.

Then F = {x
↵

: ↵ < µ} is a free sequence and if we set V =
S

↵<

S
U

↵

we
have |V| = |F | · .

Lemma 2.3. For every x 2 X we have that FL(X \ {x})  FL(X) ·  (X).

Proof. Set  = FL(X)· (X) and let F ⇢ X \{x} be a free sequence in X \{x}.
Let U be a -sized family of open neighbourhood of x such that

T
U = {x}.

Note that F ⇢
S
{X \ U : U 2 U}, F \ U is a free sequence in X \ U , and

FL(X \ U)   for every U 2 U . Now Cl
X\{x}(F ) =

S
U2U F \ U . Therefore

L(Cl
X\{x}(F ))   and we are done.

Theorem 2.4. Let (X, ⌧) be a topological space and {X
↵

: ↵ < �} be an in-
creasing chain of subspaces of X such that X =

S
↵<�

X
↵

and FL(X
↵

)·F (X
↵

)·
 (X

↵

)  . Then |X|  2.

Proof. If �  2 then we are done by Theorem 2.1, so we can assume that
� = (2)+.

Let µ be a large enough regular cardinal and choose an elementary submodel
M � H(µ) such that [M ] ⇢ M , |M | = 2, and {X, ⌧,,�} [  ⇢ M .

Call a set C ⇢ X bounded if |C|  2.

Claim 1. If C 2 [X \M ], then C is bounded.



INCREASING CHAINS AND DISCRETE REFLECTION 77

Proof of Claim 1. Claim 1 will be proved if we can show that C ⇢ X \M . So,
suppose that this is not true and choose p 2 C \M . Choose ✓ large enough, so
that C \M ⇢ X

✓

. By  (X
✓

)   we can find open neighbourhoods {U
↵

: ↵ <
} of the point p such that X

✓

\{p} =
S

↵<

X
✓

\U
↵

. By Lemma 2.2 we can find
a free sequence D

↵

⇢ X
✓

\ U
↵

and relative open sets {V
↵�

: � < } in X
✓

\ U
↵

such that X
✓

\U
↵

⇢ D
↵

[
S

�<

V
↵�

for every ↵ < . By FL(X
✓

\U
↵

)   we
can find relative open sets {G

↵�

: � < } in X
✓

\U
↵

such that D
↵

⇢
S

�<

G
↵�

,
for every ↵ < .

Note that p /2 V
↵�

[ G
↵�

, for every ↵,� < . Setting C
↵�

= V
↵�

\ C and
E

↵�

= G
↵�

\ C we then have:

C \X
✓

\ {p} =
[

↵,�<

(C
↵,�

[ E
↵,�

) \X
✓

Note now that by -closedness of M , C
↵�

2 M and E
↵�

2 M , for every ↵,�
and ✓.
We have:

C \M =
[

↵,�<

(C
↵,�

[ E
↵,�

) \M

So:

M |= C =
[

↵,�<

(C
↵,�

[ E
↵�

)

Which implies:

H(µ) |= C =
[

↵,�<

(C
↵�

[ E
↵�

)

But that is a contradiction, because:

H(µ) |= p 2 C \
[

↵,�<

(C
↵,�

[ E
↵,�

)

Now we claim that X ⇢ M . Suppose not and choose p 2 X \ M .
Claim 2. The collection U = {U 2 M \ ⌧ : p /2 U} is an open cover of X \M .

Proof of Claim 2. Fix x 2 X \ M and let V = {V 2 ⌧ : x /2 V }. Note that
V 2 M and V covers X \ {x}. Suppose you have constructed subcollections
{V

↵

: ↵ < �} of V such that V
↵

2 M , |V
↵

|   for every ↵ < � and a free
sequence {x

↵

: ↵ < �} ⇢ X \M such that Cl
X\{x}({x↵

: ↵ < �}) ⇢
S

↵<�

V
↵

for every � < �. The set Cl
X\{x}({x↵

: ↵ < �}) is bounded, so we can
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find an ordinal �
�

< � such that Cl
X\{x}({x↵

: ↵ < �}) ⇢ X
�� . Since

FL(X
�� ) ·  (X)  , by Lemma 2.3 we have that the Lindelöf number of

Cl
X\{x}({x↵

: ↵ < �}) is at most  and hence we can pick a family V
�

2 [V]

such that Cl
X\{x}({x↵

: ↵ < �}) ⇢
S
V

�

. If
S

↵�

V
�

covers X \ {x} we
stop, otherwise we pick x

�

2 (X \ {x} \ M) \
S

↵�

V
�

. If we carried this
on for + many steps, then F = {x

↵

: ↵ < +} would be a free sequence of
cardinality + in X \ {x}. Since F is bounded, we can choose ✓ < � such that
F ⇢ X

✓

. So L(Cl
X✓ (F ))  . But F cannot converge to x, because every set

of cardinality + of a space of Lindelöf number  has a complete accumulation
point. Therefore there is an open neighbourhood U of x which misses + many
points of F . Therefore F \U is a free sequence in X of cardinality +, but that
contradicts F (X

✓

)  .
So there is a family W 2 [U ] such that X \ {x} ⇢

S
W. By elementarity,

we can assume that W 2 M and hence W ⇢ M . Let now W 2W be such that
p 2 W . Then the set U := X \ W 2 M is a neighbourhood of x which misses
p. 4

Suppose that for some � < + we have constructed a free sequence {x
↵

:
↵ < �} ⇢ X \M and subcollections {U

↵

: ↵ < �} of U such that U
↵

2 M ,
|U

↵

|   and {x
�

: � < ↵} ⇢
S S

�<↵

U
↵

, for every ↵ < �. Since {x
↵

: ↵ < �}
is bounded, we have that L({x

↵

: ↵ < �})   and hence we can find a sub-
collection U

�

of U of size  such that {x
↵

: ↵ < �} ⇢
S
U

�

. If
S

↵�

U
↵

does
not cover X \ M we can find a point x

�

2 X \ M \
S

↵�

U
↵

. If we didn’t
stop before reaching +, then {x

↵

: ↵ < +} would be a +-sized free sequence
in X. But this can’t happen, because {x

↵

: ↵ < +} is bounded. So there is
a V 2 [U ] such that X \M ⇢

S
V. But since M is -closed we have that

V 2 M and hence M |= X ⇢
S
V. Therefore H(µ) |= X ⇢

S
V, and hence

there is V 2 V such that p 2 V , which is a contradiction.

As a corollary, we find a result related to discrete reflection of cardinality,
which will be the main subject of the next section.

Lemma 2.5. [26] Let  be an infinite cardinal and X be a space where |D|  
for every discrete D ⇢ X. Then  (X)  .

Proof. Let x 2 X. Now let V = {V ⇢ X : V is open and x /2 V }. Then V
covers X \{x} and hence we can find a discrete D ⇢ X \{x} and a subcollection
U ⇢ V with |U| = |D| such that X \ {x} ⇢

S
U [D. So (

T
x2D\{x} X \ {x}) \

(
T

U2U X \ U) = {x}, which implies that  (x,X)  .

Corollary 2.6. Let {X
↵

: ↵ < �} be an increasing chain of spaces such that
|D|   for every discrete set D ⇢ X

↵

and every ↵ < �. Then |
S

↵<�

X
↵

|  2.
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3. A reflection theorem for hereditarily normal spaces

In [11], Dow asked whether compact separable spaces reflect cardinality. Even
the following special case is at present unknown. Suppose that in some compact
space X, the closure of every discrete set has size bounded by the continuum.
Is then |X|  c? We are going to prove that this is the case if X is hereditarily
normal. As a matter of fact, the only feature of compactness that we need is
the fact that pseudocharacter equals character at every point, and separability
can be relaxed to the ccc.

A cellular family is a family of pairwise disjoint non-empty open sets. The
cellularity of X is defined as follows: c(X) = sup{|U| : U is a cellular family
in X}. Recall that a ⇡-base in a topological space X is a set P of non-empty
open sets such that for every open set U ⇢ X there is P 2 P with P ⇢ U .
The ⇡-weight of X (⇡w(X)) is defined as the minimum cardinality of a ⇡-base
for X.

Given a cardinal µ, the logarithm of µ is defined as follows log(µ) = min{ :
2 � µ}. We need a well-known, often used and easily proven lemma of
Shapirovskii.

Lemma 3.1. (Shapirovskii) Let X be a space and U be a cover of X. Then
there is a discrete set D ⇢ X and a subcollection V ⇢ U such that |D| = |V|
and X = D [

S
V.

Theorem 3.2. Let X be a hereditarily normal space such that  (x,X) =
�(x, X) for every point x 2 X and |D|  2c(X) for every discrete set D ⇢ X.
Then |X|  2c(X)

Proof. Set  = log (2c(X))+. Let M be a < -closed elementary submodel
of H(✓), for large enough regular ✓ such that |M | = 2c(X) and M contains
everything we need.
Claim 1. For every x 2 X \M we have �(x, X)  2.

Proof of Claim 1. Fix x 2 X \ M . Subclaim: for every p 2 X \ M we can
find an open U 2 M such that x 2 U and p /2 U . If that were true, then
we could find a family S of open neighbourhoods of x such that |S|  2 andT
S ⇢ X \ M . Now |X \ M |  2, so x would have pseudocharacter 2

in X, and since pseudocharacter and character in X we would be done. To
prove the subclaim, let U be the set of all open sets U ⇢ X such that x /2 U .
Then U 2 M and U covers X \ {x}. By Shapirovskii’s lemma we can find a
subcollection W ⇢ U and a discrete set D ⇢ X \{x} such that W 2 M , D 2 M
|W| = |D|  2 and X \ {x} ⇢ D [

S
W. Observe that D 2 M and |D|  2

and hence D ⇢ X \M . Therefore p /2 D and hence there is W 2W such that
p 2 W . Now W 2 M and x /2 W therefore X \W 2 M is a neighbourhood of
x which misses p. 4
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Claim 2. The set X \M is dense in X.

Proof of Claim 2. Suppose that is not the case. Then there is an open set
V ⇢ X such that V \X \M = ;. Let now x 2 X \M and choose an open set
U0 2 M such that U0 \ V = ;. Suppose we have constructed, for some � 2 +

a cellular family {U
↵

: ↵ < �} ⇢ M such that U
↵

\ V = ; for every ↵ < �.
Then X \

S
↵<�

U
↵

2 M and given y 2 X \
S

↵<�

U
↵

\M we can find an open
set neighbourhood U

�

of y such that U
�

\ V = ;. Now replace U
�

with its
intersection with X \

S
↵<�

U
↵

, which is still in M as the intersection of two
elements of M . Eventually, {U

↵

: ↵ 2 +} would be a +-sized cellular family
in X, which is a contradiction. 4

Putting together Claim 1 and Claim 2 we get that ⇡w(X)  2.
We now claim that X ⇢ M . Indeed, suppose that this is not the case and

let p 2 X \ M .
Claim 3. For every x 2 X \M , there is an open set V 2 M such that x 2 V
and p /2 V .

Proof of Claim 3. Fix x 2 X \M and let U = {V 2 M : x /2 V }. The set U
covers X\{x}. Use Shapirovskii’s Lemma to find a discrete set D ⇢ X\M such
that X \ {x} ⇢ D [

S
{U

x

: x 2 D}. By Shapirovskii’s bound for the number
of regular open sets (see [19] or [22] or [8] for a game-theoretic proof) we have
that ⇢(X)  ⇡w(X)c(X)  (2) = 2. Moreover, since by Jones Lemma
⇢(X) � 2|D| in every hereditarily normal space X, we must have |D| <  and
hence D 2 M . Therefore D 2 M . From |D|  2c(X) we get that D ⇢ X \M
and thus p /2 D. This implies that there is x 2 D such that p 2 U

x

. By letting
V = X \ U

x

we get that V is a neighbourhood of x such that V 2 M and
p /2 V . 4

If we now let V = {U 2 M : p /2 U}, we see that V is an open cover
of X \ M . Using Shapirovskii’s Lemma again, we obtain the existence of a
discrete set E ⇢ X \M such that X \M ⇢ E [

S
{U

x

: x 2 E}, where U
x

2 V
and x 2 U

x

. By the same reasoning as in the proof of the Claim we have that
E ⇢ X \M . The closure property of M implies that E [

S
{U

x

: x 2 E} 2 M
and hence M |= X ⇢ E [

S
{U

x

: x 2 E}. By elementarity, we get that
H(✓) |= X ⇢ E[

S
{U

x

: x 2 E} and therefore there is x 2 E such that p 2 U
x

,
but that contradicts the definition of V.

Therefore X ⇢ M and we are done.

Recall the definition of the depth of X: g(X) = {|D| : D ⇢ X discrete}.

Corollary 3.3. Let X be a compact hereditarily normal ccc space such that
g(X)  c. Then |X|  c,
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Note that there are consistent examples of compact hereditarily normal
hereditarily separable spaces of cardinality 2c (for example, Fedorchuk’s com-
pact S-space), and this shows that the condition about the depth is essential
in Corollary 3.3.
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lattices C(X) and U(Y )

1

Miroslav Hušek and Antonio Pulgaŕın

Abstract. Our e↵ort to weaken algebraic assumptions led us to obtain
characterizations of C(X) as Riesz spaces, real `-groups, semi-a�ne
lattices and real lattices by using di↵erent techniques. We present a uni-
fied approach valid for any “convenient” category. By setting equivalent
conditions to equi-uniform continuity, we obtain a characterization of
the lattice U(Y ) in parallel with that of C(X).

Keywords: continuous functions, real lattice, uniformly continuous functions

MS Classification 2010: 45E05, 06D05

1. Introduction

In the early forties and starting mainly by Yosida [20], the topology community
was very interested in obtaining internal conditions under which an object is
isomorphic to the set C(X) of all the real valued continuous functions on some
topological space X.

The problem essentially depends on the algebraic structure in which we are
interested, the weaker assumption the more di�cult the answer. Whenever
X 6= ?, the set C(X) endowed with its pointwise defined order becomes a
distributive lattice containing all the constant functions into R, thus a copy of
R as a sublattice. Henceforth, our basic starting structure on C(X) will be
that of the real lattices (Definition 2.1).

At the crux of most attempts the following conditions on a real lattice L
somehow are needed: (a) L embeds into some C(X) and (b) the lattice of
bounded elements L⇤ is isomorphic to C⇤(X). Without loosing generality we
may assume that X is a Tychono↵ space and even realcompact (since C(X) is
lattice-ordered algebra unit preserving isomorphic to C(�X)).

The only contribution appearing in the literature for the more general case
is that of Jensen [15] as a refinement of that of Anderson [1], but by assuming

1The content of this paper was presented at ItEs2012 (Italia - España 2012).
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richer compatible algebraic structures, namely for �-algebras. However, no
e↵ort was made to extend these results to more general situations.

Under this general context, Birkho↵ [4] proposed explicitly in his venerable
Lattice Theory the open problem 81 by asking for an internal characterization
of C(X) with X a compact Hausdor↵ space only as a lattice. The problem was
solved by several authors, by making a special emphasis in the Anderson-Blair’s
solution [2]. Supported by this outstanding result (Lemma 4.3), verification of
above condition (b) can be done by using the Urysohn’s method on construct-
ing a separating function (Definition 4.11), and embedding condition (a) can
be established in any convenient subcategory of the real lattices, where among
other requirements, morphisms should be defined by means of operations (Def-
inition 2.3).

Still some conditions are needed to complete the characterization. We
shall present di↵erent approaches to this aim, namely: 2-universal complete-
ness (Definition 5.2), local uniform completeness (Definition 5.4) and pointwise
completeness (Definition 5.8).

Similarly to C(X), an internal characterization of the real lattice U(Y ) of
real uniformly continuous functions on some uniform space Y will be obtained
by determining equi-uniformly continuous sequences (Definition 4.19) and by
setting equi-uniform completeness (Definition 5.10).

This paper has a survey character aiming recent contributions by the au-
thors to the problem. All the technical proofs are avoided refering the readers
to their respective original sources.

2. Representation in convenient categories

We start denoting by T the category of the topological Hausdor↵ spaces with
their continuous maps HomT , and by U the category of Hausdor↵ uniform
spaces with their uniformly continuous maps HomU .

As usual, C(X) = HomT (X, R) and U(Y ) = HomU (Y, R) ✓ C(Y ) are the
sets of real continuous functions on X 2 T and real uniformly continuous
functions on Y 2 U respectively. Our basic structure both on C(X) and
U(Y ) is that of a distributive lattice by assuming its pointwise defined order
relationship:

f  g i↵ f(x)  g(x), for all x 2 X or Y (f, g 2 C(X) or U(Y )).

Notice that whenever X 6= ?, the set R of constant functions becomes a
sublattice of C(X). This requirement can be stated in terms of the lattice
structure since every densely-ordered countable chain of a distributive lattice
is isomorphic to the chain Q of the rational numbers (Birkho↵ [4]).
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Definition 2.1. A real lattice is a distributive lattice containing the conditional
completion R of a fixed densely-ordered countable chain by removing the first
and the last element.

In the sequel, we shall make no distinction between R and the chain R of
the real numbers. We are denoting by L the category of the real lattices with
their lattice homomorphisms HomL being identity on R.

One of the stronger reasons of starting with a real lattice L is that we may
work with its real sublattice

L⇤ = {f 2 L : r  f  s for some r, s 2 R} 2 L

of bounded elements.
On the other hand, morphisms in L are defined by means of “operations”.

Let us formally generalize this framework: A signature is a nonempty set O
endowed with a mapping a : O ! Z+ called arity.

Every signature O defines a category O called universal algebra whose
objects L satisfy that for any o 2 O, there are subsets Lo

1, . . . , L
o

a(o) ✓ L and a
mapping

o
L

: Lo

1 ⇥ · · ·⇥ Lo

a(o) ! L, (f1, . . . , f
a(o)) 7! o

L

(f1, . . . , f
a(o))

called a(o)-ary operation.
Their homomorphisms HomO are the mappings x : L ! C preserving

operations:

x
�

o
L

(f1, . . . , f
a(o))

�

= o
C

�

x(f1), . . . , x(f
a(o))

�

,

for every o 2 O, f1 2 Lo

1, . . . , fa(o) 2 Lo

a(o).
In the sequel the inclusion symbol among categories refers whenever to

be a subcategory (for instance, C ✓ L means that the C-objects and C-
morphisms becomes at least real lattices and real lattice morphisms). Some
technical considerations will be required on setting up a suitable representation
theory.

Definition 2.2. A category C is said to be appropriate if it is a full subcate-
gory of some universal algebra O ✓ L, and L⇤ is a C-subobject of L whenever
L 2C.

Denote by K and X the full subcategories of T consisting of compact and
realcompact Hausdor↵ spaces respectively.

Definition 2.3. A subcategory C ✓ L is said to be convenient if it is appro-
priate and satisfies:

(a)
�

C(X) : X 2 T
 

✓C;
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(b) C(X) is C-isomorphic to C(�X) (�X 2 X is the Hewitt-Nachbin real-
compactification of X);

(c) if X, Y 2X , then T 2HomC(C(X), C(Y )) i↵ there exists t2HomT (Y, X)
such that Tf = f � t;

(d) C⇤(X) is C-isomorphic to C(�X) (�X 2 K is the Čech-Stone com-
pactification of X).

Almost all the algebraic structures appearing in the literature regarding
characterizations of C(X) are convenient in the above sense, namely: �-alge-
bras (see [6, 14, 18]), Archimedean Riesz spaces with a designated weak order
unit (see [13, 17, 19]), real `-groups (see [7, 20]) and semi-a�ne lattices ([9]).

In order to characterize U(Y ), first we must define uniform spaces topolog-
ically equivalent to realcompact spaces.

Definition 2.4. A uniform space is called realcomplete if it is both complete
and uniformly homeomorphic to a subspace of a power of R. In the sequel Y
denotes the full subcategory of U of realcomplete Hausdor↵ uniform spaces.

Given Y 2 U , we set

cY =
�

{f(x)}
f2U(Y ) : x 2 Y

 

⇢ RU(Y ),

the prerealcomplete modification of Y , and �cY 2 Y its completion in RU(Y ).

Definition 2.5. A subcategory C ✓ L is said to be uniformly convenient if it
is appropriate and satisfies

(a)
�

U(Y ) : Y 2 U
 

✓ C;

(b) U(Y ) is C-isomorphic to U(�cY ) (�cY 2 Y is the realcompletion of
Y );

(c) if X, Y 2Y , then T 2HomC(U(X), U(Y )) i↵ there exists t2HomU (Y, X)
such that Tf = f � t;

(d) U⇤(Y ) is C-isomorphic to U(sY ) (sY 2 K is the Samuel compactifica-
tion of Y ).

In the sequel C denotes either a convenient or uniformly convenient cate-
gory according either to the topological or uniform case.

Definition 2.6. The spectrum (resp. uniform spectrum) of a given object
L 2 C is the set XC

L

= HomC(L, R) equipped with the subspace topology (resp.
Y C

L

= HomC(L, R) equipped with the subspace uniformity) of RL.
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It is not di�cult to prove that XC
L

2X , Y C
L

2 Y and that both XC
L

⇤ , Y C
L

⇤ 2
K . Topological and uniform version of next theorem can be found in [11]
and [10] respectively, and it is the key of our representation theory.

Theorem 2.7. The functors

C !X , L XC
L

, and X !C , X  C(X),

C ! Y , L Y C
L

, and Y !C , Y  U(Y ),

form adjoint situations in convenient and uniformly convenient categories C
respectively.

As a consequence X 2 X i↵ XC
C(X) = X, and Y 2 Y i↵ Y C

U(Y ) = Y .
Moreover, for L 2C there are reflections

⌘C
L

2 HomC

�

L,C(XC
L

)
�

, x 7! ⌘C
L

(f)(x) = x(f) (x 2 XC
L

, f 2 L),

µC
L

2 HomC

�

L,U(Y C
L

)
�

, y 7! µC
L

(f)(y) = y(f) (y 2 Y C
L

, f 2 L),

called spectral and uniform spectral representation of L respectively.

Question 1. Which C-stated conditions are required for an object L 2 C in
order to ⌘C

L

2 IsoC

�

L,C(XC
L

)
�

or µC
L

2 IsoC

�

L, U(Y C
L

)
�

?

We shall proceed in three steps:

• Embedding: L ✓ C(XC
L

) or L ✓ U(Y C
L

);

• Intermediateness: L⇤ = C⇤(XC
L

) or L⇤ = U⇤(Y C
L

);

• Completion: L = C(XC
L

) or L = U(Y C
L

).

3. Embedding

The first task will consist on setting when the spectral representation is injective
(we may use the notation ⌘C

L

(L) = L).
Let V ⇢ L be the convenient category consisting of Archimedean (i.e.

nf  g for all n 2 N implies f  0) vector lattices with a designated weak
order unit e > 0 (i.e. f ^e > 0 for every f > 0), and HomV their vector lattices
homomorphisms mapping weak order units in weak order units.

Luxemburg-Zaanen [17] showed that there is a one-to-one correspondence
between XV

L

and the set of real maximal ideals of L (i.e. vector subspaces M
of L not containing the weak order unit e, and which are maximal among those
being solid, i.e. |f |  |g| for g 2M implies f 2M).

Lemma 3.1. ⌘V
L

(L) = L i↵ the intersection of all the real maximal ideals of L
is {0}.
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This condition is usually known as “semisimplicity” and can be generalized
to any convenient category C .

Definition 3.2. L is said to be C-semisimple if for every r 2 R
\

x2X

C
L

x�1(r) = {r}

Since morphisms in convenient categories are defined by means of opera-
tions, and reasoning as in [11], we may correspond elements of XC

L

with certain
subsets of the real lattice L.

Lemma 3.3. Let C be a convenient category with signature O. There is a one-
to-one correspondence between XC

L

and the set RC
L

consisting of real indexed
families R = {R(r)}

r2R of subsets of L having the following properties

(a)
S

R(r) = L and R(r) \R(s) = ? if r 6= s;

(b) R(r) \ R = {r} for every r 2 R;

(c) if o
L

(f1, . . . , f
a(o)) 2 R(r), then f1 2 R(r1), . . . , f

a(o) 2 R(r
a(o)) for some

r1, . . . , r
a(o) 2 R such that oR(r1, . . . , r

a(o)) = r, for every r 2 R.

Such families from RC
L

are called real-systems of L.

Recall that given R 2 RC
L

, the mapping

R�1 : L ! R, f 7! R�1(f) = r, such that f 2 R(r)

belongs to XC
L

, and conversely if x 2 XC
L

, then {x�1(r)}
r2R 2 RC

L

.

Corollary 3.4. L is C-semisimple i↵
T

R2R

C
L

R(r) = {r} for every r 2 R.

Unfortunately, C-semisimplicity is not enough to ensure ⌘C
L

(L) = L. The
well behavior of V -semisimplicity responds to the embedding ⌘V

L

⇤(L⇤) = L⇤

(from [20]), but without assuming linear structures this fact does not hold.
In [9] the convenient category S of semi-a�ne lattices is studied in details

(roughly speaking, a semi-a�ne lattice of C(X) is a sublattice which is closed
under addition by R and multiplication by {0} [ {wn : n 2 N} for some real
number w < �1) where the following counterexample is produced:

Example 3.5. Let

L =

8

<

:

if a < b, then i 2 {�1, 0},
(a, b, i) 2 R2 ⇥ {�1, 0, 1} : if a = b, then i = 0,

if a > b, then i 2 {0, 1},

9

=

;
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endowed with the following order, addition and multiplication:

(a, b, i)  (c, d, j) i↵ (a, b)  (c, d), and either i  j or a � b, c  d ,

r + (a, b, i) = (a + r, b + r, i) , r ⇤ (a, b, i) = (ra, rb, sign(ri)) .

Then L is S-semisimple but ⌘S
L

(L) 6= L (since ⌘S
L

⇤(L⇤) 6= L⇤).

Next definition from [3] ensures injectivity of ⌘L
L

⇤ .

Definition 3.6. L 2 L is said to be special if

(a) for every r, s 2 R and f 2 L:

(a.1) f _ r � s > r implies f � s;
(a.2) f ^ r  s < r implies f  s;

(b) for every pair f < g in L there exists r < s in R and h 2 L such that
f ^ h  r and g ^ h ⇥ t for every t < s.

Lemma 3.7. L⇤ is special i↵ ⌘L
L

⇤(L⇤) = L⇤.

By adding speciality to semisimplicty, injectivity of the spectral represen-
tation yields in any convenient category (see [11]).

Theorem 3.8. L is special and C-semisimple i↵ ⌘C
L

(L) = L.

4. Intermediateness

Yosida proved in [20] that L⇤ is uniformly dense in C(XV
L

⇤). However this fact
does not work in weaker convenient categories, even by assuming speciality as
one can see in the next counterexample extracted from [3].

Example 4.1. Let L = {f 2 C({0, 1}) : |f(0) � f(1)| < 1}. Then L is special
and L-semisimple, but L⇤ is not uniformly dense in C(XL

L

⇤).

In order to solve this gap, Anderson-Blair introduced in [3] the notion of
normality.

Definition 4.2. L 2 L is said to be normal if for all ↵, �, �, � 2 R with � < �
and for every f 2 L⇤, there exist g, h, k 2 L⇤ such that g ^ h  ↵, �  h _ f,
f ^ k  � and �  k _ g.

This condition allowed them to obtain a Stone-Weierstrass-like theorem in
the category L.

Lemma 4.3 (Stone-Weierstrass-like). L⇤ is special and normal i↵ L⇤ is uni-
formly dense in C(XL

L

⇤).
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Once arrived at this point, our interest focuses on stating a Kakutani-like
theorem in C , i.e. to obtain conditions under which L⇤ is uniformly dense in
C⇤(XC

L

). In general, it is false (even by assuming semisimplicity, speciality and
normality) as next example from [13] shows.

Example 4.4. Let L =
�

f|R : f 2 C(R, R), f(x) = ±1 i↵ x = ±1
 

. Then
L is V -semisimple (of course L⇤ is both special and normal) but L⇤ is not
uniformly dense in C⇤(XV

L

).

Next lemma from [11] will be important to our aims.

Lemma 4.5 (Kakutani-like). Under the assumption of speciality and normality,
L is C-semisimple i↵ XC

L

⇤ is a compactification of XC
L

. As a consequence, if
L is special, normal and C-semisimple, the following are equivalent:

(i) L⇤ is uniformly dense in C⇤(XC
L

);

(ii) L⇤ separates disjoint zero-sets of XC
L

.

Functionally separated subsets can be described by means of the method of
the famous Urysohn’s lemma. We shall start by determining closed subsets:

Definition 4.6. A real indexed family C = {C(r)}
r2R of subsets of L is said

to be a closed-system if there exists a class {R
i

}
i

✓ RC
L

of real-systems in L
(defined as in Lemma 3.3) such that C(r) =

T

i

R
i

(r) for every r 2 R.

If F 6= ? is a closed subset of XC
L

, then the family C
F

=
�

T

x2F

x�1(r)
 

r2R
becomes a closed-system, and conversely, if C = {

T

i

R
i

(r)}
r2R is a closed-

system, then F
C

=
�

R�1
i

 

i

becomes a closed subset of XC
L

(see in the com-
ments below Lemma 3.3 how the morphisms R

i

are constructed). Furthermore,
C

X

C
L

= R and FR = XC
L

.
Denote by CC

L

the set consisting of its closed-systems by adding L as one
of its members under the assertion C? = L and F

L

= ?. As a consequence:

Corollary 4.7. There is a one-to-one correspondence between CC
L

and the
family of closed subsets of XC

L

.

Actually, CC
L

becomes a complete lattice with the first element R and the
last element L, whenever we are setting for B,D 2 CC

L

the lattice operations

B ^D = C(FB[FD) and B _D = C(FB\FD).

A description of cozero-sets was given by Kerstan [16].

Proposition 4.8. A subset of a topological space X is a cozero-set i↵ it belongs
to a family V of open sets having the property that for every its member U there
exist two sequences {U

n

}
n

, {V
n

}
n

in V such that

U =
[

U
n

, U
n

⇢ X \ V
n

⇢ U, for each n.
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Above result will be helpful in order to determine zero-sets.

Definition 4.9. A closed-system in L is said to be a zero-system provided it
belongs to a class Z of closed-systems in L having the property that for every
its member B there are countable sequences {B

n

}
n

, {D
n

}
n

from Z such that

B =
_

n

B
n

, B
n

^D
n

= R and D
n

_B = L, for all n.

Denote by ZC
L

the set consisting of zero-systems in L.

Lemma 4.10. There is a one-to-one correspondence between ZC
L

and the family
of zero-sets of XC

L

.

Proof. Every zero-system belongs to a class Z of closed-systems in L such that
for every its member B there are sequences {B

n

}
n

,{D
n

}
n

from Z such that
B =

W

n

B
n

, B
n

^ D
n

= R and D
n

_ B = L, for every n. One derives that
F

B

=
T

n

F
Bn , F

B

⇢ XC
L

\F
Dn ⇢ F

Bn . Thus, F
C

becomes a zero-set whenever
C 2 ZC

L

.
Conversely, from Proposition 4.8, the complementary of a given zero-set

Z from XC
L

belongs to a family V of open sets in X
L

having the property
that that for every its member U there are sequences sequences {U

n

}
n

, {V
n

}
n

from V such that U =
S

U
n

, U
n

⇢ XC
L

\ V
n

⇢ U for each n. By taking
Z = {C

X

C
L \U

: U 2 V }, the closed-systems B
n

= C
X

C
L \Un

, D
n

= C
X

C
L \Vn

satisfy C
X

C
L \U

=
W

n

B
n

, B
n

^ D
n

= R and D
n

_ B = L, for every n. As a
consequence, C

Z

2 ZC
L

.

Definition 4.11. L is said to be C-separating provided C(r) \D(s) 6= ? for
every pair of distinct reals r 6= s, and for any pair C,D 2 ZC

L

which satisfies
C _D = L.

On the one hand, C _ D = L for C,D 2 ZC
L

is equivalent to assert that
F

C

, F
D

are disjoint zero-sets of XC
L

. On the other hand, if C = {
T

i

R
i

(r)}
r2R

and D = {
T

j

S
j

(r)}
r2R, f 2 C(r) \D(s) i↵ R�1

i

(f) = r and S�1
j

(f) = s for
every i, j, equivalently f(F

C

) = r and f(F
D

) = s. As a consequence:

Theorem 4.12 (Uryshon-like). L is C-separating i↵ L separates functionally
separated subsets of XC

L

.

The isomorphism L⇤ = C⇤(XC
L

) can be currently obtained by assuming
uniform completeness. However, to define this concept subtraction and absolute
value operations are needed. A partial solution was proposed in [3].

Definition 4.13. A continuous ideal is a solid subset I of L which is closed
under finite suprema and such that for any 0 < r 2 R there exists 0 < ↵ < � < r
in R, k1, k2 2 L and g 2 I such that I  k1 _ k2 , and if h 2 I, g  h and
k

i

^ ↵ ⇥ h, then k
i

^ h  � (i = 1, 2).
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Next theorem constitutes the Anderson-Blair’s solution [3] to the prob-
lem 81 of Birkho↵.

Theorem 4.14. L is special, normal and every continuous ideal in L⇤ has a
supremum in L⇤ i↵ L⇤ = C(XL

L

⇤).

We shall say:

Definition 4.15. L is C-intermediate if:

(a) L is C-semisimple;

(b) L is C-separating;

(c) L is special, normal and every continuous ideal in L⇤ has a supremum in
L⇤.

From all above mentioned, we get the following result:

Corollary 4.16. L is C-intermediate i↵ C⇤(XC
L

) ✓ L ✓ C(XC
L

).

Once arrived at this point, we asked whether it would be possible to trans-
late this intermediate situation to uniform spaces. Suppose C is a uniformly
convenient category and L 2C .

Given � > 0 and g 2 L we set

U
�,g

=
�

(R,S) 2 RC
L

⇥RC
L

: g 2 R(r) \ S(s) implies |r � s| < �
 

.

Notice that the definition is internal in character since the operation |r�s| <
� is in R.

Definition 4.17. A sequence {f
n

}
n

✓ L is said to be equi-uniformly C-
continuous if for any " > 0 there are g1, . . . , gm

2 L and � > 0 such that
for all n

f
n

2
\

nh

[

{R(r) \ S(s) : |r � s| < "}
i

: (R,S) 2 U
�,g1 \ · · · \ U

�,gm

o

.

If Y 2 Y , then {f
n

}
n

✓ U(Y ) is equi-uniformly C-continuous i↵ for any
" > 0 there exists an entourage U of Y such that |f

n

(x)� f
n

(y)| < " for all n,
(x, y) 2 U .

We have recently obtained in [12] an equivalent condition to intermediate-
ness by avoiding separation.

Theorem 4.18. Suppose L is special, normal and every continuous ideal in
L⇤ has a supremum in L⇤ (recall from Theorem 4.14 that this is equivalent to
L⇤ = U(Y C

L

⇤)). The following are equivalent:
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(i) L⇤ = U⇤(Y C
L

);

(ii) every equi-uniformly C-continuous sequence {f
n

}
n

⇢ L+ bounded from
above by a real number has a supremum f in L which satisfies f ^ g = 0
whenever f

n

^ g = 0 for all n.

Now we may add a condition ensuring injectivity of µC
L

and furthermore
determining uniform intermediateness (see [12]).

Definition 4.19. L is uniformly C-intermediate if:

(a) L is special, normal and every continuous ideal in L⇤ has a supremum in
L⇤;

(b) every equi-uniformly C-continuous sequence {f
n

}
n

⇢ L+ bounded from
above by a real number has a supremum f in L which satisfies f ^ g = 0
whenever f

n

^ g = 0 for all n;

(c) if f 6= g from L, there exist n, k 2 N such that (f ^ (�k) _ n) 6= (g ^
(�k) _ n).

Corollary 4.20. L is uniformly C-intermediate i↵ U⇤(Y C
L

) ✓ L ✓ U(Y C
L

).

5. Completion

We produced in [8] a C-intermediate lattice not isomorphic to any C(X).

Example 5.1. Let L = C⇤(N) [ {f 2 C(N) : |f(n)|  n starting from some
n0 2 N}. Then L is L-intermediate, but L is not L-isomorphic to C(N).

Next definition close to inversion closeness is due to Feldman-Porter [5].

Definition 5.2. L is 2-universally C-complete if any sequence {f
n

}
n

✓ L+

(resp. in L�) having some member f
m

/2 R(0) for every R 2 RC
L

and satisfying
that f

n

^ f
k

6= 0 (resp. f
n

_ f
k

� 0) for at most two indices k distinct from n,
has a supremum (resp. infimum) f in L.

Montalvo et al. obtained in [19] an internal characterization of C(X) as a
Riesz space.

Theorem 5.3. The following are equivalent:

(i) L is V -isomorphic to some C(X);

(ii) L is V -intermediate and 2-universally V -complete.

By taking into account that |f � g|  " on coz(h) i↵ mh ^ |f � g|  " for
all m 2 N, a “local uniform completeness” definition can be proposed.
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Definition 5.4. Let L be a V -object with a designated weak order unit e. A
sequence {f

n

}
n

in L+ is said to be locally V -Cauchy if there exists a subset H
of L+ contained in no real maximal ideal and having the property: if h 2 H,
and " > 0, then there exists nh

"

2 N such that for all m 2 N, mh^|f
n

�f
n

h
"
|  "e

whenever n � nh

"

.
L is said to be locally uniformly V -complete if for every locally V -Cauchy

sequence {f
n

}
n

in L+ there exists f 2 L+ such that for every h 2 H and " > 0,
mh ^ |f � f

n

h
"
|  "e for all m 2 N.

In [13] we have obtained recently an improvement of Theorem 5.3 by re-
moving both uniform completeness and 2-universal completeness.

Theorem 5.5. The following are equivalent:

(i) L is V -isomorphic to some C(X);

(ii) L is V -semisimple, V -separating and locally uniformly V -complete.

Furthermore, in the category S of semi-a�ne lattices, condition mh^ |f �
g|  " for all m 2 N is equivalent to both

(w2m ⇤ h) ^ g+ � "  (w2m ⇤ h) ^ f+  (w2m ⇤ h) ^ g+ + ", and

(w2m�1 ⇤ h) _ g� � "  (w2m�1 ⇤ h) _ f�  (w2m�1 ⇤ h) _ g� + ".

By shifting the condition that H is contained in no real maximal ideal by that:
for any R 2 RS

L

there exists f 2 H such that f /2 R(0), then local uniform
S-completeness yields, and we derive next characterization theorem (see [8]).

Theorem 5.6. The following are equivalent:

(i) L is S-isomorphic to some C(X);

(ii) L is special, S-semisimple, S-separating and locally uniformly S-com-
plete.

However, local uniform completeness can not be stated in L, and Theorem
5.3 does not work, as next example from [8] shows.

Example 5.7. Let L = C⇤(R) [ C+(R) [ C�(R). Then L is L-intermediate
and 2-universally L-complete, but L is not L-isomorphic to some C(X).

We develop a di↵erent approach.

Definition 5.8. A sequence {f
n

}
n

in L is said to be pointwise C-bounded if
for every R 2 RC

L

there are r < s in R with f
n

^ r 2 R(r) and f
n

_ s 2 R(s)
for each n.

L is said to be pointwise C-complete if every increasing (resp. decreasing)
pointwise C-bounded sequence {f

n

}
n

in L having the property that f
n

^k = f
k

(resp. f
n

_�k = f
k

) for every n > k, has a supremum (resp. infimum) f in L
which satisfies f ^ n = f

n

(resp. f _ �n = f
n

) for each n.
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In [11] we have obtained the most general characterization of C(X) up to
the date.

Theorem 5.9. The following are equivalent:

(i) L is C-isomorphic to some C(X);

(ii) L is C-intermediate and pointwise C-complete.

On realizing a uniform version of previous theorem we had to impose dif-
ferent requirements.

Definition 5.10. {f
n

}
n

is said to be weakly pointwise C-bounded from above
(resp. below) if for every R 2 RC

L

there is n with f
n

/2 R(n) (resp. f
n

/2
R(�n)).

L is said to be equi-uniformly C-complete if every equi-uniformly C-con-
tinuous and weakly pointwise C-bounded from above (resp. from below) se-
quence {f

n

}
n

in L having the property that f
n

^ k = f
k

(resp. f
n

_ �k = f
k

)
whenever n > k, has an upper bound (or a lower bound) f in L which satisfies
f ^ n = f

n

(or f _ �n = f
n

, resp.) for all n.

We obtained in [12]:

Theorem 5.11. The following are equivalent:

(i) L is C-isomorphic to some U(Y );

(ii) L is uniformly C-intermediate and equi-uniformly C-complete.
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Czech Republic
E-mail: mhusek@karlin.mff.cuni.cz, Miroslav.Husek@ujep.cz

A. Pulgaŕın
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On a coe�cient concerning an ill-posed

Cauchy problem and the singularity

detection with the wavelet transform

Naohiro Fukuda and Tamotu Kinoshita

Abstract. We study the Cauchy problem for 2nd order weakly hyper-

bolic equations. F. Colombini, E. Jannelli and S. Spagnolo showed a

coe�cient giving a blow-up solution in Gevrey classes. In this paper, we

get a simple representation of the coe�cient degenerating at an infinite

number of points, with which the Cauchy problem is ill-posed in Gevrey

classes. Moreover, we also report numerical results of the singularity

detection with wavelet transform for coe�cient functions.

Keywords: weakly hyperbolic equations; ill-posed Cauchy problem; Gevrey classes;

wavelet transform
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1. Introduction

We are concerned with the Cauchy problem on [0, T ]⇥R
x

(

@

2
t

u� a(t)@2
x

u = 0,

u(0, x) = u0(x), @

t

u(0, x) = u1(x).
(1)

Throughout this paper, we assume the weakly hyperbolic condition, i.e.,

a(t) � 0 for t 2 [0, T ].

We denote by G

s(R) the space of Gevrey functions satisfying

sup
x2K

|@

n

x

g(x)|  C

K

r

n

K

n!s for any compact set K ⇢ R, n 2 N.

From the finite propagation property of hyperbolic equations, it is su�cient to
consider compactly supported initial data u0, u1 and solution u (see [3], [6],
[7], etc). Thanks to this fact, we may use the following Gevrey norm for the
functions on the whole interval R:

kgk

s,r

= sup
n2N

k@

n

x

gk

L

1(R)

r

n

n!s
.
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We say that the Cauchy problem (1) is well-posed in G

s, if for any u0, u1 2 G

s,
there is a unique solution u 2 C

2([0, T ];Gs) satisfying the energy estimate:

ku(t)k
s,R

+ k@

t

u(t)k
s,R

 C

T

⇣

ku0ks,r

+ ku1ks,r

⌘

for t 2 [0, T ], (2)

where R is a constant greater than r, which implies that the derivative loss
possibly occurs in a sense of the radius of the Gevrey class G

s. To know that the
derivative loss really occurs, we have a great interest for the counterexample.

There are many kinds of results on the well-posedness for 2nd order weakly
hyperbolic equations (see [2], [4], [5], [6], [9] etc). Let us denote by C

k,↵[0, T ]
(k 2 N, 0  ↵  1 ) the space of functions having k-derivatives continuous,
and the k-th derivative Hölder continuous with exponent ↵ on [0, T ]. Especially
for the coe�cient a 2 C

k,↵[0, T ], F. Colombini, E. Jannelli and S. Spagnolo [4]
proved the well-posedness in G

s for 1 < s < 1+(k +↵)/2. Moreover, they also
showed an example of a coe�cient a(t) giving a blow-up solution u as follows:

Theorem 1.1. ([4]) For every T > 0, k 2 N and 0  ↵  1, it is possible to

construct a function a(t), C

1
and strictly positive on [0, T ), zero at t = T ,

and solution u of (1) in a way that a(t) belongs to C

k,↵[0, T ] and u belongs to

C

1([0, T ), Gs) for s > 1 + (k + ↵)/2, whereas {u(t, ·)} is not bounded in D

0
, as

t " T .

Remark 1.2. a 2 C

k,↵[0, T ] means that the zero extension of a(t) belongs to
C

k,↵[0,1).

Their prior work [5] showed an example of a 2 C

1[0, T ] giving a blow-
up solution u 2 C

1([0, T ), C1). The main task of the proof of Theorem 1.1
is to construct the coe�cient a(t) defined piecewise on an infinite number of
intervals between [0, T ]. The piecewise functions are connected at the endpoints
of contiguous intervals with a smooth cut o↵ function. For this reason, it would
not be easy to represent such a function a(t). The behavior of a(t) is well
controlled with the parameters ⇢

j

, ⌫

j

and �

j

regarded as dilation, frequency

and degeneracy respectively.

Remark 1.3. As for the strictly hyperbolic case, F. Colombini, E. De Giorgi
and S. Spagnolo [3] showed an example of a 2 C

↵[0, T ] giving a blow-up solution
u 2 C

1([0, T ), Gs) for s > 1/(1 � ↵). In this case, the degeneracy parameter
�

j

is not necessary, and the piecewise functions in a(t) can be connected at the
endpoints of contiguous intervals without a cut o↵ function.

1.1. Main Results

We shall follow their brilliant method with the parameters, and change some
parts of their construction in order to represent the coe�cient in a simple form
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without a smooth cut o↵ function. We also say that the Cauchy problem (1)
is ill-posed in G

s if the Cauchy problem (1) is not wellposed in G

s, i.e., the
energy inequality (2) breaks. For the equations with lower order terms (having
an interaction between several coe�cients), the ill-posedness can be proved
with an energy based on the Lyapunov function (see [7], [8]).

We note that the coe�cient a(t) in Theorem 1.1 degenerates only at t = T

where its regularity becomes C

k,↵. For our purpose to represent the coe�cient
in a simple form, a(t) must be allowed to have oscillations touching the t axis.
In fact, the case degenerating at an infinite number of points is more di�cult
situation than the case degenerating only at one point in the construction of
a counterexample with an energy inequality. Assuming that k = 0, 1, we can
get the following representation of the coe�cient degenerating at an infinite
number of points:

Theorem 1.4. Let s0 = 1+(k+↵)/2, s > s0, T0 = 0, T

j

=
j

X

n=1

2(1�s/s0)(n�1)2/2

(j � 1), and T = lim
j!1

T

j

. Define

a(t) = 2(s/s0+1�2s)j2
⇥

⇣

2(s/s0+1)j2
/2(t� T

j

)
⌘

for t 2 [T
j

, T

j+1] (j � 0),

where

⇥(⌧) =
2� 2 cos 2⇡⌧

2 + 3�3 sin 2⇡⌧ + (�� 9�2) cos 2⇡⌧

and

� = (1 + 2
p

7)1/3
�

3
(1 + 2

p

7)1/3
.

Then, the followings hold:

1. a(t) is non-negative and degenerates at t = T

j

(j � 0) and t = T .

2. a(t) belongs to C

k,↵[0, T ] for k = 0, 1 and 0  ↵  1.

3. The Cauchy problem (1) with a(t) is ill-posed in G

s

.

Remark 1.5. Multiplying T

j

by a constant, we can take an arbitrary small
T > 0 as far as s > s0. It is interesting that the life span T tends to infinity as
s tends to s0.

In Theorem 1.4 and its proof, the following parts are di↵erent from [4]:

• In §2.1, ⇥(⌧) which is not same as the corresponding function in [4]. We
require ⇥(⌧) for which both minimum point and minimum value can be
calculated. Therefore, in §2.2 we can construct a(t) which has oscillations
touching the t axis in an infinite number of points accumulating at t = T .
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• In §2.4, the parameters ⇢

j

, ⌫

j

and �

j

are uniformly taken as some pow-
ers of 2(j�1)2 . This choice of the parameters enables us to simplify the
representation of the coe�cient.

It would seem strange that a(t) defined piecewise without a cut o↵ function, is
still smooth i.e., C

k,↵[0, T ]. This is true due to our construction of ⇥(⌧) and
the additional assumption k = 0, 1 in Theorem 1.4 (the piecewise functions
are connected at the minimum points). Therefore, we can remove a cut o↵
function to represent the coe�cient a(t). In order to remove the restriction
that k = 0, 1 form Theorem 1.4, we also need to modify the coe�cient with a
cut o↵ function (see Corollary 2.19 in §2.6).

In the particular case that a(t) does not belongs to C

0[0, T ], we can also
get the following corollary:

Corollary 1.6. Assume s > 1, T0 = 0, T

j

=
j

X

n=1

2(1�s)(n�1)2 (j � 1), and

T = lim
j!1

T

j

. Define

a(t) = ⇥
⇣

2sj

2
(t� T

j

)
⌘

for t 2 [T
j

, T

j+1] (j � 0).

Then, the followings hold:

1. a(t) is non-negative and degenerates at t = T

j

(j � 0) and t = T .

2. a(t) is not continuous at t = T and belongs to L

1(0, T ) \ C

2[0, T ).

3. The Cauchy problem (1) with a(t) is ill-posed in G

s

.

Remark 1.7. Let s = q(q�1)�1 (q > 1) and T

j

=
P

j

n=1 2(1�q)�1(n�1)2 (j � 1).
Define

a(t) = ⇥
⇣

2q(q�1)�1
j

2
(t� T

j

)
⌘

for t 2 [T
j

, T

j+1] (j � 0).

For t 2 [T
j

, T

j+1], we know that (T � t) ⇠
P1

n=j+1 2(1�q)�1(n�1)2
⇠ 2(1�q)�1

j

2
.

While, we have |a

0(t)|  C2q(q�1)�1
j

2
 C(T � t)�q. Thus, Corollary 1.6 is

also a simple counterexample of the ill-posedness in G

s for s � q(q� 1)�1 with
a(t) 2 L

1(0, T ) \ C

1[0, T ) satisfying |a

0(t)|  C(T � t)�q (see [1], [2]).

It is known that the Cauchy problem for weakly hyperbolic equations is
well-posed in the Analytic class (s = 1), even if a 2 L

1(0, T ). The simple
periodic function ⇥ proposed in this paper can be expected useful in study
of the ill-posedness. Indeed, we shall present numerical results with this ⇥ in
Appendix.
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2. Proof of Theorem 1.4

We shall put the parameters ⇢

j

, ⌫

j

and �

j

(j � 1) as follows:

⇢

j

= 2�X(j�1)2
, ⌫

j

= 2Y (j�1)2
, �

j

= 2�Z(j�1)2
,

where X, Y and Z are all positive and determined later. We suppose that ⌫

j

(j � 1) are integers, by taking a integer Y later. Moreover, we define

T0 = 0, T

j

=
j

X

n=1

⇢

n

(j � 1) and I

j

= [T
j�1, Tj

] (j � 1).

2.1. Construction of ⇥(⌧)

F. Colombini, E. Jannelli and S. Spagnolo [4] consider the following auxiliary
Cauchy problem for the ordinary equation:

(

W

00
�

(⌧) + ⇥
�

(⌧)W
�

(⌧) = 0,

W

�

(0) = 0, W

0
�

(0) = 1,

(3)

where ⇥
�

(⌧) is a non-negative periodic function.

Remark 2.1. The Cauchy problem (3) can be also regarded as a terminal value
problem. In §2.3 we use the negative part ⌧  0 for this problem.

By the Floquet theory, the solution has a form W

�

(⌧) = P

�

(⌧) exp{�⌧}

with � 2 R and a periodic function P

�

(⌧). Now we don’t solve (3), but we find
⇥

�

(⌧) form the solution W

�

(⌧) inversely. Thus, we get

⇥
�

(⌧) = �

W

00
�

(⌧)
W

�

(⌧)
= ��

2
�

P

00
�

(⌧) + 2�P

0
�

(⌧)
P

�

(⌧)
. (4)

Since P

�

(⌧) is periodic, ⇥
�

(⌧) is periodic too. But, we have to choose suitable
� 2 R and P

�

(⌧) such that ⇥(⌧) � 0.

Remark 2.2. In fact, most of choices with random � 2 R and P

�

(⌧) fail to
satisfy ⇥

�

(⌧) � 0. [4] succeeds to find a rare case:

� =
1
10

and P

�

(⌧) = sin ⌧ exp
n

�

�

2
sin 2⌧

o

. (5)

Furthermore, we shall change (5) by the following:

0 < �  � and P

�

(⌧) = sin ⌧

⇣

1�
�

2
sin 2⌧

⌘

, (6)
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where � > 0 is a su�ciently small constant such that ⇥
�

(⌧) � 0 for 0 < �  �.
(see Lemma 2.5). Then by (4) and (6) we have

⇥
�

(⌧) =
2 + (�3

� 9�) sin 2⌧ + 6�

2 cos 2⌧

2� � sin 2⌧

, (7)

here we remark that ⇥
�

(⌧) becomes only ⇡-periodic, since sin ⌧ has been can-
celed. ⇥

�

(⌧) given by (7) enables us to calculate the exact points of the mini-
mum and the maximum as follows:

Lemma 2.3. Let

p± = p±(�) =
3�

2(8� �

2)± 12�

p

�2�

4 + 5�

2 + 16
(�2 + 4)(�2 + 16)

.

Then, ⇥
�

(⌧) (0  ⌧  ⇡) has the maximum value and the minimum value

⇥
�

(⌧±) =
2 + (�3

� 9�)
q

1� p

2
± + 6�

2
p±

2� �

q

1� p

2
±

(8)

at ⌧+ = 1
2Cos�1

p+ and ⌧� = 1
2Cos�1

p� respectively.

Proof. Di↵erentiating ⇥
�

(⌧), we get

⇥0
�

(⌧) =
4�

n

(�2
� 8) cos 2⌧ � 6� sin 2⌧ + 3�

2
o

(2� � sin 2⌧)2
.

To find the maximum and minimum values, we solve the equation

(�2
� 8) cos 2⌧ � 6� sin 2⌧ + 3�

2 = 0.

When 0  ⌧  ⇡/2, we put p = cos 2⌧ (�1  p  1) and get

(�2
� 8)p + 3�

2 = 6�

p

1� p

2
. (9)

For small � > 0, we see that p must be negative, since the signatures of both
sides must coincide. Taking the square of both sides, we can reduce to the
following quadratic equation in p:

(�2 + 4)(�2 + 16)p2
� 6�

2(8� �

2)p + 9�

2(�2
� 4) = 0. (10)

Hence, we have a (unique) negative solution

p� = p�(�) =
3�

2(8� �

2)� 12�

p

�2�

4 + 5�

2 + 16
(�2 + 4)(�2 + 16)

. (11)
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When ⇡/2  ⌧  ⇡, we put 0  ⌧̃ = ⇡ � ⌧  ⇡/2 and p = cos 2⌧̃ (�1  p  1)
and get

(�2
� 8)p + 3�

2 = �6�

p

1� p

2
.

For small � > 0, we see that p must be positive, since the signatures of both
sides must coincide. Taking the square of both sides, we can reduce to the
same quadratic equation (10). Hence, we have a (unique) positive solution

p+ = p+(�) =
3�

2(8� �

2) + 12�

p

�2�

4 + 5�

2 + 16
(�2 + 4)(�2 + 16)

.

We note that p� = cos 2⌧ in 0  ⌧  ⇡/2 and p+ = (cos 2⌧̃ =) cos 2⌧ in
⇡/2  ⌧  ⇡. Thus it follows that ⌧� := 1

2Cos�1
p� and ⌧+ := 1

2Cos�1
p+

satisfy 0 < ⌧� < ⌧+ < ⇡ and give the minimum value and the maximum value
respectively, since ⇥0

�

(0) = 8�(�2
� 2) < 0. Substituting ⌧± into ⇥(⌧) we also

have (8).

Remark 2.4. p± are the simple roots of the quadratic equation (10). Therefore,
⇥0

�

(⌧) changes the sign at ⌧ = ⌧±.

If � = 0, ⇥0(⌧) is a positive constant, i.e., the ratio ⇥0(⌧+)/⇥0(⌧�) ⌘ 1.
Obviously, it holds that ⇥

�

(⌧+)/⇥
�

(⌧�) > 1 for small � > 0. As � > 0 becomes
larger, ⇥

�

(⌧+)/⇥
�

(⌧�) tends to infinity as follows:

Lemma 2.5. For � = (1 + 2
p

7)1/3
� 3(1 + 2

p

7)�1/3(⇠ 0.221), we have

⇥
�

(⌧) > 0 if 0 < � < �, ⇥�(⌧�) = 0 and ⌧� =
1
2
Cos�1(�3�2). (12)

Remark 2.6. We remark that ⇡/4 < ⌧� < ⇡/2, since ⌧� = 1
2Cos�1(�3�2) ⇠

1
2Cos�1(�3 ⇥ 0.2212) ⇠ 0.858. By numerical computations we observe that
⇥�(⌧+) < 2.

Proof. By (8), ⇥�(⌧�) = 0 means that

2 + (�3
� 9�)

q

1� p

2
� + 6�2

p� = 0.

Hence, by (9) with p = p� we have

6�2
p� + 2

9�� �3
=

(�2
� 8)p� + 3�2

6�

✓

=
q

1� p

2
�

◆

.

Therefore, � satisfies the equation

p� =
�3�4 + 27�2

� 12
�4 + 19�2 + 72

. (13)
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On the other hand, p� = p�(�) is defined in (11). Therefore, � > 0 is a
solution to the equation

3�2(8� �2)� 12�
p

�2�4 + 5�2 + 16
(�2 + 4)(�2 + 16)

=
�3�4 + 27�2

� 12
�4 + 19�2 + 72

.

Adding 3 on both sides and dividing both sides by 12, we get

7�2 + 16� �
p

�2�4 + 5�2 + 16
(�2 + 4)(�2 + 16)

=
7�2 + 17

�4 + 19�2 + 72
.

Multiplying both sides by (�2 + 4)(�2 + 16)(�4 + 19�2 + 72), we also get

�8�4 + 20�2 + 64 = �
p

�2�4 + 5�2 + 16(�4 + 19�2 + 72).

Moreover, dividing both sides by
p

�2�4 + 5�2 + 16, we have

4
p

�2�4 + 5�2 + 16 = �(�4 + 19�2 + 72). (14)

(14) is reduced to the equation of degree 10

�10 + 38�8 + 505�6 + 2768�4 + 5104�2
� 256 = 0.

Fortunately, this can be divided by (�2+4)(�2+16). Then we have the equation
of degree 6

�6 + 18�4 + 81�2
� 4 = 0. (15)

Regarding this as a cubic equation with respect to �2, we can find the solution

� =
n

(29+4
p

7)1/3+(29�4
p

7)1/3
�6
o1/2

= (1+2
p

7)1/3
�

3
(1 + 2

p

7)1/3
⇠ 0.221.

Using (14) again, we can change p�(�) defined in (11) into

p�(�)

 

⌘

3�2(8� �2)� 12�
p

�2�4 + 5�2 + 16
(�2 + 4)(�2 + 16)

!

=
3�2(8� �2)� 3�2(�4 + 19�2 + 72)

(�2 + 4)(�2 + 16)
= �3�2

.

Hence, it holds that ⌧� = 1
2Cos�1

p�(�) = 1
2Cos�1(�3�2).

At last, we define
⇥(⌧) := ⇥�(⇡⌧ + ⌧�).

By (15) we see that 4(1� 9�4) = �6
� 18�4 + 81�2. Hence, we get

2
p

1� 9�4 = �(9� �2).
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By (12) and Remark 2.6 it holds that cos 2⌧� = �3�2 and sin 2⌧� = +
p

1� 9�4

= �(9� �2)/2. Therefore, by (7) we have the 1-periodic function

⇥(⌧) =
2 + (�3

� 9�) sin(2⇡⌧ + 2⌧�) + 6�2 cos(2⇡⌧ + 2⌧�)
2� � sin(2⇡⌧ + 2⌧�)

=
4� (�3 + 9)2 cos 2⇡⌧

4 + 6�3 sin 2⇡⌧ + �(�3
� 9�) cos 2⇡⌧

=
2� 2 cos 2⇡⌧

2 + 3�3 sin 2⇡⌧ + (�� 9�2) cos 2⇡⌧

,

here we used by (15) (�3 + 9�)2 = 4, i.e., �3 + 9� = 2 and �3
� 9� = 2� 18�.

2.2. Construction of a(t)

For the construction of the coe�cient, we shall use ⇥(⌧). At the 1st step, let
us consider

�1(t) = ⇥(t) for t 2 [0, 1].
There are only 1 maximum point and only 2 minimum points in the interval
[0, 1]. The graph of �1(t) starts from the minimum point (t = 0) and ends at
the minimum point (t = 1). Next, we consider

�

j

(t) = ⇥(⌫
j

t) for t 2 [0, 1].

By the 1-periodicity there are ⌫

j

maximum points and (⌫
j

+1) minimum points
in the interval [0, 1]. The graph of �

j

(t) starts from a minimum point (t = 0)
and ends at a minimum point (t = 1).

At the 2nd step, let us consider

'

j

(t) = ⇥
✓

⌫

j

t� T

j�1

⇢

j

◆

for t 2 I

j

= [T
j�1, Tj

].

There are ⌫

j

maximum points and (⌫
j

+ 1) minimum points in the interval
I

j

. The graph of '

j

(t) starts from a minimum point (t = T

j�1) and ends at a
minimum point (t = T

j

). Each '

j

(t) can be regarded as the piecewise definition
of the following function in the whole interval [0, T ]:

�(t) = ⇥
✓

⌫

j

t� T

j�1

⇢

j

◆

for t 2 I

j

= [T
j�1, Tj

].

We observe that �(t) is continuous at t = T

j

(j � 1), since �(T
j

) = 0.
At the 3rd step, we define that

a(t) = �

j

⇥
✓

⌫

j

t� T

j�1

⇢

j

◆

for t 2 I

j

= [T
j�1, Tj

]. (16)

We remark that a(t) is continuous at the whole interval [0, T ]. Furthermore,
we shall show the following lemma:
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Lemma 2.7. If k = 0, 1 and there exists "1 > 0 such that

�

j

✓

⌫

j

⇢

j

◆

k+↵

 2�"(j�1)2 for 0 < "  "1, (17)

a(t) belongs to C

k,↵[0, T ].

Remark 2.8. When we consider the proof of Corollary 1.6, the right hand side
2�"(j�1)2 is replaced by C.

Proof. We may check Hölder continuity in the right interval t 2 I

j+1 and the
left interval t 2 I

j

. Replacing j by j + 1 in (16) we obviously get

a(t) = �

j+1⇥
✓

⌫

j+1
t� T

j

⇢

j+1

◆

for t 2 I

j+1 = [T
j

, T

j+1]. (18)

By the 1-periodicity of ⇥, the definition (16) can be rewritten as

a(t) = �

j

⇥
✓

⌫

j

t�(T
j

�⇢

j

)
⇢

j

◆

= �

j

⇥
✓

⌫

j

t� T

j

⇢

j

◆

for t 2 I

j

= [T
j�1, Tj

]. (19)

In the case of k = 0, noting that ⇥ belongs to at least C

↵[0, T ], by (18) and (19)
we get

|a(t)� a(T
j

)| 

8

>

>

<

>

>

:

�

�

�

�

�

j

⇥
✓

⌫

j

t� T

j

⇢

j

◆

� �

j

⇥(0)
�

�

�

�

if t 2 I

j

�

�

�

�

�

j+1⇥
✓

⌫

j+1
t� T

j

⇢

j+1

◆

� �

j+1⇥(0)
�

�

�

�

if t 2 I

j+1



8

>

>

<

>

>

:

M�

j

�

�

�

�

⌫

j

t� T

j

⇢

j

�

�

�

�

↵

 M�

j

✓

⌫

j

⇢

j

◆

↵

|t� T

j

|

↵ if t 2 I

j

M�

j+1

�

�

�

�

⌫

j+1
t� T

j

⇢

j+1

�

�

�

�

↵

M�

j+1

✓

⌫

j+1

⇢

j+1

◆

↵

|t� T

j

|

↵ if t2I

j+1



(

M2�"1(j�1)2
|t� T

j

|

↵ if t 2 I

j

M2�"1j

2
|t� T

j

|

↵ if t 2 I

j+1

 M2�"1(j�1)2
|t� T

j

|

↵

⇣

 M |t� T

j

|

↵

⌘

,

here we used (17), but we need not use the fact that a(T
j

) = 0. Hence we see
that a(t) is ↵-Hölder continuous at t = T

j

. As for t = T , since a(T ) = 0 we
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also have

|a(t)�a(T )| = |a(t)| 

8

>

>

>

>

<

>

>

>

>

:

�

�

a(t)� a(T
j

)
�

�+
1
X

n=j

�

�

a(T
n

)� a(T
n+1)

�

� if t 2 I

j

�

�

a(t)� a(T
j+1)

�

�+
1
X

n=j+1

�

�

a(T
n

)� a(T
n+1)

�

� if t 2 I

j+1



 1
X

n=1

M2�"1(n�1)2

!

|t� T |

↵

 M

"1 |t� T |

↵

.

This means that a(t) is ↵-Hölder continuous at t = T .
In the case of k = 1, by (18) and (19) we have

a

0(t) =
�

j+1⌫j+1

⇢

j+1
⇥0
✓

⌫

j+1
t� T

j

⇢

j+1

◆

for t 2 I

j+1 = [T
j

, T

j+1],

and
a

0(t) =
�

j

⌫

j

⇢

j

⇥0
✓

⌫

j

t� T

j

⇢

j

◆

for t 2 I

j

= [T
j�1, Tj

].

To get the di↵erentiability at t = T

j

, the right derivative and the left derivative
must coincide. The right derivative and the left derivative are respectively

a

0(T
j

) =
�

j+1⌫j+1

⇢

j+1
⇥0(0) and a

0(T
j

) =
�

j

⌫

j

⇢

j

⇥0(0),

that is, a

0(T
j

) = 0 (⇥0(0) = 0) since a(t) takes a minimum value in I

j+1 and
a minimum value in I

j

at t = T

j

from our construction. Therefore, a(t) is
di↵erentiable at t = T

j

. As for t = T , we see that lim
t"T |a

0(t)| = 0, since
by (17)

lim
j!1

�

j+1⌫j+1

⇢

j+1
= lim

j!1

�

j

⌫

j

⇢

j

= 0.

Hence the left derivative at T = t is zero. Then we have a

0(T ) = 0 since by the
zero extension the right derivative at T = t is also zero. Thus, a(t) belongs to
C

1[0, T ]. Similarly, noting that ⇥ belongs to at least C

1+↵[0, T ], we obtain the
estimates |a

0(t)�a

0(T
j

)|  M�

j

�

⌫

j

/⇢

j

�1+↵

|t�T

j

|

↵ = M2�"1(j�1)2
|t�T

j

|

↵

⇣



M |t� T

j

|

↵

�

and |a

0(t)� a

0(T )|  M

"1 |t� T

j

|

↵.

Remark 2.9. In order to justify a

0(T
j

) and a

0(T ) we first showed that a(t)
belongs to C

1[0, T ]. Then, we are allowed to consider |a

0(t) � a

0(T
j

)| and
|a

0(t)� a

0(T )|.

Remark 2.10. We can not deal with k = 2, because the right 2nd derivative
and the left 2nd derivative does not coincide at t = T

j

. So, we can not justify
a

00(T
j

). Thus a(t) does not belong to C

2[0, T ]. But, a(t) belongs to C

1,1[0, T ]
which implies a

0(t) 2 Lip[0, T ].
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2.3. Construction of Solutions

We consider a sequence of the solutions {u(J)(t, x)}
J�1 to the Cauchy problem

on [0, T ]⇥R
x

(

@

2
t

u

(J)
� a(t)@2

x

u

(J) = 0,

u(0, x) = u

(J)
0 (x), @

t

u(0, x) = u

(J)
1 (x).

(20)

Let us take the sequence {t

j

}

j�1 defined by

t

j

:= T

j

�

⇢

j

⌧�
⇡⌫

j

. (21)

We see that t

j

2 I

j

= [T
j�1, Tj

], since ⌧�
⇡⌫j

 1. Now we shall devote ourselves
to only the interval [0, t

j

] by separating into two parts [T
j�1, tj ] and [0, T

j�1],
where the Cauchy problems are solved in the inverse direction.

For the interval [T
j�1, tj ], we suppose that u

(J)(t, x) has a form of

u

(J)(t, x) =
1
X

j=J

v

j

(t) cos h

j

x, (22)

where
h

j

=
⇡⌫

j

⇢

j

p

�

j

, (23)

and v

j

solves the terminal value problem on [T
j�1, tj ] ⇢ I

j

(

v

00
j

+ h

2
j

a(t)v
j

= 0,
v

j

(t
j

) = 0, v

0
j

(t
j

) = 1.

(24)

Noting that by (19)

a(t) = �

j

⇥
✓

⌫

j

t� T

j

⇢

j

◆

= �

j

⇥�

✓

⇡⌫

j

t� T

j

⇢

j

+ ⌧�

◆

for t 2 [T
j�1, tj ] ⇢ I

j

,

and putting

v

j

(t) =
⇢

j

⇡⌫

j

W�

✓

⇡⌫

j

t� T

j

⇢

j

+ ⌧�

◆

,

by the change of variable ⌧ = ⇡⌫

j

t�Tj

⇢j
+ ⌧� we have just (3). Therefore, by (6)

it follows that

W�(⌧) = sin ⌧

✓

1�
�
2

sin 2⌧

◆

e

�⌧

.
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Hence, noting Remark 2.1 we have

V0 := v

j

(T
j�1) =

⇢

j

⇡⌫

j

W�(�⇡⌫

j

+ ⌧�)

=
⇢

j

⇡⌫

j

sin ⌧�

⇣

1�
�
2

sin 2⌧�

⌘

exp
�

� �⇡⌫

j

+ �⌧�
 

, (25)

V1 := v

0
j

(T
j�1) = W

0
�(�⇡⌫

j

+ ⌧�)

=
⇣

cos ⌧� + � sin ⌧� �
�
2

sin 2⌧� cos ⌧� � � cos 2⌧� sin ⌧�

�

�2

2
sin ⌧� sin 2⌧�

⌘

exp
�

� �⇡⌫

j

+ �⌧�
 

. (26)

By (25) and (26) it follows that

|V0|  C0
⇢

j

⌫

j

e

��⇡⌫j
, |V1|  C1e

��⇡⌫j
. (27)

This fact plays an important role in the construction of the counterexample.
For the interval [0, T

j�1] we suppose that u

(J)(t, x) also has a form of (22)
with v

j

solving the terminal value problem on [0, T

j�1] = [

j�1
n=1In

(j � 2)
(

v

00
j

+ h

2
j

a(t)v
j

= 0,

v

j

(T
j�1) = V0, v

0
j

(T
j�1) = V1.

(28)

We remark that the formula with W� can not be obtained in this interval.
Therefore, we shall use the energy method. Let us introduce the following
proposition concerned with the energy method:

Proposition 2.11. Let h > 0 and a(t) be a non-negative C

1
function. Then,

for the solution v satisfying v

00 + h

2
a(t)v = 0, it holds that

E(�1)  E(�2) exp


�

�

�

�

Z

�1

�2

max{a0(t), 0}
a(t) + �

2
h

2(1/s�1)
dt

�

�

�

�

+ |�1 � �2|�h

1/s

�

,

where E(t) = |v

0(t)|2 + (h2
a(t) + �

2
h

2/s)|v(t)|2.

Remark 2.12. We can apply the energy inequality also into the terminal value
problem. Because we may take �1 and �2 such that �1  �2.

Proof. Di↵erentiating E(t), we have

E

0(t) = 2<
⇣

v

0(t), v00(t)
⌘

+ 2(h2
a(t) + �

2
h

2/s)<
⇣

v

0(t), v(t)
⌘

+ h

2
a

0(t)|v(t)|2

 h

2
a

0(t)|v(t)|2 + 2�

2
h

2/s

|v

0(t)||v(t)|

 h

2 max{a0(t), 0}|v(t)|2 + �

2
h

2/s

⇣

�

�1
h

�1/s

|v

0(t)|2 + �h

1/s

|v(t)|2
⌘



⇢

max{a0(t), 0}
a(t) + �

2
h

2(1/s�1)
+ �h

1/s

�

E(t),
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which proves the proposition.

From the construction of the coe�cient, we know that a(t) has ⌫

j�1 maxi-
mum points and (⌫

j�1 +1) minimum points in the interval I

j�1 = [T
j�2, Tj�1].

Using Proposition 2.11 with �1 = T

j�2 and �2 = T

j�1, by Remark 2.4 we get
the estimate in the interval I

j�1 = [T
j�2, Tj�1]

E

j

(T
j�2)E

j

(T
j�1) exp

"

�

�

�

�

�

Z

Tj�2

Tj�1

max{a0(t), 0}

a(t)+�

2
h

2(1/s�1)
j

dt

�

�

�

�

�

+|T

j�2 � T

j�1|�h

1/s

j

#

E

j

(T
j�1) exp

h

⌫

j�1 log
n

�

�2
h

2(1�1/s)
j

�

j

⇥�(⌧+) + 1
o

+ (T
j�1 � T

j�2)�h

1/s

j

i

,

where E

j

(t) = |v

0
j

(t)|2 + (h2
j

a(t) + �

2
h

2/s

j

)|v
j

(t)|2. Combining all the energy
inequalities in I

n

(n = 1, 2, · · · , j � 1), we have

E

j

(0)  E

j

(T
j�1) exp

"

j�1
X

n=1

⌫

n

log
n

�

�2
h

2(1�1/s)
j

�

j

⇥�(⌧+) + 1
o

+ T

j�1�h

1/s

j

#

.

Noting that by (27)

E

j

(T
j�1)  |V1|

2 + Ch

2
j

|V0|
2
 C3

 

1 +
h

2
j

⇢

2
j

⌫

2
j

!

exp{�2�⇡⌫

j

},

and taking � = 1
⇡Tj�1

, we obtain

E

j

(0)  C3

 

1 +
h

2
j

⇢

2
j

⌫

2
j

!

exp

"

j�1
X

n=1

⌫

n

log
n

⇡

2
T

2
j�1h

2(1�1/s)
j

�

j

⇥�(⌧+) + 1
o

+
1
⇡

h

1/s

j

� 2�⇡⌫

j

�

. (29)

Moreover, we need the following lemma:

Lemma 2.13. If

⇢

j

⌫

s�1
j

p

�

j

= 1, (30)

and there exists "2 > 0 such that

j�1
X

n=1

⌫

n

(log j + log ⌫

j

+ 3) 
⇣

�⇡ �

1
2
� 2"

⌘

⌫

j

for 0 < "  "2, (31)

it holds that

j�1
X

n=1

⌫

n

log
n

⇡

2
T

2
j�1h

2(1�1/s)
j

�

j

⇥�(⌧+) + 1
o

+
1
⇡

h

1/s

j

� 2�⇡⌫

j

 �"2h
1/s

j

. (32)
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Proof. By (23) and (30) we get h

1/s

j

=
⇣

⇡⌫j

⇢j

p

�j

⌘1/s

= ⇡

1/s

⌫

j

(� 1). Hence,

noting that (1  )T
j�1 =

P

j�1
n=1 ⇢

n



P

j�1
n=1 1  j, by Remark 2.6 and (31) we

have

j�1
X

n=1

⌫

n

log
n

⇡

2
T

2
j�1h

2(1�1/s)
j

�

j

⇥�(⌧+) + 1
o

+
1
⇡

h

1/s

j

� 2�⇡⌫

j



j�1
X

n=1

⌫

n

log
n

⇡

2
· T

2
j�1 · ⇡

2(1�1/s)
⌫

2(1�1/s)
j

· 1 · 2 + 1
o

+ ⇡

1/s�1
⌫

j

� 2�⇡⌫

j



j�1
X

n=1

⌫

n

log
�

4⇡

4
T

2
j�1⌫

2
j

 

+ ⇡

1/s�1
⌫

j

� 2�⇡⌫

j



j�1
X

n=1

⌫

n

(2 log j + 2 log ⌫

j

+ 6) + ⇡

1/s�1
⌫

j

� 2�⇡⌫

j

 2
j�1
X

n=1

⌫

n

(log j + log ⌫

j

+ 3) + ⌫

j

� 2�⇡⌫

j

 �4"2⌫j

= �
4"2

⇡

1/s

h

1/s

j

 �"2h
1/s

j

,

thus getting the conclusion.

Consequently, by (29) and (32) it follows that

E

j

(0)  C3

 

1 +
h

2
j

⇢

2
j

⌫

2
j

!

exp
n

� "2h
1/s

j

o

. (33)

2.4. Choice of ⇢j, ⌫j and �j

For our purpose, ⇢

j

(= 2�X(j�1)2), ⌫

j

(= 2Y (j�1)2) and �

j

(= 2�Z(j�1)2) satisfy
(17), (30) and (31). Only the parameter Y must be an integer in order that ⌫

j

becomes an integer. So, the simplest choice is Y = 1. Then (31) means that
there exists "2 > 0 such that

j�1
X

n=1

2(n�1)2(log j +(j� 1)2 +3) 
⇣

�⇡�

1
2
� 2"

⌘

2(j�1)2 for 0 < "  "2. (34)
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We remark that j is greater than or equal to J which tends to infinity later in
§2.5. Thus, for large j � 1, the inequality (34) holds, since,

j�1
X

n=1

2(n�1)2(log j + (j � 1)2 + 3)  j

2
j�1
X

n=1

2(n�1)2
 j

32(j�2)2



1
10

e

(j�1)2
, (35)

and � ⇠ 0.221 and 1/10  �⇡ � 1/2� 2" for a su�ciently small " > 0.

Remark 2.14. More generally, if we consider the functions ⇢

j

(= 2�X(j�1)r

),
⌫

j

(= 2Y (j�1)r

) and �

j

(= 2�Z(j�1)r

) with the parameter r � 1, we can not
obtain the corresponding inequality of (35) just for r = 1.

Taking the binary logarithm and dividing by (j � 1)2 in (17) and (30), we
may take X and Z such that

8

<

:

(k + ↵)X � Z + k + ↵ + "1 = 0,

�X �

1
2
Z + s� 1 = 0.

Hence, we get

X =
s

s0
� 1�

"1

2s0
and Z = 2s

✓

1�
1
s0

◆

+
"1

s0
.

Since s0 � 1, we see that Z > 0 for "1 > 0. In order to have X > 0, we may
take "1 = s� s0. Then we obtain

X =
1
2

✓

s

s0
� 1

◆

and Z = 2s�

s

s0
� 1.

Summing up, we have

⇢

j

= 2�(s/s0�1)(j�1)2/2
, ⌫

j

= 2(j�1)2 and �

j

= 2�(2s�s/s0�1)(j�1)2
, (36)

and with (18) instead of (16)

a(t) = 2(s/s0+1�2s)j2
⇥

⇣

2(s/s0+1)j2
/2(t� T

j

)
⌘

for t 2 [T
j

, T

j+1].

Remark 2.15. If we consider a discontinuous coe�cient, we need not Lem-
ma 2.7 anymore. So, we can take "1 = 0 and Z = 0 (�

j

= 1) with s0 = 1.
Then, we also have X = s� 1 (⇢

j

= 2�(s�1)(j�1)2) and

a(t) = ⇥
⇣

2sj

2
(t� T

j

)
⌘

for t 2 [T
j

, T

j+1],

which proves the proof of Corollary 1.6.
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We also note that h

j

= ⇡⌫

s

j

= ⇡2s(j�1)2
� 1 and ⇢

2
j

/⌫

2
j

= 2�(2+X)(j�1)2
 1.

By (33) it follows that

E

j

(0)  C3

 

1 +
h

2
j

⇢

2
j

⌫

2
j

!

exp
n

� "2h
1/s

j

o

 C4h
2
j

exp
n

� "2h
1/s

j

o

.

Thus, we have

E

j

(0)  C5 exp
n

� "h

1/s

j

o

for 0 < " < "2. (37)

Remark 2.16. The Cauchy problem (28) is solved in the inverse direction.
Therefore, we can also see that for all 0  t  T

j�1

E

j

(t)  C5 exp
n

� "h

1/s

j

o

for 0 < " < "2.

In particular, if j1 < j2, it holds that for the point t = t

j1( T

j1  T

j�1)

E

j

(t
j1)  C5 exp

n

� "h

1/s

j

o

for 0 < " < "2. (38)

2.5. Ill-posedness of the Cauchy problem

We finally show the ill-posedness by the contradiction. We suppose that the
energy inequality for u

(J) holds, i.e.,

ku

(J)(t)k
s,R

+ k@
t

u

(J)(t)k
s,R

 C

T

⇣

ku

(J)
0 k

s,r

+ ku(J)
1 k

s,r

⌘

for t 2 [0, T ]. (39)

Let us note the point (t, x) = (t
J

, 0), where t

J

2 I

J

defined by (21) with
j = J . From the definition of the Gevrey norm, by (22) and (38) we have

k@

t

u

(J)(t
J

)k
s,R

� k@

t

u

(J)(t
J

)k
L

1
� |@

t

u

(J)(t
J

, 0)| =

�

�

�

�

�

�

1
X

j=J

v

0
j

(t
J

) cos(h
j

· 0)

�

�

�

�

�

�

=

�

�

�

�

�

�

1
X

j=J

v

0
j

(t
J

)

�

�

�

�

�

�

� |v

0
J

(t
J

)|�
1
X

j=J+1

|v

0
j

(t
J

)|

� |v

0
J

(t
J

)|�
1
X

j=J+1

E

j

(t
J

) � |v

0
J

(t
J

)|�
1
X

j=J+1

C5 exp
n

� "h

1/s

j

o

= 1� C5

1
X

j=J+1

exp
n

� "⇡

1/s2(j�1)2
o

, (40)
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here we used (24).
On the other hand, from the definition of the Gevrey norm, by (22), (37)

and Stirling’s formula we also have

ku

(J)
1 k

s,r



1
X

j=J

|v

0
j

(0)| sup
n2N

h

n

j

r

n

n!s


1
X

j=J

E

j

(0) sup
n2N

h

n

j

r

n

n!s



1
X

j=J

C5 exp
n

� "h

1/s

j

o

sup
n2N

h

n

j

r

n(2n⇡)s/2
n

sn

e

�sn

=
C5

(2⇡)s/2

1
X

j=J

2�(j�1)2 sup
n2N

exp
n

� "⇡

1/s2(j�1)2
o

2(sn+1)(j�1)2

n

s/2
�

r

⇡e

s

�

n

n

sn



C5

(2⇡)s/2

1
X

j=J

2�(j�1)2 sup
n2N

�

sn+1
"⇡

1/s

�

sn+1
e

�(sn+1)

n

s/2
�

r

⇡e

s

�

n

n

sn

=
C5

e"⇡

1/s(2⇡)s/2

1
X

j=J

2�(j�1)2 sup
n2N

(sn + 1)sn+1

n

s/2(r"s)n

n

sn

.

here we used the inequality e

�⇠

⇠

�



⇣

�



⌘

�

e

�� with ⇠ = 2(j�1)2 ,  = "⇡

1/s

and � = sn + 1. We note that

(sn + 1)sn+1

n

s/2(r"s)n

n

sn

=
sn + 1

n

s/2(r"s)n

·

✓

s +
1
n

◆

sn



sn + n

1 · (r"s)n

· (s + 1)sn = n(s + 1)
✓

(s + 1)s

r"

s

◆

n

.

If we take r > 0 such that (s+1)s

r"

s < 1, we see that sup
n2N

(sn+1)sn+1

n

s/2(r"

s)n
n

sn  C

s

.

Thus, we get

ku

(J)
1 k

s,r

 C6

1
X

j=J

2�(j�1)2
, (41)

similarly,

ku

(J)
0 k

s,r

 C7

1
X

j=J

2�(j�1)2
. (42)

If the energy inequality (39) with t = t

J

holds, by (40), (41) and (42) we
have

ku

(J)(t
J

)k
s,R

+ 1� C5

1
X

j=J+1

exp
n

� "⇡

1
s 2(j�1)2

o

 (C6 + C7)
1
X

j=J

2�(j�1)2
.
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If J tends to infinity, t

J

tends to T and we get

ku

(J)(T )k
s,R

+ 1  0.

This implies that the energy inequality (39) breaks and that the derivative loss
really occurs in a sense of the radius of the Gevrey class G

s.

2.6. Concluding Remarks

Remark 2.17. For the well-posedness, the case degenerating only at one point
is a better situation than the case degenerating at an infinite number of points
in a sense of the derivative loss. While, for the ill-posedness one would think
that the latter case included more factors that a(t) causes a blow-up solution.
But in fact, we can not find out such a factor in this construction. The proof
of the ill-posedness also relays on the energy inequality in Proposition 2.11.
This means that the case degenerating at an infinite number of points is not a
better situation than the case degenerating only at one point.

Remark 2.18. Let

g

⌘

(t) =

(

e

� 1
(⌘2�4t2) for |t| < ⌘/2,

0 for |t| � ⌘/2,

and  

⌘

(t) =

R

t

�1 g

⌘

(�)d�
R1
�1 g

⌘

(�)d�
.

We define that
�

⌘

(t) = 1�  

⌘

⇣

t�

⌘

2

⌘

 

⌘

⇣

t +
⌘

2

⌘

.

We know that �
⌘

(t) ⌘ 1 for |t| � ⌘ and �

⌘

(t) touches the t axis at t = 0. We
pay attention to the degeneration of infinite order. Instead of (16) we define

a(t) = �

j

⇥
✓

⌫

j

t� T

j�1

⇢

j

◆

�

⌘

(t� T

j�1)�⌘

(t� T

j

) for t 2 I

j

= [T
j�1, Tj

],

where ⌘ with a su�ciently small constant such that T

j�1 < T

j�1 + ⌘ < t

j

.
Thanks to degeneration of �

⌘

(t), we can remove the restriction that k = 0, 1
for the coe�cient a(t) (see Remark 2.10). Then, we may consider the terminal
value problem (24) on [T

j�1 + ⌘, t

j

] ⇢ I

j

. Moreover, we insert the terminal
value problem on [T

j�1, Tj�1 + ⌘] ⇢ I

j

(

v

00
j

+ h

2
j

a(t)v
j

= 0,

v

j

(T
j�1 + ⌘) = Ṽ0, v

0
j

(T
j�1 + ⌘) = Ṽ1,

where Ṽ0 and Ṽ1 satisfy the estimates as (27). Similarly as (28), we have
an energy inequality for this additional problem. Thus, we can also get the
following:
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Corollary 2.19. There exists a coe�cient a(t) such that

1. a(t) is non-negative and degenerates at an infinite number of points.

2. a(t) belongs to C

k,↵[0, T ] for all k 2 N and 0  ↵  1.

3. The Cauchy problem (1) with a(t) is ill-posed in G

s

for s > 1+(k+↵)/2.

Appendix. Singularity Spectra of Coe�cients

Theorem 1.4 with s0 = 1 (k = ↵ = 0) suggests that there exists a continuous
coe�cient a(t) such that the Cauchy problem is ill-posed in the non-analytic
class, in other words, a solution may blow-up if we give the initial data which
can not be represented as a Taylor series (an infinite sum). It will be practically
useful to find a way to know such an unsuitable coe�cient a(t) in advance. The
Fourier transform is the complete absence of information regarding the time.
Meanwhile, the windowed Fourier transform:

(T
w� f)(b, ⇠) =

Z

R
e

�i⌧⇠

f(⌧)w
�

�

⌧ � b

�

d⌧ (43)

and the wavelet transform:

(W
 

f)(b, a) =
1
p

a

Z

R
f(⌧) 

✓

⌧ � b

a

◆

d⌧ (44)

can extract the local information in time. Here we remark that a function g(t) 2
L

2(R) such that tg(t) 2 L

2(R) is called window. In (43) and (44), w

�

, are
window functions. In this paper, we shall utilize w

�

(t) = �(��,�)(t) cos2 (10⇡t)
in case 1 and case 2, w

�

(t)=�(��,�)(t)e�9t

2
/5 in case 3, and  (t)= 2(1�t

2)p
3⇡1/4 e

�t

2
/2

for the windowed Fourier transform and the wavelet transform. The simplified
representations of the coe�cients in Theorem 1.4 and Corollary 1.6 make it
possible to analyze coe�cients with the windowed Fourier transform and the
wavelet transform. Only in this section we shall write the coe�cient function
by the letter f instead of a in order to avoid a confusion with the parameter a

in the wavelet transform.
Case 1: Let 0 < T < 1 and f(t) be a non-negative monotone function

defined by

f(t) =

8

<

:

1
� log(T � t)

for 0  t < T (< 1),

0 for t � T.

(45)

f(t) degenerates only at t = T . We find that f(t) belongs to C

0[0,1), but
does not belong to C

↵[0,1) for any ↵ > 0. Thanks to the monotonicity, we
see that the Cauchy problem with (45) is C

1 well-posed.
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Figure 1: Graphs for windowed Fourier transform (left) and wavelet transform
(right) of (45) with T = 1/2. Both figures show that the irregular point is
t(⌘ b) = T . In particular, the wavelet transform (right) indicates that the high
frequency (irregularity) increases toward the irregular point with a slope (the
function (45) becomes irregular not rapidly but gradually).

Case 2: Let 0 < T < 1 and f(t) be a non-negative oscillating function
defined by

f(t) =

8

>

<

>

:

1� cos
⇣

� log(T � t)
⌘

� log(T � t)
for 0  t < T (< 1),

0 for t � T.

(46)

f(t) degenerates at an infinite number of points. If we take t

j

= T � e

�2j⇡

and s

j

= T � e

�2j⇡�⇡/2, it holds that |t

j

� s

j

| = e

�2j⇡

|1 � e

�⇡/2
| ⇠ e

�2j⇡

and |f(t
j

)� f(s
j

)| = (2j⇡ + ⇡/2)�1
⇠

1
j

. Hence, we find that f(t) belongs to
C

0[0,1), but does not belong to C

↵[0,1) for any ↵ > 0. Noting that f(t)
satisfies |f

0(t)|  C(T � t)�1, by [2] we see that the Cauchy problem with (46)
is C

1 well-posed.

Remark 2.20. In general, given functions are not always represented by the
elementary periodic functions like sine and cosine. In this case,

1� cos
⇣

� log(T � t)
⌘

� log(T � t)
⌘

1
X

n=1

(�1)n

(2n)!

n

log(T � t)
o2n�1

.

If a function is given as the right hand side, it will be di�cult to know the
oscillations. The numerical analysis with the windowed Fourier transform and
the wavelet transform can be available even for the function approximated by
a finite sum

f̃(t) =

8

>

<

>

:

100
X

n=1

(�1)n

(2n)!

n

log(T � t)
o2n�1

for 0  t < T (< 1),

0 for t � T.

(47)
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Figure 2: Graphs for windowed Fourier transform (left) and wavelet transform
(right) of (46) with T = 1/2. Similarly as Figure 1, both figures show that the
blow-up point is t(⌘ b) = T and the wavelet transform (right) indicates that the
high frequency (irregularity) increases toward the irregular point with a slope.
Furthermore for the graph of the wavelet transform (right), we observe that
the part of the slope becomes wider and higher since the oscillation influences
on the irregularity in neighbourhood of t(⌘ b) = T .

Then, we observe that the figures for f and f̃ are almost same.

Figure 3: Graphs for windowed Fourier transform (left) and wavelet transform
(right) of (47) with T = 1/2.

Case 3: Let f(t) be a coe�cient function in Theorem 1.4 with s0 = 1 and

s = 11/10, i.e., T

j

=
j

X

n=1

2�(n�1)2/20 (j � 1) and

f(t) = 2�j

2
/10⇥

⇣

221j

2
/20(t� T

j

)
⌘

for t 2 [T
j

, T

j+1] (j � 0). (48)

By Theorem 1.4 and its proof, f(t) degenerates at an infinite number of points
and belongs to C

0[0,1). Then we see that the Cauchy problem with (48) is
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G

11/10 ill-posed. For the ill-posedness it is possible to replace the function (48)
by

f(t) = 2�j

r
/10⇥(211j

r
/20(t� T

j

)

with r > 1 (see Remark 2.14). It is not so di�cult to describe the figure of
the wavelet transform even for a large r. Meanwhile, as r is larger, it would be
more di�cult to describe the figure of the windowed Fourier transform. For the
simplicity, supposing that r = 1, we shall describe the figures of the following:

T

j

=
j

X

n=1

2�(n�1)/20 (j � 1)

and
f(t) = 2�j/10⇥

⇣

221j/20(t� T

j

)
⌘

for t 2 [T
j

, T

j+1] (j � 0). (49)

Figure 4: Graphs for windowed Fourier transform (left) and wavelet transform
(right) of (49). In this case, the windowed Fourier transforms require 7 graphs
to adjust the brightness of the spectrogram. On the other hand, such an
arrangement is not necessary for the wavelet transform. In this sense the
wavelet transform is convenient.

The degenerating and oscillating coe�cients often appear in weakly hyper-
bolic equations. The amplitudes of oscillating coe�cients are flattened by the
degeneracy. In all above figures, the brightness shows a large value of windowed
Fourier transform or wavelet transform, and the decay along the vertical axis
denotes the smoothness of analyzed functions. For cases 1 and 2, from figures
1-3 we see that both the windowed Fourier transform and the wavelet transform
detect the degenerations of analyzed functions at t = T . But, for case 3, to
detect the variation of frequency with the windowed Fourier transform, we are
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forced to prepare some graphs according to the value of the windowed Fourier
transform (its graph is obtained by pasting together). On the other hand, the
wavelet transform is able to catch more information of low amplitudes with
high-frequency oscillations in comparison with the windowed Fourier trans-
form. Moreover, the multiplication by 1/

p

a in the definition of wavelet (44)
makes the amplitudes more conspicuous. The slopes of figures in case 3 in-
dicate that a peak moves toward the blow-up point T > 0 as the frequency
increases, which possibly causes the ill-posedness. Thus, the wavelet transform
can be used as a good screening test for coe�cients giving the ill-posedness of
the Cauchy problem.

Remark 2.21. Generally for a function f(t) = F

⇣

t�b

0

a

0

⌘

, the wavelet transform

with  
�

t�b

a

�

detects a ⇠ a

0 and b ⇠ b

0. Figure 4 means that a ⇠ 2�21j/20 and
b = T

j

are conspicuous since f(t) = 20�j/10⇥
⇣

t�Tj

2�21j/20

⌘

.
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Metrizability of hereditarily normal
compact like groups1
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Abstract. Inspired by the fact that a compact topological group is
hereditarily normal if and only if it is metrizable, we prove that various
levels of compactness-like properties imposed on a topological group G
allow one to establish that G is hereditarily normal if and only if G is
metrizable (among these properties are locally compactness, local mini-
mality and !-boundedness). This extends recent results from [4] in the
case of countable compactness.

Keywords: locally compact group, locally minimal group, !-bounded group, countably
compact group, hereditarily normal topological group, metrizable group
MS Classification 2010: primary 22A05, 22C05; secondary 03E57, 54H11, 54D15,
54D30

1. Introduction

In this paper all topological spaces and topological groups are assumed to be
Tychonov. The stronger separation axiom T5, hereditary normality, will be the
main point of the paper (recall that a topological space X is hereditary normal
if every subspace of X is normal). Metrizable spaces are obviously hereditarily
normal, while all countable spaces are T5, but not necessarily metrizable.

Since compact topological spaces are always normal, one may expect that
compact topological groups are often (sometimes) hereditarily normal. As the
following example shows, this occurs precisely when the groups are metrizable.
Example 1.1. The hereditarily normal compact groups can be described mak-
ing use of several classical theorems about compact groups and dyadic spaces
(i.e., continuous images of the Cantor cubes {0, 1}).

(a) According to Hagler-Gerlits-Efimov’s theorem, every compact group K
of weight  contains a Cantor cube {0, 1} (see [12, 23]). Since {0, 1}

is T5 precisely when   !, we deduce that K is T5 if and only if K is
metrizable.

1
The content of this paper was presented at ItEs2012 (Italia - España 2012).
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(b) Efimov [11] proved that T5 dyadic spaces are metrizable (see also [14,
3.12.12(k)]). Since the compact groups are dyadic by the celebrated
Kuz0minov theorem [18], we deduce again that the T5 compact groups
are metrizable.

In other words, one can resume the above observations in the following
metrization criterion for compact groups:

Fact 1.2. A compact group is T5 if and only if it is metrizable.

This fact does not remain true when compactness is replaced by the weaker
property of countable compactness. Indeed, Hajnal and Juhasz [15] built,
under the assumption of the Continuum Hypothesis (briefly, CH), a non-
metrizable, countably compact, hereditarily normal subgroup of {0, 1}c with
some additional properties. Another example to this e↵ect was produced by
Tkachenko [25]. Under the assumption of CH, he proved that the free abelian
group of size c admits a non-metrizable, countably compact, hereditarily nor-
mal group topology, which is additionally connected, locally connected and
hereditarily separable.

As item (a) of the next example shows, the validity of Fact 1.2 for countably
compact groups is independent of ZFC.

Example 1.3. (a) Eisworth [13, Corollary 10] proved that under the Proper
Forcing Axiom (briefly, PFA) all countably compact hereditary normal
groups are metrizable.

(b) Further progress in this direction was achieved by Buzyakova [4], who
reinforced (a) by showing that under PFA every countably compact sub-
space of a hereditarily normal topological group is metrizable [4, Corollary
2.6].

(c) A significant reinforcement of Fact 1.2 is available in the same paper [4,
Theorem 2.9]: every compact subspace of a hereditarily normal topologi-
cal group is metrizable.

(d) A variant of (c) for countable compactness is proposed in [4, Corollary
2.4] as well: every countably compact subspace of a hereditarily normal
topological group containing non-trivial convergent sequences is metriz-
able.

The aim of this paper is to extend the “metrization criterion” 1.2 to other
classes of compact like groups, among them locally compact groups, !-bounded
groups, locally minimal abelian groups, etc. (see §2.2 for the relevant defini-
tions). To this end we essentially use the following theorem proved in [4]:

Theorem 1.4. [4, Theorem 2.3] If G is a T5 topological group with a non-trivial
convergent sequence, then G has a G

�

-diagonal.
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From this theorem one can deduce the fact that every countably com-
pact hereditarily normal group containing non-trivial convergent sequences is
metrizable (this is [4, Corollary 2.5]), as well as item (d) of Example 1.3 (using
Chaber’s theorem about the metrizabilty of the countably compact spaces with
a G

�

-diagonal).
The result for item (a) can be deduced also from the above result and the

fact, established by Nyikos, L. Soukup, B. Veličković [21], that under PFA
every countably compact hereditarily normal space is sequentially compact (so
has non-trivial convergent sequences). For a further information on the impact
of T5 on compactness-like properties we recommend the nicely written outline
of Nyikos [20].

This paper is organized as follows. In §2 we collect some properties of
pseudo-character in topological groups, with particular emphasis on compact-
like groups. In §3 come the main results. In order to keep our paper self-
contained we include a proof of Theorem 1.4 in §3.1 (see Theorem 3.6) and
give some immediate applications concerning !-bounded groups and locally
compact groups. Section 3.2 contains the main result of the paper, namely
all hereditarily normal locally minimal abelian groups are metrizable (Theo-
rem 3.11). We conclude with §4, containing some final comments and open
questions.

2. Preliminaries

2.1. Properties of the pseudo-character of a topological
group

We recall here the definitions of character and pseudo-character and some of
their properties used in the paper.

Definition 2.1. Let X be a topological space and x 2 X.
A local base at x is a filter-base of the filter of neighborhoods of x. Let

�(x, X) denote the character of X at x, that is the maximum between ! and
the minimal cardinality of a local base for x. Let �(X) = sup{�(x,X) : x 2 X}

be the character of X.
A local pseudo-base at x is a family F of open neighborhoods such thatT
F = {x}. Let  (x,X) denote the pseudo-character of X at x, that is the

maximum between ! and the minimal cardinality of a local pseudo-base for x.
Let  (X) = sup{ (x,X) : x 2 X} be the pseudo-character of X.

Remark 2.2. Note that if G is a topological group, then for all g 2 G

�(g,G) = �(e,G) = �(G),
 (g,G) =  (e,G) =  (G).
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Fact 2.3. A group topology is metrizable if and only if it has a countable local
base.

Remark 2.4. Let X be a topological space and x 2 X. Then  (x,X) = ! if
and only if {x} is a G

�

-subset of X.
Moreover if X is regular, then there exists a family {U

n

: n 2 N} that is a
local pseudo-base at x such that

T
n

U
n

=
T

n

U
n

= {x}.
If Y ✓ X is a G

�

-subset and x 2 Y , then  (x,X) = ! if and only if
 (x, Y ) = !. Indeed, the necessity of this condition is obvious. Assume that
 (x, Y ) = ! and let this be witnessed by a countable family U

n

of open neigh-
borhoods of x in X such that Y \ (

T
n

U
n

) = {x}. If Y =
T

n

W
n

for some
countable family of open sets in X, then the equality (

T
n

W
n

)\ (
T

n

U
n

) = {x}
witnesses  (x, Y ) = !.

If G is a set, let �
G

denote the diagonal in G ⇥G, i.e. �
G

= {(g, g) : g 2
G} ✓ G⇥G.

The next lemma is folklore (e.g., the implication (i) ((ii) was stated and
proved in [4]), we give its proof for the sake of completeness.

Lemma 2.5. Let G be a topological group. Then the following are equivalent:

(i) �
G

is a G
�

-subset of G⇥G;

(ii)  (G) = !.

Proof. (i)((ii). Let {e} =
T

n

V
n

with every V
n

open neighborhood of e, so that
for every x 2 G we have {x} =

T
n2N xV

n

. Hence {(x, x)} =
T

n2N(xV
n

⇥xV
n

),
and letting U

n

=
S

x2G

xV
n

⇥ xV
n

we obtain �
G

=
T

n2N U
n

.
(i))(ii). Let �

G

=
T

n

U
n

where every U
n

is an open subset of G ⇥ G.
Then (e, e) 2 U

n

for every n 2 N, so there exists an open subset V
n

✓ G such
that (e, e) 2 V

n

⇥ V
n

✓ U
n

.
Now we verify that

T
n2N V

n

= {e}. If g 2
T

n2N V
n

, then (g, e) 2
T

n2N(V
n

⇥

V
n

) ✓
T

n2N U
n

= �
G

, so g = e.

2.2. Various levels of compactness

Let us recall several compactness-like properties of the topological spaces and
topological groups. A space X is

(a) pseudocompact, if every real-valued function of X is bounded;

(b) !-bounded, if every countable subset of X has a compact closure.

Obviously, !-bounded spaces are countably compact, while countably com-
pact spaces are pseudocompact.
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A topological group G is precompact, if for every non-empty open set U
of G there exists a finite set F ✓ G such that FU = G (equivalently, if the
completion of G is compact; in this case the two-sided completion coincides
with Weil completion of G). Pseudocompact groups are precompact.

A topological group (G, ⌧) is minimal if for every Hausdor↵ group topology
� ✓ ⌧ on G one has � = ⌧ [8, 6].

The next notion in (b), proposed by Pestov and Morris [19] (see also T.
Banakh [3]), is a common generalization of minimal groups, locally compact
groups and normed spaces:

Definition 2.6. A topological group (G, ⌧) is locally minimal if there exists a
neighborhood V of e such that whenever � ✓ ⌧ is a Hausdor↵ group topology
on G such that V is a �-neighborhood of e, then � = ⌧ .

Definition 2.7. Let H be a subgroup of a topological group G. We say that
H is locally essential in G if there exists a neighborhood V of e in G such that
H\N = {e} implies N = {e} for all closed normal subgroups N of G contained
in V .

When necessary, we shall say H is locally essential with respect to V to
indicate also V . Note that if V witnesses local essentiality, then any smaller
neighborhood of the neutral element does, too.

We now recall a criterion for local minimality of dense subgroups.

Theorem 2.8. [1, Theorem 3.5] Let H be a dense subgroup of a topological
group G. Then H is locally minimal if and only if G is locally minimal and H
is locally essential in G.

We will make use of the following fact from [1] connecting locally minimal
groups and minimal groups in the abelian case.

Proposition 2.9. [1, Proposition 5.13] Every locally minimal abelian group
contains a minimal G

�

-subgroup.

2.3. Compact-like topological groups of countable
pseudo-character

The next fact can be easily deduced from the proof of [1, Theorem 2.8]:

Fact 2.10. [1, Theorem 2.8] If G is a locally minimal group with  (G) = !,
then G is metrizable.

Lemma 2.11. Let (G, ⌧) be an abelian topological group. If  (G) = !, then
there exists a metrizable topology ⌧⇤ on G with ⌧⇤ ✓ ⌧ .
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Proof. Let
T

n

U
n

= {0} with U
n

open neighborhood at 0 for every n 2 N.
Without loss of generality we can assume U

n+1 ✓ U
n

and U
n

= �U
n

for every
n 2 N.

Let V0 = U0, and for n � 1 let V
n

= �V
n

2 ⌧ be such that V
n

+ V
n

✓

U
n

\ V
n�1. If ⌧⇤ is the group topology on G having the family {V

n

| n 2 N} as
a local base, then ⌧⇤ ✓ ⌧ and ⌧⇤ is metrizable.

One can apply this lemma to obtain the following folklore fact about mini-
mal abelian groups (see for example [8]).

Corollary 2.12. Minimal abelian groups of countable pseudocharacter are
metrizable.

Remark 2.13. Minimal non-abelian groups of countable pseudocharacter need
not be metrizable. Actually, their character may be arbitrarily large [22].

Lemma 2.14. If G is a countably compact topological group and  (G) = !, then
G is metrizable.

Proof. Let {e} =
T

n2N U
n

with every U
n

open neighborhood of e with U
n+1 ✓

U
n

for every n 2 N.
Assume for a contradiction that {U

n

: n 2 N} is not a local base. Then
there exists an open neighborhood W of e such that U

n

* W for every n 2 N.
Let F

n

= U
n

\ W , and note that F
n+1 ✓ F

n

6= ;. Moreover,
\

n2N
F

n

=
� \

n2N
U

n

�
\ W = {e} \ W = ;.

As G is countably compact, F
n

= ; for some n 2 N, a contradiction.

3. Hereditarily Normal Topological Groups

Let (G, ·, e) be a monoid, equipped with a topology ⌧ such that the pair (G, ⌧)
is a topological monoid, i.e., the monoid operation µ : G⇥G ! G is continuous
with respect to the product topology.

Given a subset X ✓ G, we let

X�1 = {y 2 G : yx = e for some x 2 X}

(note that if G is a group, then the set X�1 consists of the inverses of the
elements of X).

Definition 3.1. Let X be a topological space. A pair A,B of subsets of X
is called unseparable in X if for every pair of open sets U, V of X such that
A ✓ U and B ✓ V , one has U \ V 6= ;.
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Clearly, the sets A and B in an unseparable pair are non-empty. A a
topological space X with an unseparable pair of closed disjoint subsets is not
normal.

The following lemma can be attributed to Katětov [17]. It relevance to
questions related to hereditary normality in topological groups was discovered
and exploited by Buzyakova [4].

Lemma 3.2 (Katětov). Let S, R be two topological spaces, r 2 R and s 2 S. If
 (r, R) > !, s is a limit point of S and S is separable, then Z = R⇥S \{(r, s)}
is not normal. In particular, the pair formed by the closed, disjoint subsets
({r}⇥ S) \ {(r, s)} and (R⇥ {s}) \ {(r, s)} of Z is unseparable.

Fact 3.3. Let X, Y be topological spaces, and let ' : X ! Y be a continuous
map. If F1 and F2 is a pair of unseparable sets in X, then '(F1), '(F2) is a
pair of unseparable sets in '(X).

3.1. Hereditary normality versus countable
pseudocharacter in topological groups

The proof of the next lemma (in the case of a topological group), as well as
the proof of Theorem 3.6, are inspired by and follow the line of the proof of [4,
Theorem 2.3]. In particular, we preferred to isolate the lemma from that proof
in order to better enhance the idea triggered by Katětov’s lemma.

Lemma 3.4. Let G be a topological monoid. Assume that there exist two closed
subset S, R ✓ G such that

(i) S is separable and e 2 S \ {e}
S

,

(ii)  (R, e) > !,

(iii) R \ S = {e},

(iv) R \ S�1 = {e}.

Then G is not T5.

Proof. Consider Z = (R⇥ S) \ {(e, e)} ✓ G⇥G \ {(e, e)}, and let

R1 = (R⇥ {e}) \ {(e, e)} = (R \ {e})⇥ {e} ✓ Z,

S1 = ({e}⇥ S) \ {(e, e)} = {e}⇥ (S \ {e}) ✓ Z.

Note that µZ = (R · S) \ {e} ✓ G \ {e} by (iv), and we are going to prove
that µZ ✓ G is not normal, showing that the pair µR1, µS1 of closed subsets
of µZ is unseparable.
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Obviously, µR1 = R \ {e} ✓ G \ {e} is closed in G \ {e}, and contained in
µZ, so that µR1 is a closed subset of µZ. Similarly, µS1 = S \ {e} is a closed
subset of µZ. Moreover, µR1 and µS1 are disjoint by (iii).

Being µZ ✓ G \ {e}, the restriction µ̄ = µ �
Z

: Z ! G \ {e} is well defined
and continuous. Then (i) and (ii) yield that the pair R1, S1 is unseparable
in Z by Katětov’s lemma, so that the pair µR1, µS1 is unseparable in µZ by
Fact 3.3.

So µZ is not a normal space, and G is not T5.

From the above lemma, we immediately obtain the following result for topo-
logical groups.

Corollary 3.5. Let be a topological group with two closed subset S, R ✓ G
such that

(i) S = S�1 is separable and e 2 S \ {e}
S

,

(ii)  (R, e) > !,

(iii) R \ S = {e},

Then G is not T5.

Theorem 3.6. Let G be a T5 topological group. If there exists a non-trivial
convergent sequence in G, then  (G) = !.

Proof. Let x
n

! e be a non trivial convergent sequence, and assume for a
contradiction that  (G) > !. There exists an open neighborhood U0 of e such
that {x0, x

�1
0 } \ U0 = ;. Thence for all n 2 ! with n > 0 there exists an open

neighborhood U
n

of e such that U
n

✓ U
n�1 and {x

n

, x�1
n

}\U
n

= ;. Note that

R :=
\

n

U
n

=
\

n

U
n

(1)

by the choice of U
n

. Moreover, R is a closed G
�

-subset of G by (1). Hence,
 (R, e) > !, in view of Remark 2.4.

Let S = {e} [ {x
n

: n 2 !} [ {x�1
n

: n 2 !}. Obviously, S is a closed
countable subset of G (as e 2 S is the only limit point of S), so S is separable.
As S = S�1 and R\S = {e}, G is not T5 by Corollary 3.5, a contradiction.

From this theorem and Lemma 2.5, one can deduce Theorem 1.4.
Note that if G is a countably compact group with a non-trivial convergent

sequence, then G is T5 if and only if it is metrizable (this is [4, Corollary 2.5]) in
view of Theorem 3.6 (that yields  (G) = !) and Lemma 2.14. In other words,
the “metrization criterion” 1.2 extends to countably compact group with a non-
trivial convergent sequences. Moreover, since normal pseudocompact spaces are
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countably compact, 1.2 extends to pseudocompact groups with a non-trivial
convergent sequence.

In the smaller class of !-bounded groups one does not need to impose the
blanket condition of existence of non-trivial convergent sequence.

Corollary 3.7. Let G be an !-bounded group. Then G is T5 if and only if it
is metrizable (hence compact).

Proof. If G is finite, then there is nothing to prove, so assume from now on
that G is an infinite !-bounded group. Since !-bounded groups are countably
compact, it su�ces to show that G has a non-trivial convergent sequence and
then apply, as above, [4, Corollary 2.5].

Take a countably infinite subgroup of G. Then its closure K is an infinite
compact group. Hence K contains an infinite Cantor cube, so K has non-trivial
convergent sequences.

Theorem 3.8. A locally compact group G is T5 if and only if it is metrizable.

Proof. By a theorem of Davis [5], G is homeomorphic to a product K⇥Rn

⇥D,
where K is a compact subgroup of G, n 2 N and D is a discrete space. As K is
a T5 compact group, we deduce from Example 1.1 that K is metrizable. This
immediately implies that G is metrizable as well.

Let us point out a second alternative proof that makes no recourse to Davis
theorem. Let us recall first that the character and the pseudocharacter of a
locally compact group coincide [16]. Since every locally compact group has non-
trivial convergent sequences, Theorem 3.6 yields that  (G) = �(G) = !.

3.2. Metrizability of the hereditarily normal locally
minimal abelian groups

For the proof of our main theorem 3.11, we need the following result which is
of independent interest.

Theorem 3.9. Every locally minimal abelian group has an infinite metrizable
subgroup.

Proof. Let us consider first the case when G is precompact.
Let K denote the compact completion of G. By Theorem 2.8, G is locally

essential in K. so there exists an open neighborhood V of 0 in K, such that
every non-zero closed subgroup of V non-trivially meets G.

Suppose that for some prime p there exists a closed subgroup N of K iso-
morphic to the group Z

p

of p-adic integers. Since N\V is an open neighborhood
of 0 in N , there exists n 2 N such that pnN ✓ N \V . As pnN ⇠= N is a closed
non-trivial subgroup of K contained in V , we deduce that it must non-trivially
intersect G. Then G \ pnN is an infinite metrizable subgroup of N .
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Assume now that K contains subgroups isomorphic to the group Z
p

of p-
adic integers for no prime p. Then K is an exotic torus in terms of [7], i.e.,
n = dim K is finite and K contains a closed subgroup L such that K/L ⇠= Tn

and L =
Q

p

B
p

, where each B
p

is a compact p-group.
If B

p

is infinite for some p, then its socle S
p

= {x 2 B
p

: px = 0} is an
infinite closed subgroup of K (as B

p

is a bounded p-group). Then S
p

⇠= Z(p),
where  = w(S

p

). Hence, the topology of S
p

has a local base at 0 formed by
open subgroups. Therefore, the neighborhood S

p

\ V of 0 in S
p

contains an
open subgroup H of S

p

. Moreover, H 6= 0 as H is open and S
p

is precompact.
As H ✓ V is a non-trivial subgroup of K of exponent p, we deduce that H  G.
Since H ⇠= Z(p), we deduce that H contains an infinite metrizable subgroup.

Now assume that B
p

is finite for all primes p, but the group L is infinite.
Then L is a compact metrizable group having a local base at 0 formed by open
subgroups. Let ⇡ = {p : B

p

6= {0}}. Then ⇡ is infinite, For each p 2 ⇡ fix an
element x

p

2 B
p

of order p and let H
p

be the cyclic subgroup of B
p

generated
by x

p

. The subgroup L0 =
Q

p2⇡

H
p

is still an infinite compact metrizable
group having a local base at 0 formed by open subgroups. Therefore, the
neighborhood L0

\ V of 0 in L0 contains an open subgroup H of L0. Moreover,
H 6= 0 as H is open and L0 is compact and infinite. Using the Chinese remainder
theorem one can easily prove that H =

Q
p2⇡

0 H
p

, where ⇡0 is an infinite subset
of ⇡. Pick p 2 ⇡0. Then H

p

6= 0 is closed subgroup of K of exponent p, with
H

p

✓ V . So H
p

\G 6= {0}. Since H
p

has no proper subgroups, we deduce that
H

p

 G. Therefore, S =
L

p2⇡

0 H
p

is an infinite subgroup of G contained in
L0, hence S is metrizable.

Finally, assume that L is finite. Then the quotient map K ! K/L ⇠= Tn is
a local homeomorphism. Since Tn is metrizable, we deduce that K and G are
metrizable as well.

In the general case, the locally minimal abelian group G contains a minimal,
G

�

-subgroup H of G. By a well-known theorem of Prodanov and Stoyanov
[8, 6], every minimal abelian group is precompact. If H is infinite, then the
above case allows us to claim that H contains an infinite metrizable subgroup.
In case H is finite, obviously  (H)  !, so we can conclude that  (G) = !, by
Remark 2.4. By Fact 2.10, G is metrizable.

Corollary 3.10. Every locally minimal abelian group has a non-trivial con-
vergent sequence.

Theorem 3.11. Let G be a locally minimal abelian group. Then G is T5 if and
only if it is metrizable.

Proof. By Corollary 3.10, G contains a non-trivial convergent sequence. By
Theorem 3.6,  (G) = !. At this point we can deduce that G is metrizable
from Fact 2.10.
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Corollary 3.12. Let G be a minimal abelian group. Then G is T5 if and only
if it is metrizable.

Proof. Since minimal groups are locally minimal, Theorem 3.11 applies.
For a direct alternative proof of this fact making no recourse to Theo-

rem 3.11, we recall that every minimal abelian group contains a non-trivial
convergent sequence (see for example [24]). By Theorem 3.6,  (G) = !. Now
use the fact that minimal abelian groups of countable pseudocharacter are
metrizable by Corollary 2.12.

4. Final comments and open questions

A topological group G is called sequentially complete, if G is sequentially closed
in its two-sided completion [10]. Countably compact groups, as well as all
complete groups, are sequentially complete. So sequential completeness can
be considered as a simultaneous generalization of these two compactness-like
properties. This explains the interest in the following example.

Example 4.1. Every countable abelian group G carries a precompact, sequen-
tially complete group topology. Indeed, take the Bohr topology P

G

of G (i.e.,
the maximum precompact topology on G). Following van Douwen, we denote
the topological group (G,P

G

) by G#. It is known that G# has no convergent
sequences, hence G# is sequentially complete and non-metrizable. Since G#

is T5 as every countable topological group, we deduce that a hereditarily normal
precompact, sequentially complete group need not be metrizable.

It is worth noting that the group G# is not normal whenever the group G
is uncountable [26].

Our results leave open several questions.

Question 4.2. Is every locally minimal T5 group necessarily metrizable? What
about countably compact locally minimal T5 groups?

In the non-abelian case, a minimal group need not contain any non-trivial
convergent sequence ([24]) and minimal non-abelian groups of countable pseu-
docharacter need not be metrizable (Remark 2.13). Therefore, Corollary 3.12
leaves open the following question.

Question 4.3. Is every minimal T5 group necessarily metrizable? What about
countably compact minimal T5 groups?

Note, that if the answer to the second question is positive, then every count-
ably compact minimal T5 group is compact metrizable. The answer depends
on the answer of the following question from [9, Problem 23 (910)] which still
remains open:



134 D. DIKRANJAN ET AL.

Question 4.4. Must an infinite, countably compact, minimal group contain a
non-trivial convergent sequence ?

Clearly, a positive answer to Question 4.4 yields a answer to the second
part of Question 4.3.

We thank the referee for the careful reading of the manuscript and the useful
comments.
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Compact groups with a dense

free abelian subgroup

1

Dikran Dikranjan and Anna Giordano Bruno

Abstract. The compact groups having a dense infinite cyclic subgroup
(known as monothetic compact groups) have been studied by many au-
thors for their relevance and nice applications. In this paper we describe
in full details the compact groups K with a dense free abelian subgroup
F and we describe the minimum rank rt(K) of such a subgroup F of K.
Surprisingly, it is either finite or coincides with the density character
d(K) of K.

Keywords: compact group, dense subgroup, free abelian subgroup, topological gener-
ators, topological free rank, w-divisible group, divisible weight
MS Classification 2010: primary 22C05, 22A05; secondary 20K45, 54H11, 54D30

1. Introduction

Dense subgroups (with some additional properties) of compact groups have
been largely studied for instance in [2, 3, 4, 7, 25]. Moreover, large independent
families of dense pseudocompact subgroups of compact connected groups are
built in [23], while potential density is studied in [13, 14, 15].

This note is dedicated mainly to the study of the class F of those Hausdor↵
topological groups that have a dense free abelian subgroup. These groups are
necessarily abelian, so in this paper we are concerned exclusively with Hausdor↵
topological abelian groups, and we always use the additive notation. Moreover,
we mainly consider the groups K in F that are also compact. The choice
of compactness is motivated by the fact that many non-discrete topological
abelian groups possess no proper dense subgroups at all (see [25] for a locally
compact abelian group with this property), whereas every infinite compact
group K admits proper dense subgroups. Indeed, it is known that d(K) < |K|,
where d(K) denotes the density character of K (i.e., the minimum cardinality
of a dense subgroup of K). We recall also that

d(K) = log w(K);

1
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was partially supported by INdAM.
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here as usual w(G) denotes the weight of a topological abelian group G, and
for an infinite cardinal  we let log  = min{� : 2� � } the logarithm of .

Let us start the discussion on the class F from a di↵erent point of view that
requires also some historical background.

The topological generators of a topological (abelian) group G have been
largely studied by many authors in [1, 8, 10, 12, 16, 17, 18, 19]; these are the
elements of subsets X of G generating a dense subgroup of G. In this case we
say that G is topologically generated by X. In particular, a topological group
having a finite topologically generating set X is called topologically finitely
generated (topologically s-generated, whenever X has at most s element).

Usually, various other restraints apart finiteness have been imposed on the
set X of topological generators. These restraints are mainly of topological
nature and we collect some of them in the next example.

Example 1.1. In the sequel G is a topological group with neutral element eG

and X is a topologically generating set of G.

(a) When X is compact, G is called compactly generated. This provides a
special well studied subclass of the class of �-compact groups.

(b) The set X is called a suitable set for G if X \ {eG} is discrete and
closed in G \ {eG}. This notion was introduced in 1990 by Hofmann and
Morris. They proved that every locally compact group has a suitable set
in [21] and dedicated the entire last chapter of the monograph [22] to the
study of the minimum size s(G) of a suitable set of a compact group G.
Properties and existence of suitable sets are studied also in the papers
[8, 10, 12, 16, 17, 18, 19].

Clearly, a finite topologically generating set X is always suitable.

(c) The set X is called totally suitable if X is suitable and generates a totally
dense subgroup of G [19]. The locally compact groups that admit a totally
suitable set are studied in [1, 19].

(d) The set X is called a supersequence if X [ {eG} is compact, so coincides
with the one-point compactification of the discrete set X \ {eG}. Any
infinite suitable set X in a countably compact group G is a supersequence
converging to eG [17]. This case is studied in detail in [12, 16, 26].

Now, with the condition G 2 F we impose a purely algebraic condition on
the topologically generating set X of the topological abelian group G. Indeed,
clearly a topological abelian group G belongs to F precisely when G has a
topologically generating set X that is independent, i.e., X generates a dense
free abelian subgroup of G. In case G is discrete, the free rank r(G) of G is
the maximum cardinality of an independent subset of G; in this paper we call
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it simply rank. Imitating the discrete case, one may introduce the following
invariant measuring the minimum cardinality of an independent generating set
X of G.

Definition 1.2. For a topological abelian group G 2 F , the topological free
rank of G is

rt(G) = min{r(F ) : F dense free abelian subgroup of G}.

Let
F

fin

= {G 2 F : rt(G) <1}.
Obviously, d(G)  rt(G) whenever G 2 F \ F

fin

, whereas always

d(G)  rt(G) · ! (1)

holds true.

We describe the compact abelian groups K in F in two steps, depending
on whether the topological free rank rt(K) of K is finite.

We start with the subclass F
fin

, i.e., with the compact abelian groups K
having a dense free abelian subgroup of finite rank. The complete character-
ization of this case is given in the next Theorem A, proved in Section 3. We
recall that the case of rank one is that of monothetic compact groups, and the
characterization of monothetic compact groups is well known (see [20]). More-
over, every totally disconnected monothetic compact group is a quotient of the
universal totally disconnected monothetic compact group M =

Q
p Jp, where

Jp denotes the p-adic integers. Furthermore, an arbitrary monothetic compact
group is a quotient of bQc⇥M (see Proposition 3.4 below and [20, Section 25]).

For a prime p and an abelian group G, the p-socle of G is {x 2 G : px = 0},
which is a vector space over the field Fp with p many elements; the p-rank rp(G)
of G is the dimension of the p-socle over Fp. Moreover, we give the following

Definition 1.3. Let G be an abelian group. For p a prime, set

⇢p(G) = rp(G/pG).

Moreover, let ⇢(G) = supp ⇢p(G).

Several properties of the invariant ⇢p for compact abelian groups are given
in Section 3.

In the next theorem we denote by c(K) the connected component of the
compact abelian group K.

Theorem A. Let K be an infinite compact abelian group and n 2 N
+

. Then
the following conditions are equivalent:
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(a) K 2 F and rt(K)  n;

(b) w(K)  c and K/c(K) is a quotient of Mn;

(c) w(K)  c and ⇢(K)  n (i.e., ⇢p(K)  n for every prime p);

(d) K is a quotient of bQc ⇥Mn.

The case of infinite rank is settled by the next theorem characterizing the
compact abelian groups that admit a dense free abelian subgroup, by making
use of dense embeddings in some power of the torus T = R/Z (endowed with
the quotient topology inherited from R). Here bK denotes the Pontryagin dual
of the compact abelian group K; in this case bK is a discrete abelian group, and

w(K) = | bK|.

Note that, if K is an infinite compact abelian group and K 2 F , then there
exists a dense free abelian subgroup of K of infinite rank, as r(K) � c.

Theorem B. Let K be an infinite compact abelian group and  an infinite
cardinal. Then the following conditions are equivalent:

(a) K 2 F and rt(K)  ;

(b) bK admits a dense embedding in T� for some �  ;

(c) d(K)  r(K) and d(K)  .

Theorem B has as an easy consequence the next characterization. To prove
the second part of the corollary take  = d(K) in item (c) of Theorem B.

Corollary 1. Let K be an infinite compact abelian group. Then K 2 F if
and only if d(K)  r(K). In this case K has a dense free abelian subgroup of
rank d(K).

According to Corollary 1, a compact abelian group K admits a dense free
abelian subgroup of rank exactly d(K). Hence, we see now in Corollary 2 that
the inequality in (1) becomes an equality in case K is compact. Furthermore, as
a consequence of Theorem A and Theorem B respectively, we can see that rt(K)
is equal either to ⇢(K) or to d(K) depending on its finiteness or infiniteness
respectively.

Corollary 2. Let K be an infinite compact abelian group. If K 2 F , then

d(K) = rt(K) · !.
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Moreover,

rt(K) =

(
⇢(K) if K 2 F

fin

,

d(K) if K 2 F \ F
fin

.

Roughly speaking, if K is an infinite compact abelian group in F , Theorem
B asserts that d(K)  r(K). Moreover, if F is a dense free abelian subgroup of
K of infinite rank, then r(F ) can range between d(K) and r(K). We underline
that the maximum r(K) can be reached by r(F ) since r(K) � c, and that also
the minimum is a possible value of r(F ) by the equality in Corollary 2.

The proof of Theorem B is given in Section 4. It makes use of the following
concepts introduced and studied in [9]; as usual, for an abelian group G we
denote mG = {mx : x 2 G} and G[m] = {x 2 G : mx = 0} for m 2 N

+

, where
N

+

denotes the set of positive natural numbers.

Definition 1.4. [9] Let G be a topological abelian group.

(i) The group G is w-divisible if w(mG) = w(G) � ! for every m 2 N
+

.

(ii) The divisible weight of G is wd(G) = inf{w(mG) : m 2 N
+

}.

This definition is di↵erent from the original definition from [9], where in-
stead of w(mG) = w(G) � ! one imposes the stronger condition w(mG) =
w(G) > !, which rules out all second countable groups. Since this is somewhat
restrictive from the point of view of the current paper, we adopt this slight
modification here.

So an infinite topological abelian group G is w-divisible if and only if w(G) =
wd(G). In particular, an infinite discrete abelian group G is w-divisible if and
only if |mG| = |G| for every m 2 N

+

. Moreover, it is worth to note here that
every infinite monothetic group is w-divisible.

Another consequence of Theorem B is that the class F contains all w-
divisible compact abelian groups, so in particular all connected and all torsion-
free compact abelian groups:

Corollary 3. If K is a w-divisible compact abelian group, then K 2 F .

2. Some general properties of the class F

The next lemma ensuring density of subgroups is frequently used in the sequel.

Lemma 2.1. [4] Let G be a topological group and let N be a quotient of G with
h : G ⇣ N the canonical projection. If H is a subgroup of G such that h(H) is
dense in N and H contains a dense subgroup of ker h, then H is dense in G.

In the next result we give two stability properties of the class F .
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Proposition 2.2. The class F is stable under taking:

(a) arbitrary direct products;

(b) extensions.

Proof. (a) Assume Gi 2 F for all i 2 I. Let Fi be a dense free abelian subgroup
of Gi for every i 2 I. Then the direct sum F =

L
i2I Fi is a dense free abelian

subgroup of
Q

i2I Gi.
(b) Assume that G is a topological abelian group with a closed subgroup

H 2 F such that also G/H 2 F . Let F and F
1

be dense free abelian subgroups
of H and G/H, respectively. Let q : G ! G/H be the canonical projection.
Since q is surjective, we can find a subset X of G such that q(X) is an inde-
pendent subset of G/H generating F

1

as a free set of generators. Then X is
independent, so generates a free abelian subgroup F

2

of G and the restriction
q �F2 : F

2

! F
1

is an isomorphism. In particular, F
2

\ ker q = 0, so F
2

\ F = 0
as well. Therefore, F

3

= F + F
2

is a free abelian subgroup of G. Moreover, F
3

contains the dense subgroup F
1

✓ H = ker q and q(F
3

) = q(F
2

) = F
1

is a dense
subgroup of G/H. Therefore, F

3

is a dense subgroup of G by Lemma 2.1.

The next claim is used essentially in the proof of Proposition 2.4, which
solves one of the implications of Theorem A.

Lemma 2.3. Let G be an abelian group, K a subgroup of G of infinite rank
r(K) and let F be a finitely generated subgroup of G. If s 2 N

+

and H is an
s-generated subgroup of G, then there exists a free abelian subgroup F

1

of rank
s of G, such that F

1

\ F = 0 and H ✓ K + F
1

.

Proof. Since F + H is a finitely generated subgroup of G, the intersection
N = K \ (F + H) is a finitely generated subgroup of K. Therefore, the rank
r(K/N) is still infinite. In particular, there exists a free abelian subgroup F

2

of rank s of K, such that F
2

\N = 0. Then also

F
2

\ (F + H) = 0. (2)

Let x
1

, . . . , xs be the generators of H and let t
1

, . . . , ts 2 K be the free gen-
erators of F

2

. Let zi = xi + ti for i = 1, . . . , s and F
1

= hz
1

, . . . , zsi. Then,
obviously H ✓ K + F

1

as xi = ti � zi 2 K + F
1

.
The subgroup F

1

is free since any linear combination k
1

z
1

+ . . . + kszs = 0
produces an equality k

1

x
1

+ . . . + ksxs = �(k
1

t
1

+ . . . + ksts) 2 F
2

. Since
k
1

x
1

+ . . . + ksxs 2 H, from (2) one can deduce that k
1

t
1

+ . . . + ksts = 0.
Since t

1

, . . . , ts are independent, this gives k
1

= . . . = ks = 0. This concludes
the proof that F

1

is free.
It remains to prove that F

1

\ F = 0. So let x 2 F
1

\ F and let us verify
that necessarily x = 0. Since x 2 F

1

, there exist some integers a
1

, . . . , as such
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that x = a
1

z
1

+ . . . + aszs = (a
1

x
1

+ . . . + asxs) + (a
1

t
1

+ . . . + asts). Then
a
1

t
1

+ . . . + asts 2 F
2

\ (F + H) and this intersection is trivial by (2). By
the independence of t

1

, . . . , ts we have a
1

= . . . = as = 0 and hence x = 0 as
desired.

Proposition 2.4. Let G be a topological abelian group and K a closed subgroup
of G with r(K) � !. If K contains a dense free abelian subgroup F of rank
m 2 N

+

and G/K is topologically s-generated for some s 2 N
+

, then G admits
a dense free abelian subgroup E of rank m+s (i.e., G 2 F and rt(G)  m+s).

Proof. Let q : G ! G/K be the canonical projection and consider G/K en-
dowed with the quotient topology of the topology of G. Let Y be a subset of
size s of G/K generating a dense subgroup of G/K. Pick a subset X of size s
of G such that q(X) = Y and let H = hXi. By Lemma 2.3 there exists a free
abelian subgroup F

1

of rank s of G such that F
1

\ F = 0 and H ✓ K + F
1

.
Hence, q(F

1

) is a dense subgroup of G/K as it contains q(H) = hY i. Let
E = F + F

1

. Then E is a free abelian subgroup of G of rank m + s. Moreover,
E contains a dense subgroup of K = ker q and q(E) = q(F

1

) is dense in G/K.
Therefore, E is dense in G by virtue of Lemma 2.1.

Corollary 2.5. If G is a topologically finitely generated abelian group with
infinite rank r(G), then G 2 F

fin

.

Proof. Let H be the finitely generated dense subgroup of G. Then H = L⇥F ,
where L is a free abelian subgroup of finite rank and F is a finite subgroup.
Then the closure K of L in G is a closed finite index subgroup of G, so K is open
too. Since K has finite index in G, its rank r(K) is infinite. By Proposition 2.4,
G contains a dense free abelian subgroup F of finite rank.

In particular, topologically finitely generated compact abelian groups be-
long to F . The same holds relaxing compactness to pseudocompactness since
non torsion pseudocompact abelian groups have rank at least c as proved in [6].

We recall the following result stated in [11] giving, for an infinite compact
abelian group K, several equivalent conditions characterizing the density char-
acter d(K) of K.

Proposition 2.6. [11, Exercise 3.8.25] Let K be an infinite compact abelian
group and  an infinite cardinal. Then the following conditions are equivalent:

(a) d(K)  ;

(b) there exists a homomorphism f :
L

 Z ! K with dense image;

(c) there exists an injective homomorphism bK ! T;

(d) | bK|  2;
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(e) w(K)  2;

(f) there exists a continuous surjective homomorphism (M ⇥ bQ)2
 ! K.

Proof. (a))(b) Since d(K)   and it is infinite, then there exists a dense
subgroup D of G with |D|  , so in particular there exists a homomorphism
f :

L
 Z! D, which has dense image in K.

(b))(a) is obvious and (b),(c) is an easy application of Pontryagin duality.
(c),(d) follows from the fact that T is divisible with r(T) = rp(T) = 2

for every prime p.
(d),(e) follows from the fact that w(K) = | bK|.
(c),(f) follows from the fact that as a discrete abelian group T is isomor-

phic to
L

2

 Q�
L

2

 Z(p1) = (Q�Q/Z)2


.

Remark 2.7. As a by-product of this proposition we show an easy argument
for the well known equality d(K) = log w(K) for a compact group K in case K
is abelian (the argument in the non-abelian case makes use of the highly non-
trivial fact of the dyadicity of the compact groups). The inequality log w(K) 
d(K) follows from the well known fact that w(K)  2d(K). Since w(K) 
2log w(K) obviously holds by the definition of log, the equivalence of (a) and (e)
from above proposition, applied to  = log w(K) gives the desired inequality
d(K)  log w(K).

The equivalent conditions of Proposition 2.6 appear to be weaker than those
of Theorem B (see also Lemma 4.2). On the other hand, these conditions
become equivalent to those of Theorem B assuming the infinite compact abelian
group K to be in F ; indeed, the point is that K 2 F is equivalent to d(K) 
r(K) by Corollary 1 in the Introduction.

3. Compact abelian groups with dense free subgroups of

finite rank

In the next lemma we give a computation of the value of the invariant ⇢p of a
compact abelian group K in terms of the p-rank of the discrete dual group bK.

Lemma 3.1. For a prime p and a compact abelian group K, we have that

⇢p(K) =

(
rp( bK) if ⇢p(K) is finite,
2rp(

bK) if ⇢p(K) is infinite.

Proof. Let G = bK. Then K/pK ⇠= dG[p]. If K/pK is finite then K/pK ⇠= G[p]
and so rp(K/pK) = rp(G[p]). Assume now that K/pK is infinite; therefore G[p]
is infinite as well. So G[p] ⇠=

L
rp(G[p])

Z(p), consequently K/pK ⇠= Z(p)rp(G[p])

and hence rp(K/pK) = 2rp(G[p]).



COMPACT GROUPS WITH A DENSE FREE ABELIAN SUBGROUP 145

Since pK contains the connected component c(K), which is divisible, K/pK
is a quotient of K/c(K) and it is worth to compare their p-ranks. Note that in
general ⇢p(K) = rp(K/pK) does not coincide with rp(K/c(K)) for a compact
abelian group K; indeed, take for example K = Jp. On the other hand, one
can easily prove the following properties of the invariant ⇢p for compact abelian
groups.

Lemma 3.2. Let p be a prime and K be a compact abelian group. Then:

(a) ⇢p(K) � ⇢p(K1

) if K
1

is a quotient of K;

(b) ⇢p(K) = ⇢p(K/c(K));

(c) ⇢p(Kn) = n⇢p(K).

The next lemma proves in particular the equivalence of conditions (b), (c)
and (d) in Theorem A of the Introduction.

Lemma 3.3. Let K be an infinite compact abelian group and n 2 N
+

. Then the
following conditions are equivalent:

(a) w(K)  c and K/c(K) is a quotient of Mn;

(b) w(K)  c and ⇢(K)  n (i.e., ⇢p(K)  n for every prime p);

(c) K is a quotient of bQc ⇥Mn.

Proof. (a))(b) By Lemma 3.2 we have ⇢p(K) = ⇢p(K/c(K))  ⇢p(Mn) =
n⇢p(M) = n for every prime p.

(b))(c) Let G = bK be the discrete dual of K and denote by D(G) the
divisible hull of G. Since |G| = w(K)  c and [c(K) ⇠= G/t(G), in particular
r(D(G)) = r(G) = r(G/t(G))  c. On the other hand, for every prime p, the
p-rank of D(G) is rp(D(G)) = rp(G) = r(G[p])  n by Lemma 3.1. Then
D(G) is contained in

L
c Q⇥ (Q/Z)n, hence by Pontryagin duality we have the

condition in (c).
(c))(a) Since the weight is monotone under taking quotients, we have

w(K)  c. By hypothesis we have that K is a quotient of bQc ⇥ ( dQ/Z)n, so by
Pontryagin duality G admits an injective homomorphism in

L
c Q � (Q/Z)n

and in particular t(G) is contained in the subgroup (Q/Z)n. Applying again
Pontryagin duality we conclude that K/c(K) ⇠= dt(G) is a quotient of ( dQ/Z)n ⇠=
Mn.

The following result on monothetic groups is known, we give it here as
a consequence of the previous lemma noting that an infinite quotient of a
monothetic group is monothetic as well.
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Proposition 3.4. Let K be an infinite compact abelian group. If w(K)  c
and ⇢p(K)  1 for every prime p, then K is monothetic.

Proof. By Lemma 3.3 the group K is a quotient of bQc⇥M , which is monothetic.

We are now in position to prove the next characterization of compact abelian
groups admitting a dense free abelian subgroup of finite rank, i.e., with finite
topological free rank. Along with Lemma 3.3, this concludes the proof of
Theorem A of the Introduction.

Theorem 3.5. Let K be an infinite compact abelian group and n 2 N
+

. Then
the following conditions are equivalent:

(a) K 2 F and rt(K)  n;

(b) w(K)  c and ⇢(K)  n (i.e., ⇢p(K)  n for every prime p);

Proof. (a))(b) By hypothesis in particular d(K)  !, so w(K)  c as d(K) =
log w(K) (see Remark 2.7).

Let p be a prime. Let q : K ! K/pK be the canonical projection and
let F be a dense free abelian subgroup of K of finite rank r(F )  n. Since
pK \ F ◆ pF and ker q = pK, we have that q(F ) ⇠= F/ ker q is finite, being
a quotient of the finite group F/pF . Now the density of F in K implies the
density of the finite subgroup q(F ) in K/pK, which has exponent p. Therefore
K/pK = q(F ) has at most n many generators, in other words rp(K/pK)  n.
This proves ⇢p(K)  n.

(b))(a) By Lemma 3.3 we know that K/c(K) is a quotient of Mn ⇠=
Q

p Jn
p .

In particular this implies that K/c(K) is a product of at most n monothetic
subgroups. Indeed, for a prime p, a quotient of Jn

p is always of the form Cp,1⇥
. . .⇥ Cp,n where Cp,i is either Jp or a cyclic p-group for every i = 1, . . . , n, or
0. Therefore, one can write K/c(K) = M

1

⇥ . . . ⇥Mn, letting Mi =
Q

p Cp,i

for every i = 1, . . . , n; observe that Mi is monothetic for every i = 1, . . . , n.
Let now q : K ! K/c(K) be the canonical projection and K

1

= q�1(M
1

).
Then c(K

1

) = c(K) and K
1

/c(K) ⇠= M
1

is monothetic, so K
1

is monothetic
as well by Proposition 3.4. Since K/K

1

⇠= M
2

⇥ . . . ⇥ Mn is topologically
(n� 1)-generated, Proposition 2.4 implies that K contains a dense free abelian
subgroup of rank  n.

One can easily see that if K is a totally disconnected compact abelian group
with a dense finitely generated subgroup, then K = M

1

⇥ . . .⇥Mn, where Mi

are compact monothetic groups (see the proof of the implication (b))(a) in
Theorem 3.5). We do not know whether this factorization in direct product
of compact monothetic groups remains true without the additional restraint of
total disconnectedness.
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4. Compact abelian groups with infinite topological free

rank

We recall the following known result in terms of the divisible weight.

Theorem 4.1. [14, Theorem 2.6] Let  be a cardinal. A discrete abelian group
G admits a dense embedding into T if and only if |G|  2 and log   wd(G).

Recall that the bimorphisms (i.e., monomorphisms that are also epimor-
phisms) in the category L of LCA groups are precisely the continuous injective
homomorphisms with dense image. Therefore, applying the Pontryagin duality
functor b: L! L, we deduce that for a cardinal  the following conditions are
equivalent:

(a) there exists a bimorphism
L

 Z! K;

(b) there exists a bimorphism bK ! T.

In equivalent terms:

Lemma 4.2. Let K be a compact abelian group and let  be a cardinal. Then
the following conditions are equivalent:

(a) K admits a dense free abelian subgroup of rank  (in particular, K 2 F);

(b) bK admits a dense embedding in T.

The following easy relation between the divisible weight of a compact abel-
ian group and that of its discrete Pontryagin dual group was already observed
in [9].

Lemma 4.3. Let K be a compact abelian group. Then wd(K) = wd( bK).
Consequently, K is w-divisible if and only if bK is w-divisible.

Proof. Let G = bK. Since nG ⇠= dnK for every n 2 N
+

, one has |nG| = w(nK),
hence the conclusion follows.

We recall now a fundamental relation given in [9] between the divisible
weight and the rank of a compact abelian group. It is worth to note that the
rank is a purely algebraic invariant, while the divisible weight is a topological
one.

Theorem 4.4. [9, Corollary 3.9] Let K be a compact abelian group. Then
r(K) = 2wd(K).

Applying these observations we can give now the proof of Theorem B. Note
that in the proof of the implication (c))(b) we apply both Theorem 4.4 and
Theorem 4.1.
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Proof of Theorem B. We have to prove that if K is an infinite compact
abelian group and  is an infinite cardinal, then the following conditions are
equivalent:

(a) K 2 F and rt(K)  ;

(b) bK admits a dense embedding in T� for some �  ;

(c) d(K)  r(K) and d(K)  .

The equivalence (a),(b) is contained in Lemma 4.2 and (a))(c) is clear.
(c))(b) Let G = bK. Put � = d(K). Since d(K) = log w(K) and w(K) =

|G|, we have that � = log |G|, and so 2� � |G|. On the other hand,

log � = log log |G| = log d(K)  log r(K)  wd(K),

where the last inequality follows from Theorem 4.4. So log �  wd(G) by
Lemma 4.3, and Theorem 4.1 guarantees that G admits a dense embedding
into the power T�.

References

[1] E. Boschi and D. Dikranjan, Locally compact abelian groups admitting
totally suitable sets, J. Group Theory 4 (2001) 59–73.

[2] W. W. Comfort and D. Dikranjan, On the poset of totally dense subgroups
of compact groups, Topology Proc. 24 (1999) 103–128.

[3] W. W. Comfort and D. Dikranjan, Essential Density and Total Density
In Topological Groups, J. Group Theory 5 (3) (2002) 325–350.

[4] W. W. Comfort and D. Dikranjan, The density nucleus of a topological
group, submitted.

[5] W. W. Comfort, S. A. Morris, D. Robbie, S. Svetlichny and
M. Tkachenko, Suitable sets for topological groups, Topology Appl. 86
(1998) 25–46.

[6] W.W. Comfort and J. van Mill, Concerning connected, pseudocompact
Abelian groups, Topology Appl. 33 (1989) 21–45.

[7] W. W. Comfort and J. van Mill, Some topological groups with, and some
without, proper dense subgroups, Topology Appl. 41 (1-2) (1991) 3–15.

[8] D. Dikranjan, Generators of topological groups, Kzuhiro Kawamura, ed.,
RIMS Kokyuroku (Proceedings), vol. 1074 (1999), Symposium on General
and Geometric Topology, Kyoto, March 4-6, 1998, pp. 102–125.

[9] D. Dikranjan and A. Giordano Bruno, w-Divisible groups, Topology
Appl. 155 (4) (2008) 252–272.



COMPACT GROUPS WITH A DENSE FREE ABELIAN SUBGROUP 149

[10] D. Dikranjan and Chiara Milan, Topological groups and their generators,
in: M. Curzio and F. De Giovanni eds., Quaderni di Matematica, Caserta
2001 vol. 8, Topics in Infinite groups 101–173.

[11] D. Dikranjan, Iv. Prodanov and L. Stoyanov, Topological Groups:
Characters, Dualities and Minimal Group Topologies, Pure and Applied Math-
ematics 130, Marcel Dekker Inc., New York-Basel, 1989.

[12] D. Dikranjan and D. Shakhmatov, Weight of closed subsets algebraically
generating a dense subgroup of a compact group, Math. Nachr. 280 (5-6)
(2007) 505–522.

[13] D. Dikranjan and D. Shakhmatov, The Markov-Zariski topology of an
abelian group, J. Algebra 324 (6) (2010) 1125–1158.

[14] D. Dikranjan and D. Shakhmatov, Hewitt-Marczewski-Pondiczery type
theorem for abelian groups and Markov’s potential density, Proc. Amer. Math.
Soc. 138 (2010) 2979–2990.

[15] D. Dikranjan and D. Shakhmatov, A Kronecker-Weyl theorem for subsets
of abelian groups, Adv. Math. 226 (2011) 4776–4795.

[16] D. Dikranjan and D. Shakhmatov, Suitable sets in the arc component of
a compact connected group, Math. Nachr. 285 (4) (2012) 476–485.
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