Comparing traditional and remote interpreting in police settings: quality and impact factors

SABINE BRAUN
University of Surrey

1. Introduction

Criminal justice services are increasingly turning to videoconference technology as a means of increasing efficiency in both national and cross-border proceedings. Video links exist between courts, police stations and prisons, and are used at different stages of proceedings. Given the current scale of migration and multilingualism in Europe, this development also concerns bilingual and multilingual proceedings, meaning that there is a need to integrate qualified legal interpreters into videoconference-based proceedings. At the same time, the current economic situation puts pressure on those responsible for interpreter deployment and poses a threat to achieving and maintaining the quality standards for interpreting set out in Directive 2010/64/EU.\(^1\) An efficient solution for integrating qualified legal interpreters into legal proceedings is therefore crucial to ensuring the efficiency of criminal justice services and strengthening the rights of EU citizens. The multi-annual European e-Justice Action Plan (2008-2013) and Directive 2010/64/EU make explicit reference to the use of

videoconferencing in legal proceedings as a means of gaining access to a qualified legal interpreter (“remote interpreting”).

However, research in different fields of interpreting shows that methods of interpreting which entail a separation of the interpreter from some or all participants create a number of challenges (see overviews in Moser-Mercer 2003; Mouzourakis 2006; Roziner/Shlesinger 2010; Braun forthcoming). Moreover, given that the use of videoconferencing technology in the criminal justice system is closely related to cost savings, Sossin/Yetnikoff’s (2007: 248) point that “questions of financial resources and structures” cannot be separated “from the question of fairness and reasonableness” of judicial decision-making needs to be considered in relation to the use of videoconferencing technology for interpreting. Procedural fairness is closely linked to the quality of the communication, and in cases involving an interpreter, the quality of the interpretation is a crucial element. A sufficient quality of interpreting performance must therefore be regarded as a condition sine qua non for the use of video-mediated interpreting in criminal proceedings.

At the same time, the potential benefits of videoconferencing, when appropriately used, should not be dismissed, especially at a time when the European effort to strengthen the rights of European citizens to translation and interpreting in criminal proceedings and the ensuing likely growth of demand for legal interpreting in Europe coincide – and sometimes compete – with financial constraints imposed on Public Service institutions.

It is with this situation in mind that the present chapter addresses one of the settings outlined above, i.e. the use of videoconferencing for the purposes of remote interpreting. This is the setting in which the interpreter is physically separated from all primary participants. The chapter reports on the findings of a series of studies on remote interpreting specifically in police interviews. These studies were conducted in two European research projects, AVIDICUS 1 and 2,2 which were designed to investigate a question raised by Corsellis (2006), i.e. whether the interpreting quality that can be achieved in videoconference-based interpreting is sufficient to maintain the quality and fairness of justice.

Section 2 of this chapter describes the specific aims and the theoretical framework for the studies. This is followed by an outline of the methodological approach in section 3 and a presentation of the main quantitative findings of the study in section 4. Section 5 concludes the chapter by highlighting the main insights as well as the limitations of the study and by raising questions for further research.

2. AIMS AND THEORETICAL FRAMEWORK OF THE STUDY

The specific aim of the series of studies reported here was an in-depth analysis of the interpreting quality in police interviews with suspects involving remote interpreting compared to the interpreting quality in interviews using traditional interpreting, in order to assess the viability of remote interpreting in the context of criminal justice.

Whilst the main question of the AVIDICUS 1 study was to explore, for the first time, whether and under which circumstances remote interpreting is reliable enough to ensure the fairness of criminal proceedings, the follow-up study in AVIDICUS 2 sought to refine the initial findings by studying the impact of the interpreter’s prior experience with remote interpreting, the impact of training, the quality of the equipment used and the set-up on the interpreting quality.

The study drew on a variety of complementary theoretical frameworks relating to communication, interpreting and videoconferencing. Using a genre-based approach to communication, the police interview with a suspect is conceptualised here as a purpose-driven communicative event with specific goals and hence specific moves and “rules” (see e.g. Berk-Seligson 2009). This implies that whilst there are different types of interview, core elements such as eliciting a suspect’s version of events and asking in-depth questions constitute common “moves” in most suspect interviews. Furthermore, police interviews are understood here as instances of dyadic, i.e. two-way, communication, following basic rules of communication management, especially rules of turn-taking and alignment of the participants (Sacks et al. 1974; Goffmann 1981), which contribute to the meaning and the dynamics of the communication.

The use of an interpreter in a police interview inevitably changes the dynamics of the interview to a certain extent, for two reasons. The first and perhaps most obvious of these is that the type of interpreting normally required in police interviews, i.e. two-way consecutive interpreting, is a type of interpreting that gives the interpreter relatively high “visibility”. Two-way consecutive interpreting is therefore normally perceived as a “triadic” situation with specific patterns of communication management, and the interpreter has been shown to play an important part in the alignment of the participants and the coordination of the talk in such situations (Wadensjö 1998; Mason 1999, 2001).

The other reason for the change in the dynamics of the communication is that interpreting is a highly strategic cognitive-linguistic process of discourse comprehension and production (Alexieva 1998; Gile 1991; Kohn/Kalina 1996; Braun 2004; Riccardi 2005) in which the interpreter forms his/her (own) understanding of the source text and produces his/her version of this in the target language. In other words, each interpreter will produce a different version. Due to the cognitive complexity of interpreting, involving multitasking (Gile 1991) and rapid decision-making (Alexieva 1998), interpreters often work at the limit of their mental capacity and have to act highly strategically to balance
different requirements such as the accuracy and completeness of the message, the appropriateness of expression and register, and the fluency and timeliness of delivery. At the same time, the specific requirements of legal interpreting (see e.g. Hale 2007; Hertog 2001, 2003; Kadrić 2001; Mikkelson 2000), for example, in terms of accuracy and completeness, impose constraints on the use of some common interpreting strategies, especially coping strategies such as generalisations or omissions of parts of the message. Legal interpreting commands special emphasis on achieving accuracy, completeness and avoidance of misunderstandings, e.g. through asking for clarification of meaning. It also requires the accurate reproduction of different registers and of features of the source text delivery, since the choice of register (e.g. colloquial language) may be as meaningful in a legal context as a stutter or hesitant delivery. Any potential change in the dynamics or meaning of the communication needs to be minimised.

As was pointed out in section 1, however, prior research suggests that in video-mediated communication and video-mediated interpreting it may be more difficult than in situations of traditional interpreting to grasp and relay meaning reliably. The challenge for the series of studies reported here was therefore to develop a methodology that would enable the researchers to isolate those problems of video-mediated interpreting that are specifically caused by the technological mediation rather than by the challenges of legal interpreting or interpreting as such. To this end, a comparative study was designed, and existing approaches to assessing interpreting quality (Kalina 2002, 2005; Pöchhacker 1994; Shlesinger 1997) were adapted to suit the needs of assessing the quality of interpreter performance in video-mediated interpreting in a legal context. The role of this prior work and the category system derived from it with the aim of analysing and assessing the quality of remote interpreting will be explained in the following section, which outlines the research methodology used in the studies.

3. Methodological approach

The AVIDICUS 1 and 2 studies of remote interpreting were based on simulations of police interviews with suspects. Each of the two studies (AVIDICUS 1 and 2) involved eight legal interpreters (French/English). Given the dual aim of the studies, which was to compare first the interpreting quality in remote interpreting (RI) with the quality in face-to-face interpreting (FTF) and then the different conditions for RI, an effort was made to implement a within-group study design, i.e. to recruit the same interpreters who took part in the original AVIDICUS 1 study for the AVIDICUS 2 tests. Six of the interpreters were available. The other two were replaced by two interpreters with a similar profile. All interpreters were professional legal interpreters with a minimum of five years’ experience working for police services. Between the AVIDICUS 1 tests (December 2009) and the AVIDICUS 2 tests (May 2012), all eight interpreters had taken part in at least
one of the AVIDICUS training workshops, and had worked in several video links, e.g. by working in one of the RI hubs of the Metropolitan Police Service in London.

The other participants were police officers (English native speakers) or, in few cases where police officers were not available, role players trained to act from scripts. The role of the suspect was shared by several role players who were French native speakers. All role players had received basic instructions (e.g. not to read out the script but to keep close to it to ensure comparability of the sessions).

The communicative situation was a police interview with a suspect, and the materials (interview scenarios and scripts) and working conditions (e.g. duration of the sessions) were similar. The sessions involved four similar suspect interviews (two in AVIDICUS 1 and two in AVIDICUS 2), relating to fraud, deception, common assault and grievous bodily harm respectively. All four interviews had a similar structure (see below) and were designed to last approximately 30 minutes, but the actual length of each session was determined by the time it took to complete the interview. Two types of equipment were used: an Access Grid based VC system and a Polycom 7000 VC system. The latter provided better quality.

In each part of the study, i.e. in AVIDICUS 1 and 2, each of the participating interpreters worked in two interviews, each presenting an instance of two-way consecutive interpretation between police officer (English-speaking) and suspect (French-speaking). In AVIDICUS 1, one session was conducted using onsite interpreting and the other using remote interpreting (with the older Access Grid equipment). The sessions conducted in AVIDICUS 2 both involved remote interpreting, using the two types of equipment and set-up. This led to four comparable sets of data as shown in the table below, all based on simulations.

<table>
<thead>
<tr>
<th>Project</th>
<th>Description of data set</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVIDICUS 1</td>
<td>Traditional face-to-face interpreting</td>
<td>FTF</td>
</tr>
<tr>
<td>AVIDICUS 1</td>
<td>Remote interpreting with the older equipment (Access Grid)</td>
<td>RI-1</td>
</tr>
<tr>
<td>AVIDICUS 2</td>
<td>Remote interpreting again with the older equipment (Access Grid) but after the participating interpreters had received training and gained additional experience.</td>
<td>RI-1b</td>
</tr>
<tr>
<td>AVIDICUS 2</td>
<td>Remote interpreting, using improved equipment (Polycom) and set-up (2 screens), in addition to the interpreters having received training and gained experience</td>
<td>RI-2</td>
</tr>
</tbody>
</table>

Table 1: data sets for the comparative study.

In the traditional setting, the police officer and the detainee faced each other, and the interpreter sat next to the detainee, as is common practice in police interviews in England.

In the tests using the older Access Grid system (RI-1 and RI-1b), the police officer and the detainee, who were in the “interview room”, faced each other, as
in the face-to-face interviews. The relevant video images were projected onto a wall which was perpendicular to them. The interpreter was in another room and saw the relevant images on a large screen. As shown in Figure 1 below, all participants including the interpreter saw an overview of the interview room with police officer and detainee (bottom left), and close-ups of the police officer (top left), the detainee (top right) and the interpreter (bottom right).

In the test using the Polycom system (RI-2), all participants saw one large image of the opposite side, and a small picture-in-picture showing their own image. In the interview room, there were two screens, behind the officer and the suspect respectively. The screens were set slightly off to one side so that the officer and the suspect were able to look at each other and at interpreter at the same time. This was to prevent the officer and the suspect from having to turn their heads towards the screen, which had happened frequently in AVIDICUS 1 and had led to a number of problems.

Figure 1: Set-up in RI-1 and RI-1b using the Access Grid system (left) and RI-2, using the Polycom system (right).
All sessions were video recorded and subsequently transcribed as a basis for the analysis. The data were then analysed and coded using the same scheme across all four data sets. The scheme was derived from theoretical frameworks relating to genres of communication, the specifics of legal interpreting and interaction in dialogue interpreting, as well as interpreting quality (see also Braun 2013). For instance, police interviews were regarded as a specific genre of communication. In accordance with this, the interviews were divided into “moves” that are characteristic for this genre (1. Introduction – 2. Caution – 3. Preliminary Enquiries – 4. Suspect’s version – 5. Police Officer’s in-depth questions – 6. Conclusion). This made it possible to relate problems to the immediate context in which they occur.

Then, a set of categories was devised to analyse and code the interpreting data in terms of problems that were considered to be particularly relevant for legal interpreting. The coding scheme includes:

- Semantic or content-related categories (omissions, unnecessary additions, inaccuracies and coherence problems);
- Linguistic categories (lexical/terminological problems, idiomaticity, grammar, style/register, coherence, language mixing);
- Paralinguistic categories (articulation problems, hesitations, word-level repetition, false starts and self-repairs);
- Interaction-related categories (turn-taking problems, especially overlapping speech).

Where relevant, non-verbal/visual information (e.g. problems with gaze, being out of shot) were coded as well, especially to inform the classification of interpreting problems identified. Based on the coding, which was conducted by two researchers, a quantitative analysis was carried out, comparing all four data sets. The main quantitative findings will be reported in the next section. Additional qualitative analyses were conducted for selected aspects and are reported in Braun (2013).

4. Main results

Overview: quantification of problems

The data corpus comprised 32 interview sessions. In line with the aims of this study, the focus was on comparing absolute frequencies of the problems identified in each of the four data sets. Table 2 below shows the total frequencies and the average frequencies per VC session for each of the main problem categories in each of the four data sets.
Table 2: Overview of quantitative results.

<table>
<thead>
<tr>
<th></th>
<th>FTF</th>
<th>FTF / RI-1</th>
<th>FTF / RI-1b</th>
<th>RI-2 (AVID 1)</th>
<th>FTF / RI-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omissions</td>
<td>Ø per session</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>108</td>
<td>87</td>
<td>135</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>13.5</td>
<td>8.8</td>
<td>13.8</td>
<td>13.5</td>
</tr>
<tr>
<td>Additions</td>
<td>Ø per session</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>29</td>
<td>70</td>
<td>138</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>2.9</td>
<td>6.0</td>
<td>11.0</td>
<td>4.8</td>
</tr>
<tr>
<td>Inaccuracies</td>
<td>Ø per session</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>110</td>
<td>96</td>
<td>138</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>11.1</td>
<td>13.8</td>
<td>12.0</td>
<td>13.8</td>
<td>11.2</td>
</tr>
<tr>
<td>Coherence</td>
<td>Ø per session</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>48</td>
<td>38</td>
<td>48</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>6.0</td>
<td>4.8</td>
<td>4.8</td>
<td>4.5</td>
</tr>
<tr>
<td>Linguistic problems</td>
<td>Ø per session</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>316</td>
<td>417</td>
<td>350</td>
<td>495</td>
<td>396</td>
</tr>
<tr>
<td></td>
<td>39.5</td>
<td>43.8</td>
<td>43.8</td>
<td>49.5</td>
<td>49.5</td>
</tr>
<tr>
<td>Paralinguistic problems</td>
<td>Ø per session</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>261</td>
<td>287</td>
<td>296</td>
<td>359</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>32.6</td>
<td>35.9</td>
<td>37.0</td>
<td>41.8</td>
<td>36.6</td>
</tr>
<tr>
<td>Turn-taking</td>
<td>Ø per session</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>110</td>
<td>13.8</td>
<td>10.8</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>13.8</td>
<td>13.8</td>
<td>14.1</td>
<td>11.4</td>
</tr>
</tbody>
</table>

3 Articulation problems, hesitations, word-level repetitions.
4 Self-repairs and false starts.

Table 2: Overview of quantitative results.
In AVIDICUS 1, the expectation was that the number of problems would be higher in remote interpreting (RI) than in face-to-face interpreting (FTF) in all categories, and this expectation was confirmed by the analysis, albeit, as discussed in Braun/Taylor (2012a), Braun (2013) to varying degrees.

The outcome of the comparison between AVIDICUS 1 and 2 data sets is more complex. The first point to note is that the data obtained in AVIDICUS 2, i.e. R1b (old equipment and setup, but training and experience) and RI-2 (new equipment and setup in addition to training and experience), show a tendency to behave more like the data from FTF than in the original data set RI-1. The number of inaccuracies, for example, is highest in RI-1 (110), while RI-1b and RI-2 (96 and 88 respectively) approach the level of FTF (88). This general tendency can also be seen in Figure 2 below, which provides a graphical representation of the total numbers of problems shown in Table 2.

![Figure 2: Graphical representation of main quantitative results.](image)

The following subsections will briefly discuss the main groups of problems, i.e. semantic or content-related problems as well as linguistic, paralinguistic and turn-taking problems.

Content-related problems

As far as content-related problems are concerned, face-to-face interpreting was distinct from all three conditions of remote interpreting. The mean score for the number of content-related problems in FTF was significantly lower than the mean scores for all three conditions of RI (p = .05 or .1), whilst differences between
the individual RI conditions were not significant.\(^5\) However, although the total number of content-related problems is similar across the three RI conditions, the two RI data sets from AVIDICUS 2 exhibit an increase in additions while the number of omissions, inaccuracies and coherence problems is reduced. Given the crucial importance of accuracy and completeness in legal interpreting, this is a positive trend. An analysis of the additions shows that these were generally unnecessary in the context in which they occurred, but they may be a sign of an increase in the interpreters’ confidence or have strategic value, representing attempts by the interpreters to overcome the (perceived and real) distance by increasing their rapport with the interlocutors.

A less positive trend in the data is that the number of major inaccuracies (e.g. logical distortions) remained high in the two new RI data sets. There were 40 instances in RI-1b and 33 in RI-2, compared with 19 in FTF and 38 in RI-1. This means that even in the RI-2 set, the average per interview (4.1) is still nearly twice as high as that of FTF (2.4).

Linguistic problems

In the category of linguistic problems, the number of problems identified in the RI-1 data set is significantly higher than the numbers in the other three conditions (\(p = .05\) or \(.1\)). This means that RI-1b and RI-2 are more similar to FTF than to RI-1. Given the work experience of the participating interpreters, it can be assumed that the improvement in RI-1b and RI-2 compared with RI-1 does not stem from an increase in their linguistic competence (i.e. the interpreters’ knowledge of words, terms and phrases) over the last three years, but that it is the result of an improved interpreting performance, i.e. a better ability to apply their knowledge during the VC-based interviews. The improvement may suggest that training, familiarisation and better technology enabled the interpreters to devote more of their cognitive resources to the actual interpreting task and, as a consequence, to improving the quality of their performance. This assumption is further supported by the analysis of paralinguistic features, which will be reported below.

It should be noted, however, that there was no significant difference between RI-1b and RI-2, which differ only in the use of older vs. newer equipment. Although the interpreting sessions in the RI-2 setting may have been influenced by the occasional noise in the interpreter’s room during RI-2, leading to some distractions, the likeliest explanation for the similarity of RI-1b and RI-2 is that no one variable (i.e. quality of equipment) alone is able to improve the working conditions and the interpreting quality sufficiently and that only the combination of high-quality equipment and training will yield significantly better results.

\(^5\) The significance was calculated using both Student’s \(t\)-test for paired samples (a parametric test, i.e. a test assuming normal distribution) and the Wilcoxon signed-rank test (a non-parametric test, i.e. one that does not assume normal distribution), and the Nemenyi test for pairwise comparison of multiple samples. The differences in the results of all tests are negligible.
Paralinguistic problems

Paralinguistic features such as hesitations and self-corrections in the interpreters’ output are often indicators for other underlying interpreting problems, especially for a cognitive overload of the interpreter (Mead 2002). In AVIDICUS 1, the number of paralinguistic problems in the RI data set (TI1) was found to be significantly higher than that in FTF (p = .05 or .1), and the level of problems identified in the RI tests in AVIDICUS 2 was similar to that of RI-1. Generally speaking, the number of paralinguistic problems was high in all three RI conditions. This suggests that the cognitive effort in RI is high irrespective of the specific variables (here training and/or quality of equipment). Given the findings in relation to linguistic problems outlined above, however, it seems that the effort is more successful in RI-1b and RI-2 than in RI-1. In other words, the interpreting process in RI seems to require more effort than in FTF, but in the RI sessions that were conducted in AVIDICUS 2, the effort yielded better results in terms of linguistic performance (using appropriate terms and phrases).

Another important pattern that emerges in the analysis of paralinguistic problems is that they increase faster in RI than in FTF after approximately 15 to 20 minutes of interpreting. Given that paralinguistic problems can be indicative of a high cognitive load of the interpreter, this finding corroborates the impression that RI is onerous for the interpreter. Moser-Mercer (2003), who found a similar pattern in experiments with remote simultaneous interpreting, suggests that RI results in an earlier onset of fatigue than FTF. This means that problems may arise with the interpreting performance in a real-life situation unless the communication is of very short duration.

Interaction problems

The main turn-taking problem in all RI conditions was overlapping speech of the interpreter and one of the participants, i.e. overlap between two speakers in different locations. In FTF, the number of turn-taking problems was generally low (34 in total), with only 4.2 per interview. All RI conditions exhibit more turn-taking issues than FTF, although the difference between RI-1b and FTF fails to reach significance (at either p = .05 or .1).

One noteworthy point concerns the consequences of turn-taking issues in RI. In the RI-1 condition in AVIDICUS 1, turn-taking problems normally led to disruption and other problems such as omissions (Braun 2013). By contrast, the RI-1b condition in AVIDICUS 2, which used the same VC system as RI-1, created fewer problems (although the difference is not significant at either p = .05 or .1), and the problems had fewer consequences. This suggests that the interpreters were able to adapt to the VC situation in RI-1b to a certain extent. Interestingly, in R2 the number of issues reached the same level as in RI-1 but they hardly had any consequences, because the VC system used in R2 coped better with overlapping
speech. It is therefore possible that the interpreters working in the R2 condition reverted to using overlapping speech strategically (as they do in FTF), to obtain the right to speak.

Length of interviews and word count

To explore possible differences between the RI and FTF condition in terms of interview length and word count, the two AVIDICUS 1 data sets were compared in terms of length and word count. On average, the interviews conducted using RI were 19% longer than the interviews using FTF interpreting. By contrast, the word count of the two sets of interviews was not significantly different, with the result that the average speech rate in the interviews conducted using RI is lower than the speech rate in the interviews using FTF interpreting.

The lower speech rate in the remotely interpreted interviews goes some way to explain their longer duration, but it does not seem to be the only reason. A qualitative analysis of the data shows that the interviews using RI also required what Olson *et al.* (1997: 170) called a greater “process overhead”, for example to coordinate the communication or to resolve comprehension problems. This would explain why all groups of participants, i.e. police officers, detainees and interpreters, used a slightly higher number of words in the video-mediated sessions. Braun (2004, 2007) also found that participants in interpreted videoconferences were repetitive, i.e. that their speech was marked by redundant expressions. This finding was not replicated by the present study, but it may be argued that the tendency to use redundant expressions was constrained by the fact that the police officers and detainees followed a script. Further research is required to show whether different conditions will produce more redundant speech in video-mediated criminal proceedings, or whether the communication genres that are relevant in criminal proceedings will counteract this tendency.

In any case, the clear differences in length suggest that the video-based sessions were on the whole less efficient than the face-to-face sessions. This is exacerbated by the fact that the interpreters seem to lose concentration and tire faster in RI than in FTF interpreting, as outlined above.

5. Conclusions

The quantitative results of the AVIDICUS comparative studies create a complex picture. Whilst many features that emerge from the comparison of the original RI data set, i.e. RI-1, with the FTF data set suggest that RI is more challenging, it is difficult to identify a clear tendency of improvement or otherwise in the AVIDICUS 2 data sets, which were generated after the interpreters had gained more experience and received training and/or were using better equipment. A performance improvement can be observed in some areas, and there are also
signs for a reduced and/or more successful processing effort, suggesting that RI was a less stressful experience in the AVIDICUS 2 sessions, when compared with AVIDICUS 1. This was corroborated by the interpreters’ comments both in AVIDICUS 1 and 2. There are also indicators for improved confidence in approaching the task of remote interpreting. However, many of the problems identified in AVIDICUS 1 prevailed in the AVIDICUS 2 data sets, suggesting that interpreting problems are still magnified by the videoconference condition despite the initial training, additional experience and the use of better equipment.

To interpret the findings, the limitations of the studies have to be borne in mind. Firstly, the studies were based on simulations, because real-life data were not available at the time of conducting this research. However, there are also a number of advantages associated with the use of simulations, e.g. the control of variables, which was an advantage at the present stage of the research. Another possible limitation was the use of scripts in the simulations, which meant that interpreting problems did not always have real consequences because the participants tended to return to the given storyline even if it had been distorted by an inaccurate or incomplete interpretation. However, the initial problems could still be analysed, making it possible to extrapolate the scale of problems in real-life situations.

The small size of the sample makes it difficult to assess (and calculate) the significance of the differences found between the two forms of interpreting and puts a limitation on the validity of the findings. One further limitation is that only one language pair was involved. However, the other partners in the AVIDICUS projects carrying out comparative studies used different language pairs and came to similar initial conclusions (see Braun/Taylor 2012, 2014).

Moreover, this study has focused on one particular setting, a police interview, which is normally highly regulated and formulaic. It remains to be seen what kind of (additional or different) problems other, less regulated settings such as lawyer consultations would generate.

Finally, the analysis in this study has focused on interpreting quality as such. This is only one step on the way to a more comprehensive assessment of the viability of video-mediated criminal proceedings that involve an interpreter. What needs to be analysed further are, for example, possible changes in the dynamics of the communication and the potential impact of such changes on the specific goals of the communication in criminal proceedings.

These limitations notwithstanding, one of the questions arising from the AVIDICUS comparative studies concerns the effectiveness of short-term training. Whilst short courses seem to be the only viable way for bringing practising interpreters up to speed with the basics of VC-based interpreting, the integration of training in VC interpreting into interpreter education is likely to yield greater long-term benefits for future interpreters and their adaptability to VC situations. Training in VC-based interpreting should therefore be addressed in interpreter education programmes.
Another question concerns the impact of the “on-demand” culture with regard to interpreting services on interpreting quality. Without dismissing the potential benefits of VC-based interpreting, e.g. to gain timely access to a qualified legal interpreter, the findings make it clear that the quality of interpreting that can be achieved with this method of interpreting will only be viable if working conditions for interpreters in VC situations are further improved.
REFERENCES

Mouzourakis P. (2006)

