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1. Introduction

In our paper [1], published in 1976, we have announced results on the Dirichlet
and periodic boundary value problems for the equation

−x′′(t) = g(x(t))− f(t) (1)

on [0, π] (though we could also study Neumann boundary conditions). Here,
g : R → R is a continuous function, and f ∈ L1[0, π]. We were interested in
understanding the set of integrable functions f for which this problem has a
solution. In the following, we refer to (1D) for the Dirichlet problem, and to
(1p) for the π-periodic problem associated with (1).

We were interested in cases where g(y)/y has limits at plus and minus infin-
ity (possibly infinite). In particular, we discussed degenerate cases where both
limits are finite and the limit problem has a non-trivial solution satisfying the
boundary conditions, or in cases where one or both limits is plus infinity. Most
of the other cases were largely covered in earlier work. A second motivation
was to try to understand what might be true for analogous nonlinear elliptic
boundary value problems. The idea was that there seemed to be no chance
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of a good result for the elliptic problem unless the results for the ordinary
differential equation case were similar for the two different types of boundary
conditions. Note that in two dimensions one thinks of a thin annulus as a
perturbation of a circle (at least intuitively).

At the end of that paper, we wrote that

“as the full proofs are long and complicated, the author does not
at present plan to publish them, but will reconsider this if he has
sufficient evidence of interest in them.”

After so many years, in which those handwritten unpublished proofs have
been used and cited by several mathematicians, we think it could be of some
interest to make them more easily available. This is why, mostly motivated by
the interest shown in all these years on the arguments introduced in [1], which
have been quoted by many authors and further developed in several interesting
papers, we decided to finally publish them in the present form.

It will be useful to recall the main results in [1]. Throughout the paper, we
assume that the limits

µ = lim
y→+∞

g(y)

y
, ν = lim

y→−∞

g(y)

y

exist (possibly ±∞). Let

XD = {u ∈ C1[0, π] : u(0) = u(π) = 0, u′′ ∈ L1[0, π]}

and define HD : XD → L1[0, π] by (HDx)(t) = x′′(t) + g(x(t)). Note that XD

is a Banach space under the norm ‖x‖+ ‖x′′‖, where ‖x‖ denotes the L1-norm
of x. Let RD denote the range of HD. Similar definitions are given for Xp, Hp

and Rp in the case of the periodic boundary conditions on [0, π].

In Section 1 of [1], we considered the case when µ, ν are finite and positive,
and we stated three theorems. We assume that the limits

I± = lim
y→±∞

(g(y)− µy+ + νy−)

exist, where y+ = max{y, 0}, y− = max{−y, 0}, and the limits are allowed to
be infinite. Let φβ denote the solution of −x′′(t) = µ(x(t))+ − ν(x(t))− for
which φβ(0) = 0 and φ′

β(0) = β. We will also write φ+ for φ+1 and φ− for φ−1.

We first consider the Dirichlet problem, for which we have the following two
theorems. We assume µ 6= ν, and that there exist positive integers k and l such
that |k − l| ≤ 1 and kµ−1/2 + lν−1/2 = 1.

Theorem 1.1. Suppose that k = l.
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(i) If I+ 6= I− and at least one of I+ and I− is infinite, HD is proper
and onto.

(ii) If I+ and I− are both finite, let

T =

{

f ∈ L1[0, π] :

∫ π

0

f+1(t) dt

∫ π

0

f−1(t) dt > 0

}

,

where f±1(t) = f(t)φ±1(t) − I+(φ±1(t))
+ + I−(φ±1(t))

−. Then, T is
nonempty and T ⊆ RD. Moreover, RD contains a relatively closed un-
bounded proper subset of L1[0, π]\T̄ .

Theorem 1.2. Suppose that k − l = 1 and µ > ν.

(i) If I+ 6= I− and either I+ = −∞ or I− = ∞, then HD is proper and
onto.

(ii) If I+ 6= I− and either I+ = ∞ or I− = −∞, then HD is proper, RD is
closed, and RD 6= L1[0, π].

(iii) If I− and I+ are both finite, let

T =

{

f ∈ L1[0, π] :

∫ π

0

f+1(t) dt > 0

}

.

Then, T is non-empty and T ⊆ RD. Moreover, RD contains a relatively
closed unbounded proper subset of L1[0, π]\T̄ .

Concerning the periodic boundary value problem, we stated the following
theorem, where we assumed that µ 6= ν and that there is a positive integer k
such that kµ−1/2 + kν−1/2 = 1.

Theorem 1.3. (i) If at least one of I− and I+ is infinite and I− 6= I+, then
Hp is proper and onto.

(ii) If both I− and I+ are finite, let

F (θ) =

∫ π

0

f(t)φ+1(t+ θ) dt− 2k(µ−1I+ − ν−1I−) ,

T =
{

f ∈ L1[0, π] : F (θ) 6= 0 for every θ ∈ [0, π]
}

,

and

S =
{

f ∈ L1[0, π] : (F (θ))2 + (F ′(θ))2 > 0 for every θ ∈ [0, π]
}

.

Then, T is non-empty, T ⊆ Rp, and (Rp ∩ S)\T is a relatively closed
non-empty proper subset of S\T .
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In Section 2 of [1] we stated two further theorems. We consider there
the case where µ = ∞ and ν = i2, where i is a positive integer for (1D)
and a non-negative integer for (1p). We assume that I− = limy→−∞ gi(y)
exists (where gi(y) = g(y) − i2y) and that there exists an M > 0 such that
g(y) + M(y − x) + M ≥ g(x) if y ≥ x ≥ M . If I− = −∞, we also assume
that for every ε > 0 there exist N1, N2 > 0 such that gi(y) ≤ (1 − ε)gi(x) if
y ≤ x ≤ −N1 and gi(y) ≥ (1 + ε)gi(x) if N2x ≤ y ≤ x ≤ −N1.

We first consider the Dirichlet problem. If I− = −∞ and i > 0, define

P l = lim inf
α→∞

T (α)

S(α)
, Pu = lim sup

α→∞

T (α)

S(α)
,

where

S(α) = − 1

iα

∫ π/i

0

gi

(

− α

i
sin it

)

sin it dt ,

and T (α) is the first positive zero of the solution of −x′′(t) = g(x(t)), x(0) = 0,
x′(0) = α.

Theorem 1.4. (i) If i = 1 and I− is finite, then

{

f ∈ L1[0, π] :

∫ π

0

f(t) sin t dt > 2I−
}

⊆ RD .

Moreover, if g(y)− y > I− for all y, equality holds.

(ii) Suppose that

(a) i > 1 and I− > −∞, or

(b) i = 1 and I− = ∞, or

(c) i = 1, I− = −∞ and Pu < 1
2 , or

(d) i > 1, I− = −∞ and either P l > i(i− 1)−1, or Pu < i(i+ 1)−1.

Then HD is proper, RD is closed, and RD 6= L1[0, π].

(iii) Suppose that

(a) i = 1, I− = −∞ and either P l > 1 or 1
2 < P l ≤ Pu < 1, or

(b) i > 1, I− = −∞ and either i(i+ 1)−1 < P l ≤ Pu < 1, or 1 < P l ≤
Pu < i(i− 1)−1.

Then, HD is proper and onto.

Concerning the periodic problem, we stated the following
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Theorem 1.5. (i) If i = 0, (1p) is solvable if
∫ π

0
f(t) dt > πI−. This condi-

tion is also necessary if I− is finite and g(y) > I− for all y.

(ii) Suppose that i ≥ 1 and

(a) I− > −∞, or

(b) I− = −∞ and either Pu < 1 or P l > 1.

Then, Hp is proper and onto.

This paper is organized as follows. In Section 2, we prove some technical
lemmas on the distance between zeros of solutions of the differential equations.

In Section 3, we prove a simple abstract result and, in Section 4, we prove
the results in Section 1 of [1], i.e., Theorems 1.1, 1.2 and 1.3 above.

In Section 5, we prove the results in Section 2 of [1], i.e., Theorems 1.4 and
1.5 above.

2. Technical Estimates

Subsection (i)

Suppose that z is a solution of

−x′′(t) = g(x(t))− f(t) (2)

on [0, π]. Assume that yg(y) ≥ 0 for y large. Thus we can write g = g1 + g2
where g1 and g2 are continuous, yg1(y) ≥ 0 for all y, |g2(y)| ≤ K for all y and
g2 has compact support. Let

G(y) =

∫ y

0

g1(u) du

and

E(t) =
1

2
(z′(t))2 +G(z(t)) .

By adding a constant to g and f (and with a little more care), we may assume
that

∫∞
0

g2(u) du = 0 (and thus G(y) =
∫ y

0
g(u) du if y is large). This will be

convenient later (in Subsection (iii)).

Lemma 2.1. (i) There exist K1, K2, depending only on ‖f‖1 (and K), such
that E(t1) ≤ K2(E(t2) +K1) for t1, t2 ∈ [0, π].

(ii) There exists K3 depending only on ‖f‖1 such that

|E(t1)− E(t2)| ≤ K3

√

E(t3) +K1 for t1, t2, t3 ∈ [0, π] .
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Proof. Let us first prove (i).

|E′(t)| ≤ |f(t) + g2(z(t))||z′(t)| (3)

≤ (|f(t)|+K)((z′(t))2 + 1)

≤ (|f(t)|+K) + (|f(t)|+K)E(t) .

Hence (i) follows from Gronwall’s inequality.
Let us now prove (ii).

|E(t1)− E(t2)| ≤
∫ t2

t1

|E′(t)| dt ≤
∫ t2

t1

(|f(t)|+K)|z′(t)| dt .

The result follows from this, since |z′(t)| ≤
√

2E(t) ≤ K3

√

E(t3) +K2 by
part (i).

This lemma shows that, if E(t) is large at one point, then E(t) is large
throughout the interval and, in this case, the variation of E(t) across the in-
terval is of smaller order than E(t).

Subsection (ii)

In this case, we assume that

|g(y)− µy| ≤ τy +M , (4)

for all y ≥ 0, where µ > 0, τ < µ. Suppose that z is a solution of (2) on [t0, t1]
(where 0 ≤ t0 ≤ π, t0 ≤ t1 ≤ 2π and f is extended to [0, 2π] by periodicity)
and assume that z(t0) = 0, z(t1) = 0 (or t1 = 2π), z(t) ≥ 0 on [t0, t1] and
z′(t0) = α, where α is large and positive.

In the following, we will only prove our results for the case t0 = 0, but we
will usually state the final results for general t0. Now E(0) = 1

2α
2. Thus, by

Lemma 2.1(ii), |E(t)− 1
2α

2| ≤ K4α on [0, t1] if α is large. Since

0 < µ− τ ≤ lim inf
y→∞

2G(y)

y2
≤ lim sup

y→∞

2G(y)

y2
≤ µ+ τ ,

it follows that z(t) ≤ (µ − τ)−1(E(t))1/2 ≤ K5α on [0, t1], if α is large. Let
w(t) = α−1z(t). Then w(0) = 0, w′(0) = 1 and, on [0, t1], w

′′(t)−µw(t) = h(t),
where h(t) = α−1[g(z(t))− µz(t)− f(t)]. Then,

|h(t)| ≤ α−1[τ |z(t)|+M + |f(t)|] ≤ τK5 + α−1(M + |f(t)|)

(by our inequality for z(t)). Thus h is small in L1 if τ is small and α is large.
Hence, by continuous dependence, w(t) is near µ−1/2 sin

√
µ t in the C1-norm

on [0, t1] if τ is small and α is large. (This is easily proved by using the Green’s
function for the initial-value problem for w′′(t)+µw(t).) Thus we have proved:
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Lemma 2.2. Given ǫ > 0, there is a τ > 0 such that, if |g(y) − µy| ≤ τy +M
for y ≥ 0, ‖f‖1 ≤ M and α ≥ T (= T (ǫ,M)), then ‖α−1z(t)−φ+(t− t0)‖′∞ ≤ ǫ
(where φ+(t) = µ−1/2 sin

√
µ t and ‖ · ‖′∞ is the usual C1-norm restricted to

[t0, t1]).

Let t̃ = t0 + µ−1/2π and assume that t̃ < 2π. By Lemma 2.2, either z(t)
has its first zero in (0, 2π] close to but less than or equal to t̃, or z(t) ≥ 0 on
[0, t̃+ a] (where a > 0). (Note that we have reverted to assuming that t0 = 0.)
Lemma 2.2 then implies that α−1z(t̃+a) is close to φ+(t̃+a). Since z(t̃+a) ≥ 0
and φ+(t̃+ a) = µ−1/2 sin

√
µa < 0, this is only possible if a is small. Thus, if

t̃ < 2π, z(t) must have its first zero in (0, t1] near t̃, i.e., t1 is near t̃. We now
want a more precise estimate for t1. Let

Z(t) = z(t)φ′
+(t)− z′(t)φ+(t) .

Since z is a solution of (2),

Z ′(t) = [g(z(t))− µz(t)− f(t)]φ′
+(t) .

By integrating from 0 to t1, we get

−z′(t1)φ+(t1) =

∫ t1

0

[g(z(t))− µz(t)− f(t)]φ′
+(t) dt . (5)

Since t1 is near t̃, φ+(t1) = −(t1 − t̃)(1 + ω(t1 − t̃)), where ω(r) → 0 as r → 0.
Moreover, by our earlier estimate for E(t), | 12 (z′(t1))2 − 1

2α
2| ≤ K4α. Hence,

−α− 2K4 < z′(t1) < −α+ 2K4 if α is large (remember that z′(t1) ≤ 0). Thus
z′(t1) = −α(1 + α−1s(α)) where |s(α)| ≤ 2K4. So, equation (5) becomes

α(t1− t̃)(1+ω(t1−t̃))(1+α−1s(α)) = −
∫ t1

t0

[g(z(t))−µz(t)−f(t)]φ′
+(t−t0) dt (6)

(where we have given the formula for the general case). By integrating Z ′(t)
from t0 to t̃, we also have

−z(t̃) =

∫ t̃

t0

[g(z(t))− µz(t)− f(t)]φ′
+(t− t0) dt (7)

(since φ′
+(t̃) = −1). Equations (6) and (7) will now be used to obtain our

estimates for t1.

Lemma 2.3. Suppose that ǫ > 0 and g(y) − µy ≥ S if y ≥ y0. There exists
τ(= τ(ǫ, S)) > 0 such that, if |g(y)− µy| ≤ τy +M for y ≥ 0, ‖f‖1 ≤ M and
α ≥ T (= T (ǫ, S,M)), then

t1 − t̃ ≤ α−1

[
∫ t1

t̃

(f(t)− S)φ+(t− t0) dt+ ǫ

]

.
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Proof. If τ is small and α is large, t1 is near t̃ and α−1z(t) is near φ+(t) on
[0, t1]. Hence, z(t) ≥ y0 on [0, t1] except possibly near the endpoints. We can
make the part of [0, t1] where this inequality fails arbitrarily small and, on this
part of the interval, g(z(t))− µz(t) is bounded (because 0 ≤ z(t) ≤ y0).

Case (i) t1 ≤ t̃. Thus φ+1(t) ≥ 0 on [0, t1] and the right hand side of equa-
tion (6) becomes (for t0 = 0)

∫ t1

0

f(t)φ+(t) dt−
∫

A

[g(z(t))−µz(t)]φ+(t) dt−
∫

B

(g(z(t))−µz(t))φ+(t) dt

≤
∫ t1

0

f(t)φ+(t) dt− S

∫

A

φ+(t) dt+m(B)K6

where A = {t ∈ [0, t1] : z(t) ≥ y0}, B = [0, t1]\A and K6 = sup{|g(y) − µy| :
0 ≤ y ≤ y0}. Since m(B) and t1 − t̃ are small if τ is small and α is large (and

thus
∫

A
φ+(t) dt is near

∫ t1
0

φ+(t) dt), the result follows from this inequality
and equation (6).

Case (ii) t1 > t̃. In this case, there is an additional difficulty because φ+(t) < 0
on [t̃, t1]. However, if we have a bound for z(t) on [t̃, t1], we can estimate the
integral from t̃ to t1 (in equation (6)) by the same argument as we used for the
integral over B in case (i) and the proof can be completed as in case (i). Since
φ+(t) ≥ 0 on [0, t̃], we can use equation (7) and, by estimating the right hand
side of (7) by a similar argument to that in case (i) (noting that z(t) ≥ 0 on
[0, t̃]), we find that z(t̃) ≤ K7. Since t1 is near t̃, α−1z′(t) is near φ′

+(t) and
φ′
+(t̃) < 0, we see that z′(t) ≤ 0 on [t̃, t1]. Hence 0 ≤ z(t) ≤ K7 on [t̃, t1]. So,

by our comments above, the proof can be completed as before.

Remark. By the lemma, τ and T can be chosen to work simultaneously for
the sequence of function {g(y) + 1

ny}n≥n0
provided that g(y) − µy ≥ S for

y ≥ y0, y
−1g(y) → 0 as y → ∞, and n0 is sufficiently large.

Lemma 2.4. Suppose that ǫ > 0 and g(y) − µy ≤ S if y ≥ y0. There exists
τ(= τ(ǫ, S)) such that, if |g(y) − µy| ≤ τy + M for y ≥ 0, ‖f‖1 ≤ M and
α ≥ T (= T (ǫ, S,M)), then

t1 − t̃ ≥ α−1

[
∫ t1

t0

(f(t)− S)φ+(t− t0) dt− ǫ

]

.

Proof. Case (i) t1 ≤ t̃. This is similar to the proof of case (i) of Lemma 2.3.

Case (ii) t1 > t̃. As in case (ii) of Lemma 2.3, it suffices to show that R :=
∫ t1
t̃
(g(z(t)) − µz(t))φ+(t) dt is small. Let K8 =

∫ t1
t0
(f(t) − S)φ+(t) dt + 1. If

t1 − t̃ ≥ α−1K8, the result is trivial. If not, |φ+(t)| ≤ [t − t̃| ≤ α−1K8 on
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[t̃, t1]. Since |g(z(t)) − µz(t)| ≤ τz(t) + M ≤ τK5α + M , it follows that if
t1 − t̃ ≤ α−1K8, then

|R| ≤ K8(τK5 + α−1M) ,

and thus R is small if τ is small and α is large. Hence the result follows.

A remark similar to the one after Lemma 2.3 is true (except that we consider
{g(y)− 1

ny}n≥n0
).

Lemma 2.5. Suppose that g(y) − µy → I+ (where I+ is finite) as y → +∞.
Then, given ǫ > 0, there is a T > 0 such that

∣

∣

∣

∣

t1 − t̃− α−1

∫ t1

t0

(f(t)− I+)φ+(t− t0) dt

∣

∣

∣

∣

≤ α−1ǫ

if ‖f‖1 ≤ M and α ≥ T (= T (ǫ,M)).

Proof. This follows from Lemmas 2.3 and 2.4.

This is Lemma 1 of [1].

Remark. Lemma 2.5 remains true if we replace
∫ t1
t0

by
∫ t̃1
t̃0

where t̃0 → t0

as α → +∞ and t̃1 → t1 as α → +∞. This follows if we can show that the
change to the integral is small. To see this, note that

∣

∣

∣

∣

∣

∫ t̃1

t1

(I+ − f(t))φ+(t− t0) dt

∣

∣

∣

∣

∣

≤ sup{|φ+(t− t0)| : t1 ≤ t ≤ t̃1}K̃ ≤ ǫK̃

(since φ+(t̃) = 0 and t1, t̃1 are near t̃ if α is large). Similar comments apply
to our other lemmas (including Lemma 2.6 later). Moreover, we could replace
φ+(t− t0) by φ+(t− t̃0).

Finally, for this subsection, we need a more precise estimate for t1 − t̃
when g(y) − µy = r(t) + 1

ny, where y−1r(y) → 0 as y → ∞, r(y) → ∞
as y → ∞ and we assume that, for every ǫ > 0, there exist N1, N2 > 0
such that |r(y)| ≥ (1 − ǫ)|r(x)| if y ≥ x ≥ N1 and |r(y)| ≤ (1 + ǫ)|r(x)| if
N1 ≤ x ≤ y ≤ N2x. Let

Sµ(α) = α−1

∫ µ−1/2π

0

r(αφ+(t))φ+(t) dt .

Lemma 2.6. Given ǫ > 0, there exists n0 > 0 such that, if ‖f‖1 ≤ M, n ≥ n0

and α ≥ T (= T (ǫ,M)), then

t1 − t̃ ≤ −(1− ǫ)Sµ(α) .

(Here we allow n to be ∞.)
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Proof. As before, it suffices to estimate L, the right hand side of equa-
tion (6). Now

L ≤ −
∫ t1

t0

r(z(t))φ+(t) dt−
1

n

∫ t1

0

z(t)φ+(t) dt+M .

Since t̃ is near t1 and α−1z(t) is near φ+(t), the second term is non-positive.
Since obviously the first term tends to −∞ as α → ∞, the result will follow
if we show that the ratio of the first term and αSµ(α) tends to 1 as n → ∞
and α → ∞. We merely sketch the easy but tedious proof of this. One shows
(using our regularity of growth assumptions on r) that the contribution to
both integrals (remember that αSµ(α) is defined by an integral) from near
the endpoints is relatively small (compared with the integrals over the central
portion) and that, over the most of the interval,

(1− ǫ′)r(αφ+(t)) ≤ r(z(t)) ≤ (1 + ǫ′)r(αφ+(t)) .

(Remember that α−1z(t) is near φ+(t). Here we assume the other regularity of
growth assumption on r.) Hence the integrals over “most” of the interval are
asymptotically the same and so the result follows.

Remarks 1. If we considered the equality g(y)− µy = r(y)− 1
ny, we would

obtain a similar result except that the inequality becomes t1−t̃ ≥ −(1+ǫ)Sµ(α).
By combining this result with Lemma 2.6, we see that, if g(y) − µy = r(y),
then (t1 − t̃)/Sµ(α) → −1 as α → ∞ uniformly in f for ‖f‖1 ≤ M .

2. Similar results hold if r(y) → −∞ as y → ∞.

3. The argument in the proof of Lemma 2.6 can be used to show that, if M > 0,

Sµ(α+ t)

Sµ(α)
→ 1 as α → ∞ uniformly in t for |t| ≤ M .

Subsection (iii)

In this subsection, we consider the case where y−1g(y) → ∞ as y → ∞. We
define t1 as before and T (α) as in [1]. (Although g is only continuous, T (α) is
well defined if α is large.)

We also assume that there exists an M1 > 0 such that g(y) +M1(y − x) +
M1 ≥ g(x) if y ≥ x ≥ 0. (This is equivalent to the assumption in [1].) Much
of the work below is true without this assumption. Suppose that z′(0) = α,
where α is large, and ‖f‖1 ≤ M (where z is a solution of equation (2) with
z(0) = 0). By Lemma 2.1(ii), there is a K1 > 0 such that

1

2
(α−K1)

2 < E(t) <
1

2
(α+K1)

2 (8)
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on [0, t1]. Thus, if |z(t)| ≤ C, |z′(t)| ∼ α. In particular, z′(t) 6= 0, and the time
for a solution to move from zero to C is asymptotic to C

α . We first prove that
t1 → 0 as α → ∞. If n > 0, there is a K(n) such that

g(y)− n2y ≥ K(n) for y ≥ 0 (since y−1g(y) → ∞ as y → ∞) .

Let φ(t) = n−1 sinnt and W (t) = zφ′ − φz′. By differentiating and using
equation (2), we find that W ′(t) ≥ −|f(t)| − |K(n)| and hence W (t) ≥ K2 on
[0, t1]. If t1 ≥ t2 := n−1π, we deduce by putting t = t2 that z(t2) ≤ K2. Since
z(t) must be large when z′(t) = 0 (by equation (8)), z(t) > K2 for t ∼ 2K2

α
and since z′(t) 6= 0 if z(t) ≤ K2 (see earlier), z′(t2) < 0. Hence z′(t) ∼ −α on
[t2, t1] (by equation (8), cp earlier). Thus t1 ≤ t2 +

2K2

α if α is large. Since n
was arbitrary, it follows that t1 → 0 as α → ∞.

We want more precise estimates for t1. First note that since G(y) → ∞ as
y → ∞ and G′(y) > 0 if y is large, G−1(z) is well defined and increasing if
z is large. Let xmax = sup{z(t) : 0 ≤ t ≤ t1}. Since G(xmax) ≥ 1

4α
2 if α is

large (by equation (8)), xmax ≥ G−1( 14α
2). Also by equation (8), |z′(t)| ≤ 2α

on [0, t1]. Since

t1 ≥ 2xmax

sup{|z′(t)| : 0 ≤ t ≤ t1}
,

we see that

t1 ≥ α−1G−1

(

1

4
α2

)

. (9)

We need more precise estimates for t1. The idea is to compare z(t) with solu-
tions x1, x2 satisfying

−x′′
1(t) = g(x1(t)), x1(0) = 0, x′

1(0) = α− 2K1 ,

and

−x′′
2(t) = g(x2(t)), x2(0) = 0, x′

2(0) = α+ 2K1 .

Let E1(t), E2(t) denote the functions obtained when, in the definition of
E(t), z(t) is replaced by x1(t) and x2(t) respectively. By equation (8), we
see that E1(t) < E(t) < E2(t) on [0, t1].

It follows that z(t) ≥ x1(t) as long as z′(s) ≥ 0 on [0, t]. This follows
because otherwise there is v in (0, t] such that z(v) = x1(v) and x′

1(v) ≥ z(v).
(Remember that z(t) > x1(t) for small non-zero t.) Thus E1(v) ≥ E(v), which
contradicts the result of the previous paragraph. Similarly z(t) ≤ x2(t) as
long as x′

2(s) ≥ 0 on [0, t]. We need extra estimates. To do this we use our
assumptions on the regularity of the growth of g. Using this and by making a
simple calculation, we see that, as long as x1(t) ≤ z(t),

(z − x1)
′′(t) ≤ M1(z − x1)(t) + |f(t)|+M1 . (10)
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By the usual comparison argument, it follows that (z − x1)(t) ≤ W (t) where
W ′′(t) = M1W (t) + |f(t)| +M1, W (0) = 0, W ′(0) = (z − x1)

′(0) = 2K1. By
substituting this estimate back in (10) and integrating, we get that (z−x1)

′(t) ≤
K3 as long as z(t) ≥ x1(t) ≥ 0 i.e.,

z′(t)− x′
1(t) ≤ K3 (11)

on the same interval. Similarly,

x′
2(t)− z′(t) ≤ K3

as long as z(t) ≤ x2(t). Let t2 be the first point where z′(t) = 0, t3 be the first
point where x′

1(t) = 0 and t4 be the first point where x′
1(t) = −K3. If t2 ≥ t4,

we see from what we have already proved that x1(t) ≤ z(t) on [0, t2]. Thus, by
equation (11), z′(t4) + K3 ≤ K3, i.e. z′(t4) ≤ 0 and thus t2 ≤ t4. Hence, we
always have that t2 ≤ t4. By a similar argument, t5 ≤ t6 where t5 is the first
positive zero of x′

2(t) and t6 is the smallest t where z′(t) = −K3. Note that
t3 = 1

2T (α − 2K1) and t5 = 1
2T (α + 2K1). We let t7 be the largest t in [0, t1]

for which z′(t) = −K3. Obviously t7 ≥ t6. We now want to estimate t7 − t2,
t4 − t3 and t5

t3
. We need two sublemmas whose proofs we defer till later.

Sublemma 1. yg(y) ≥ 1
2G(y) if y is large.

Sublemma 2. T (α+u)
T (α) → 1 as α → ∞ uniformly in u for |u| ≤ C1 (for each

C1 > 0).

We estimate t7 − t2. First note that g(y) ≥ −K on [0,∞) (where K was
defined in Subsection (i)). Hence, if 0 ≤ t8 ≤ t9 ≤ t1, z′(t9) − z′(t8) ≤
∫ t9
t8
(K + f(t)) dt ≤ K4 (since z is a solution of equation (2) and t1 ≤ 2π).

Since z′(t2) = 0 and z′(t7) = −K3, a tedious but easy argument shows that
we can deduce that |z′(t)| ≤ |K3| + |K4| on [t2, t7]. Hence, by equation (8),
G(z(t)) ≥ 1

4α
2 on [t2, t7] if α is large. Since this implies that z(t) is large on

[t2, t7], z(t)g(z(t)) ≥ 1
2G(z(t)) ≥ 1

8α
2 on [t2, t7]. However, by equation (8),

G(z(t)) ≤ α2 if α is large and hence z(t) ≤ G−1(α2). Thus

g(z(t)) ≥ α2

8G−1(α2)
.

Now

−K3 = −z′(t7) + z′(t2) =

∫ t7

t2

[g(z(t))− f(t)] dt

≥ (t7 − t2)
α2

8G−1(α2)
−M
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(by the previous line). Thus

(t7 − t2) ≤
G−1(α2)K5

α2
.

Since y−1g(y) → ∞ as y → ∞, y−2G(y) → ∞ as y → ∞ and thus G−1(α2) =
O(α). Thus we see that t7 − t2 ≤ α−1K6 if α is large. By the derivation of
equation (9), we see that, for any C > 0, αt2 ≥ C if α is large enough (and
similar results hold for t3 and t5). Thus t7 − t2 = o(inf(t2, t3, t5)) as α → ∞
(uniformly in f for ‖f‖1 ≤ M). Since t5 ≤ t6 ≤ t7 (see earlier), it follows that
t2 ≥ (1 − ǫ)t5 if α is large. Since we can establish by similar arguments that
t4 − t3 = o(inf(t2, t3)), we find that t2 ≤ (1 + ǫ)t3 (since t2 ≤ t4). However,
by Sublemma 2, t3

t5
→ 1 as α → ∞. Hence we have that t2

t3
→ 1 as α → ∞

(uniformly in f for ‖f‖1 ≤ M). Also, by Sublemma 2, t3
1

2
T (α)

→ 1 as α → ∞.

Hence we eventually find that t2
1

2
T (α)

→ 1 as α → ∞ (uniformly in f for

‖f‖1 ≤ M).
Thus we have estimated the time for z(t) to reach the point where z′(t) = 0.

(In fact, there may be more than one such point but any such point lies between
t2 and t7 and hence the difference between the first and last such point is
o(T (α)).) Since we can use a similar argument to estimate the time for z(t)
to move from z′(t) = 0 back to zero, we have established the following lemma.
(Where, as usual, we have included a t0.)

Lemma 2.7 (Lemma 2 of [1]). Given ǫ,M > 0 there is a T > 0 such that
|t1 − t0 − T (α)| ≤ ǫT (α) if α ≥ T and ‖f‖1 ≤ M .

In fact, we have yet to establish Sublemmas 1 and 2.

Proof of Sublemma 1. Since g(x) ≤ g(y) + M1(y − x) + M1 if 0 ≤ x ≤ y, we
find by integrating that, if y is large,

G(y) =

∫ y

0

g(x) dx ≤ g(y)y +
1

2
M1y

2 +M1y

≤ g(y)y +
1

2
G(y) if y is large

(since y−2G(y) → ∞ as y → ∞). Hence the result follows.

Proof of Sublemma 2. It obviously suffices to prove the result for 0 ≤ u ≤
C1. The proof that lim supα→∞

T (α+u)
T (α) ≤ 1 is similar to the proof that

t2 ≥ (1− ǫ)t5. (Let xα denote the solution of −x′′(t) = g(x(t)) for which
xα(0) = 0, x′

α(0) = α. By using the constancy of 1
2 (x

′
α(t))

2 + Ḡ(xα(t)) in time

(where Ḡ(y) =
∫ y

0
g(u) du), one shows (cp earlier) that xα+u(t) ≥ xα(t) as long
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as x′
α+u(t) ≥ 0 and then the proof follows closely the proof that t2 ≥ (1− ǫ)t5

and hence we omit the details).

We must be a little more careful to prove that lim infα→∞
T (α+u)
T (α) ≥ 1. It

suffices to consider the case where T (α+ u) ≤ T (α).
If t10 denotes the point where x′

α+u(t) = 0, an earlier argument (cp the
derivation of equation (11)) implies that xα+u(t10) − xα(t10) ≤ K6. Since
the maximum of xα+u is greater than the maximum of xα (because the first
is Ḡ−1( 12 (α + u)2) and the second is Ḡ−1( 12α

2)), it follows that, at t10, xα

is within K6 of its maximum value. (Remember xα+u achieves its maximum
at t10.)

Define t12 to be the point where x′
α(t) = 0 and t11 to be the point in [t10, t12]

where x′
α(t11) =

1
2α (Set t11 = t10 if no such point exists.) On [t10, t11], x

′
α(t) ≥

1
2α and xα(t11)−xα(t10) ≤ xα(t12)−xα(t10) ≤ K6. Hence t11− t10 ≤ 2α−1K6.
On [t11, t12], 0 ≤ x′

α(t) ≤ 1
2α and hence, since 1

2 (x
′
α(t))

2 + Ḡ(xα(t)) = 1
2α

2,
Ḡ(xα(t)) ≥ 1

4α
2, i.e. G(xα(t)) ≥ 1

4α
2 (since Ḡ(y) = G(y) if y is large). Thus,

since yg(y) ≥ 1
2G(y) for y large, g(xα(t)) ≥ 1

8x
−1
m α2 on [t11, t12] (where xm is

the maximum of xα(t)). Since −x′′
α(t) = g(xα(t)) ≥ 1

8x
−1
m α2 on [t11, t12], we

see by the two integrations that xα(t) ≤ xm − 1
16 (t − t12)

2x−1
m α2 on [t11, t12].

Since xm − xα(t11) ≤ K6, it follows that

t12 − t11 ≤ 4α−1(xm)
1

2K
1

2

6 .

However, t12 ≥ 1
2α

−1xm (cp the derivation of equation (9)). Thus t12 − t11 is
o(t12). Similarly t11 − t10 is o(t12). Thus t12 − t10 is o(t12) i.e. t12

t10
→ 1 as

α → α. This is the required result. (A glance through the proof shows that it
is uniform in u for 0 ≤ u ≤ C1.)

Remarks. 1. In applications, it often happens that yg(y) ≥ 0 for all large y.
In this case, it follows easily from Lemma 2.1(ii) that there is K̄ > 0 depending
only on k and ‖f‖1 such that

∣

∣

∣
|z′(t3)| − |z′(t4)|

∣

∣

∣
≤ K̄ ,

whenever t3, t4 ∈ [0, π], z(t3) = 0 and z(t4) = 0. Thus, if we try to apply the
results of this section between each successive pair of zeros, the corresponding
α’s differ only by K̄ in modulus. By checking each of our results (using some
of the remarks after them) we see that this change of α has only a higher order
effect on our estimates (i.e. it can be incorporated in the ǫ in each case). Thus
the change of α does not matter very much.

2. Obviously we could also obtain analogues of our results for the case when
z(t0) = z(t1) = 0, z(t) < 0 on [t0, t1].
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Appendix to Section 2

It turns out that we need one more lemma.

Lemma 2.8. Suppose that ǫ > 0. Then there exist δ, α0 > 0 such that

T (α+ u)

T (α)
≤ 1 + ǫ if α ≥ α0 and |u| ≤ δ|α| .

Proof. It obviously suffices to assume that u > 0. We use the notation in the
proof of Lemma 2.7. We need only consider the case where T (α + u) > T (α).
In this case, arguing as in the proof of Lemma 2.7, we see that

(xα+u(t)− xα(t))
′′ ≤ M1(xα+u(t)− xα(t)) +M1 (12)

for 0 ≤ t ≤ 1
2T (α) and thus that

xα+u(t)− xα(t) ≤ W (t) ≤ K1ut+K2

(by explicitly calculating W ). By substituting this back in (12) and integrating
we get that

x′
α+u

(

1

2
T (α)

)

= x′
α+u

(

1

2
T (α)

)

− x′
α

(

1

2
T (α)

)

≤ K3u+K4 .

Thus x′
α+u(t) ≤ K3u + K4 for 1

2T (α) ≤ t ≤ 1
2T (α + u). Hence, if δ is small,

x′
α+u(t) ≤ 1

2α for t in the same range. Since 1
2x

′
α(t)

2 + Ḡ(xα(t)) =
1
2 (α + u)2

it follows that G(xα+u(t)) ≥ 1
4 (α + u)2 for t in the same range. Since g(y) ≥

1
2y

−1G(y) for y large, it follows that g(xα+u(t)) ≥ 1
8 (x̄m)−1α2 for t as above

(where x̄m = G−1((α + u)2)). Since −x′′
α+u(t) = g(xα+u(t)), it follows by

integrating this equation from 1
2T (α) to

1
2T (α+ u) that

K3u+K4 ≥ 1

2
(T (α+ u)− T (α))

1

8
(x̄m)−1α2,

i.e.

T (α+ u)− T (α) ≤ 16α−2x̄m(δK3α+K4) (since u ≤ δα) .

However (cp equation (9)), 1
2T (α+u) ≥ (α+u)−1x̄m. Thus, if δ is small and α

is large, T (α+u)−T (α) ≤ ǫ′T (α+u). The result follows easily from this.

Some of the above ideas can be used to prove that there exist K5,K6 > 0
such that α−1K5G

−1
(

1
2α

2
)

≤ T (α) ≤ α−1K6G
−1

(

1
2α

2
)

for α large and that

T (α) ∼ 2G−1

(

1

2
α2

)

α if g grows sufficiently rapidly. These are useful estimates
for T (α).
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3. Abstract Results

Assume that H : X → Y is positive homogeneous (i.e. H(λx) = λH(x) if
λ ≥ 0), where X and Y are Banach spaces. Let R(H) denote the range of H.

Lemma 3.1. (i) If G : X → Y satisfies ‖G(x)‖ ≤ K for x ∈ X and z 6∈
R(H), then tz 6∈ R(H +G) if t is sufficiently large and positive. (Thus,
if R(H) is not dense in Y , R(H +G) 6= Y .)

(ii) If v ∈ R(H), then, for each t > 0, there is a u(t) ∈ R(H +G) such that
‖u(t)− tv‖ ≤ K.

Proof. (i) If z 6∈ R(H), there is an a > 0 such that ‖H(x)− z‖ ≥ a for all x in
H. If ta > K, tz 6∈ R(H +G). This follows because, if H(x) +G(x) = tz, then
ta ≤ ‖H(x)− tz‖ = ‖G(x)‖ ≤ K.

(ii) Since v ∈ R(H), v = H(u) where u ∈ X. Set u(t) = H(tu) + G(tu) ∈
R(H +G). Then ‖u(t)− tv‖ = ‖H(tu) +G(tu) + tH(u)‖= ‖G(tu)‖ ≤ K.

The following lemma is well-known and we omit the proof. Assume that
f : R × R

n → R
n is continuous and let x(t, a) denote the solution of x′(t) =

f(t, x(t)) for which x(0, a) = a.

Lemma 3.2. If K is a compact connected subset of Rn and if there is a K1 > 0
such that ‖x(t, a)‖ ≤ K1 when a ∈ K and t ∈ [0, π], then {x(π, a) : a ∈ K} is
also compact and connected.

This immediately justifies shooting arguments when we do not have unique-
ness (but have a bound of the type in the lemma).

4. Proof of the First Three Stated Theorems

In this section, we prove Theorems 1.1, 1.2 and 1.3.

4.1. The Dirichlet Problem

Define H̄D : XD → L1[0, π] by H̄D(x)(t) = x′′(t) + µ(x(t))+ − ν(x(t))−,

f̄±(t) = f(t)φ±(t) and T1 =

{

f ∈ L1[0, π] :

∫ π

0

f̄+

∫ π

0

f̄− < 0

}

.

Note that the corresponding formula for HD in [1] had an incorrect sign and
that it is easy to prove that

L1[0, π]\T 1 =

{

f ∈ L1[0, π] :

∫ π

0

f̄+

∫ π

0

f̄− > 0

}

.
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Moreover, a similar result holds for L1[0, π]\T̄ .
If H̄D(u) = f and φ+(π) = 0, we see that, integrating by parts (and noting

that H̄D(φ+) = 0),

(µ− ν)

[
∫

A

uφ+ −
∫

B

uφ+

]

=

∫ π

0

fφ+ , (13)

where A = {x ∈ [0, π] : u(x) > 0, φ+(x) < 0} and B = {x ∈ [0, π] : u(x) <
0, φ+(x) > 0}. Moreover, a similar result holds if φ+ is replaced by φ− (when
φ−(π) = 0).

Lemma 4.1. Let f(t) = cχ[a,b], where c < 0 and χ[a,b] is the characteristic func-
tion of [a, b] and assume that z is a solution of −x′′(t) = µ(x(t))+−ν(x(t))−f(t)
on [t0, t1], where z(t0) = 0, t0 ≤ a < b ≤ t1 and z(t) 6= 0 on (t0, a] if t0 < a.

(i) If z′(t0) ≤ 0, then z(t) 6= 0 on [t0, d] where d is the infimum of t1 and

t0 + ν−
1

2π.

(ii) If z′(t0) > 0 and t0 + µ− 1

2π ≤ t1, then z has a zero t2 in (t0, t0 + µ− 1

2 ).
Moreover z′(t2) 6= 0 and the next zero t3 of z (if one exists in [t0, t1])

satisfies t3 − t2 ≤ ν−
1

2π.

Proof. This follows easily from a Wronskian argument (cp the proof of Propo-
sition 1(i) in [2].

Lemma 4.2. Under the assumption of Theorem 1.1, there exist f1, f2 in T1 such
that f1 6∈ R(H̄D) and f2 ∈ R(H̄D).

Proof. We first find f1. Choose x0 in (0, π) so that π−x0 < π inf{µ−1/2, ν−1/2}
and hence, by the easily constructed explicit formulae for φ+ and φ−, φ+(t) < 0
and φ−(t) > 0 on [x0, π). Hence, if we define f1(t) = cχ[x0,π] where c < 0, f1 ∈
T1. Moreover, if we let φα denote the solution of −x′′(t) = µ(x(t))+−ν(x(t))−−
f1(t) for which x(0) = 0, x′(0) = α, we see that, if α ≥ 0, then φα(t) = αφ+(t)
for t ≤ x0. Hence we apply Lemma 4.1 to deduce that φα(π) < 0 if α ≥ 0.

(Set t0 = x0 and t0 = π − ν−
1

2π if α > 0.) Similarly φα(π) < 0 if α < 0. Thus
φα(π) 6= 0 for all α and thus f1 6∈ R(H̄D).

Now φ+(t) < 0 and φ−(t) > 0 on [x0, π). Choose u smooth with support in
[x0, π) such that u takes both positive and negative values. Let f2 = H̄D(u).
Hence f2 ∈ R(H̄D). Since the support of u is contained in [x0, π] and φ+ is
negative on this interval, equation (13) implies that

∫ π

0
f2φ+ < 0 (where for

simplicity we are assuming that µ > ν). Similarly,
∫ π

0
f2φ− > 0. Hence we

have constructed the required f2.

Proof of Theorem 1.1. (i) Let φα denote a solution of equation (2) for which
φα(0) = 0, φ′

α(0) = α. If α is large we see by applying Lemma 2.2 between
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successive zeros (and by using Remark 1, after Lemma 2.7), that α−1φα(t) is
near φ+(t) on [0, π] in the C1 norm. We only prove part (i) when I+ = ∞ and
I− is finite. The other cases are similar. Lemma 2.3 implies that for any C > 0
the distance between successive zeros of z (between which z is positive) (where
z = φα) is less then

π√
µ −α−1C if α is large (because we can take S arbitrarily

large since I+ = ∞).

On the other hand, Lemma 2.5 implies that the distance between successive
zeros of z (between which z is negative) is π√

ν
+W (α), where |W (α)| ≤ K

α (since

I− is finite). Thus, choosing C large, we see that the 2kth positive zero of z is
less than kπ√

µ + kπ√
ν
i.e. less than π. However, this zero is near π since α−1z(t) is

near φ+(t). Now, near π, α
−1z′(t) is near φ′

+(t) which is positive (and not near
zero). Thus it follows that φα(π) > 0 for α large. Similarly, φα(π) < 0 for α
large negative. Hence, by a shooting argument, there is an α with φα(π) = 0.
Hence f ∈ R(HD) as required. Moreover, since our estimates hold uniformly in
f for f ∈ L1[0, π], the above argument shows that, if M > 0, then there is an
α0 such that φα(π) 6= 0 if φα is a solution of (2) with ‖f‖1 ≤ M and |α| ≥ α0.
Hence, if HD(z) = f where ‖f‖1 ≤ M , then |z′(0)| ≤ α0. Hence, by Lemma
2.1, we have a bound for E(t) uniformly in f for ‖f‖1 ≤ M . Hence we have
a bound for z in C1-norm uniformly in f for ‖f‖1 ≤ M . Properness follows
easily from this. (Note that we have in fact proved that H−1

D maps bounded
sets of L1[0, π] to bounded sets in XD.)

(ii) We define φα as in part (i) and note as there that α−1z(t) is near φ+(t) if
α is large and positive. Thus the zeros of z(t) are near those of φ+(t). Hence
in applying Lemma 2.5, we can replace t0 and t1 by the corresponding zeros of
φ+. (Here we are using the remark after Lemma 2.5.) Hence we find that, if α
is large, then the 2kth zero of z(t) is at π + α−1

∫ π

0
f+1(t) dt + o(α−1) (where

the o(α−1) term satisfies this condition uniformly in f for ‖f‖1 ≤ M). Hence,
as in part (i), we find that if

∫ π

0
f+1(t) dt 6= 0, then φα(π) 6= 0 if α is large and

sgnφα(π) = −sgn
∫ π

0
f+1(t) dt. Similarly, if

∫ π

0
f−1(t) dt 6= 0, then φα(π) 6= 0

if α is large and negative and sgnφα(π) = sgn
∫ π

0
f−1(t) dt. Thus T ⊆ R(HD),

by a shooting argument. Since |
∫ π

0
f+1(t) dt| and |

∫ π

0
f−1(t) dt| have positive

lower bounds on compact subsets of L1[0, π]\T̄ and since our estimate for the
2kth zero of φα(t) holds uniformly on bounded subsets of L1[0, π], it follows
easily that, for a compact subset of H of L1[0, π]\T̄ , there is an α0 > 0 such
that φα(π) 6= 0 if f ∈ H and |α| ≥ α0. As in part (i), it follows that there is
a K > 0 such that ‖z‖∞ ≤ K if HD(z) ∈ H. A simple compactness argument
now ensures that R(HD)∩H is closed and thus R(HD)∩ (L1[0, π]\T̄ ) is closed.

Let f1 be that constructed in Lemma 4.2. Remembering that HD = H̄D+
a bounded map, Lemma 3.1 implies that tf1 6∈ R(HD) if t is large. On the
other hand, it is easy to check that tf1 6∈ L1[0, π]\T̄ if t is large (since f1 ∈ T1).
Finally Lemma 3.1 implies that, for a suitable K > 0, there is a u(t) in R(HD)
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with ‖u(t)− tf2‖ ≤ K. It follows by a simple calculation that u(t) ∈ L1[0, π]\T̄
if t is large. This proves Theorem 1.1. (T is non-empty because it contains
step functions with suitable small support.)

Proof of Theorem 1.2. The proofs of parts (i) and (iii) of this theorem are es-
sentially the same as the proof of Theorem 1.1, so we merely point out the
differences. Note that φ+(π) = 0, φ′

+(π) < 0 and φ−(π) < 0 (by our assump-
tions on k, ℓ, µ, ν). f1 can be constructed as before while we let f2 = H̄D(u)
where u is as before. The rest of the proof is as before.

(ii) The proof that R(HD) is closed and HD is proper is similar to the proof
that R(HD)∩ (L1[0, π]\T̄ ) is relatively closed in L1[0, π]\T̄ in Theorem 1.1(iii).

It remains to prove that R(HD) 6= L1[0, π]. To see this, choose x0 < π
so that |π − x0| ≤ π

4
√
ν′

, φ′
+(t) < 0, φ−(t) < 0 and φ′

−(t) 6= 0 on [x0, π) and

define fn = Cnχ[x0,x0+1/n] where C < 0. If R(HD) = L1[0, π], then there
is a zn in XD with HD(zn) = fn. Since the fn are uniformly bounded in
L1[0, π] we can argue as in the proof of Theorem 1.1 and get uniform estimates
for the zeros of the solutions φα,n of −x′′(t) = g(x(t)) − fn(t), x(0) = 0,
x′(0) = α. As in Theorem 1.1 , we find that there is an α0 > 0 such that
φα,n(π) 6= 0 if |α| ≥ α0 for all n. Thus |z′n(0)| ≤ α0 and hence, by Lemma 2.1,
En(t) =

1
2 (z

′
n(t))

2 +G(zn(t)) is uniformly (in n) bounded on [0, π]. It follows
easily that ‖zn‖′∞ is uniformly bounded.

Thus, by the differential equation satisfied by zn, z
′′
n is uniformly bounded on

[0, π]\[x0, x0+1/n]. Hence, by a simple compactness argument, a subsequence
of the zn converges in C[0, π] to z where z is C2 except at x0, −z′′(t) = g(z(t))
for t 6= x0 and z′(x+

0 )− z′(x−
0 ) = C (where z′(x±

0 ) are the right and left limits
of z′ at x0). The last equality follows because

−z′n

(

x0 +
1

n

)

+ z′n(x0) =

∫ x0+
1

n

x0

[g(zn))− fn(t)] dt → −C as n → ∞ .

We now prove that, if C is large negative, then |z′(0)| must be large. More
precisely, we prove that, given K > 0 there is a K1 > 0 such that |z′(0)| ≥ K if
C ≤ −K1. To see this, note that if |z′(0)| ≤ K, then by Lemma 2.1 (applied to
z), we see that |z(x0)|+ |z′(x−

0 )| ≤ K2. Hence, if C is large negative, |z(x0)| ≤
K2 and z′(x+

0 ) is large negative. Hence there is a x1 > x0 such that z′(x1) < 0
and −K2 ≤ z(x1) ≤ 0 if C is large negative. (If z′(x0) > 0, z(t) must be zero
after a short time.) Now E(t) = 1

2 (z
′(t))2+G(z(t)) = 1

2 (z
′(x+

0 ))
2+G(z(x0)) for

t > x0. Since z′(x+
0 ) is large negative if |z′(x0)| ≤ K and C is large negative,

E(t) is large if |z′(0)| ≤ K and C is large negative.
We prove that, in this case, z(t) < 0 on [x1, π]. This follows because

otherwise there exist t2, t3 such that x1 < t2 < t3 ≤ π such that z′(t2) = 0,
z(t3) = 0, z(t) < 0 on (x1, t3). Since z′′(t) = g(z(t)) on [x1, π] and (z′(t3))

2 =
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2E(t3) = 2E(x+
0 ) (and thus z′(t3) is large negative), we can use our earlier

estimates to estimate t3 − t2. We find that t3 − t2 is near π
2
√
ν
if C is large

negative. This is impossible since π − x0 ≤ π
4
√
ν
.

Hence, since z(π) = 0, it follows that |z′(0)| ≥ K if C is large negative.
In this case, we can use our earlier estimates to study z on [0, x0]. If K is
large and z′(0) ≥ K, we see (since [z′(0)]−1z(t) is near φ+(t) on [0, x0]) that
z(x0) > 0,−z′(x−

0 ) > 0 and both are large (and thus E(x−
0 ) is large). We

compare z with w, where −w′′(t) = g(w(t)), w = z for t near zero. Now
w(x0) = z(x0), z

′(x+
0 ) < z′(x−

0 ) = w′(x0) < 0. It follows easily using the first
integral for z and w on [x+

0 , π] that z(t) < w(t) on [x+
0 , π] as long as both

are positive. Since our earlier estimates for the distance between zeros easily
imply that w has a zero on [x0, π]) (if K is large) it follows that z has a zero in
(x0, π), say at t4. Now z′(t4)

3 = 2E(x+
0 ) which is large hence, if t5 is the next

zero of z, t5 − t4 ≈ π√
ν
. Hence t5 > π, i.e. z(π) 6= 0, which is impossible since

z(π) = 0. Thus z′(0) ≤ −K. In this case, [z′(0)]−1z(x0) is near φ−(x0) and so
z(x0) is large negative. Hence E(x+

0 ) is large. There are now two cases.

Case (i) z′(x+
0 ) ≤ 0. We can then show that z(t) < 0 on [x0, π] by a similar

argument to that at the end of the previous paragraph. Thus, in this case
z(π) 6= 0.

Case (ii) z′(x+
0 ) > 0. In this case, we compare z with w where w is as defined

before. Now z(x0) = w(x0) and 0 < z′(x+
0 ) < w(x+

0 ). Hence, by arguing as
before, z(t) < w(t) as long as w(t) < 0. But by using our earlier estimates
for the distance between zeros, we see that w(t) < 0 on [x0, π] if K is large.
(Remember that w′(0) ≤ −K and that (w′(0))−1w(t) is near φ−(t).) It follows
that z(π) < 0 and so we once again have a contradiction. Thus the assumption
that HD is onto leads to a contradiction. Hence HD is not onto.

Remarks. 1. Our methods can be applied if we replace −y′′ by rather more
general self-adjoint second order differential operator and also if we allow some
dependence of s in g.

2. It would be of interest to study R(HD) further in the cases where HD is not
onto. R(HD) is not well understood in these cases. (Some additional results
are known when µ and ν are close to the same eigenvalue of −y′′.)

4.2. The Periodic Boundary-Value Problem

Define H̄p : Xp → L1[0, π] by H̄p(x)(t) = x′′(t) + µ(x(t))+ − ν(x(t))−, F̄ (θ) =
∫ π

0
f(t)φ+(t+ θ) dt, and

T2 = {f ∈ L1[0, π] : F̄ (θ) has only simple zeros, and

F̄ (θ) has at least one such zero} .
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Since F̄ ′(θ) = −
∫ π

0
f(t)φ′

+(t+ θ) dt (by the dominated convergence theorem),
T2 is open. T2 is non-empty because it contains suitable step functions with
small support. It is also easy to see that F̄ is C1. Note that T , T2, R(H̄D),
R(Hp) are all translation invariant (i.e., if g belongs to one of them and is
extended to be periodic, then all translates of g also belong to the set) and
that, if f is constant, then F̄ (θ) 6= 0 for all θ.

Finally, if z ∈ Xp and Hp(z) = f , then

0 = Ē(π)− Ē(0) =

∫ π

0

f(t)z′(t) dt . (14)

This will be useful later.

Lemma 4.3. Suppose that the assumptions of Theorem 1.3 hold. Then

(i) there is an f in T2 with f 6∈ R(H̄p), and

(ii) T2 ∩R(H̄p) 6= ∅ .

Proof. Without loss of generality, we may assume that µ > ν.

(i) Choose f to be χ[a,b] where b − a is small. It is easy to show that f ∈ T2

if b − a is small. Suppose by way of contradiction that there is a z in XD

with Hp(z) = f . By equation (14),
∫ π

0
χ[a,b]z

′ = 0, i.e., z(b) = z(a). Now, for

t 6∈ [a, b], −z′′(t) = µ(z(t))+ − ν(z(t))−. Since 1√
µ + 1√

ν
≤ 1, it follows that,

if |b − a| is small, z(t) has a zero on [0, π]\[a, b]. Hence, by translating f , we
may assume without loss of generality that z(0) = 0 and 0 < a < b < π. We
assume that z′(0) > 0. (The other cases are similar.) Let τ = z′(0). Hence
z(t) = τφ+(t) for t ∈ [0, π]\[a, b]. (Remember that z and φ+ are periodic.)
Since b−a is small and z(b) = z(a) (and thus φ+(b) = φ+(a)), b and a must be
both near ũ where φ′

+(ũ) = 0 and so φ+(t) 6= 0 on [a, b]. Now if t1 < a < b < t2
are the zeros of φ+ adjacent to [a, b], we see that −z′′(t1) = τφ′

+(t1) 6= 0,

z′(t2) = τφ′
+(t2), and t2− t1 = π√

µ

(

π√
ν

)

if φ+ is positive (negative) on (t1, t2).

(Note that, by our remarks above, t1 and t2 are adjacent zeros of φ+.) We can
then use Lemma 4.1 to obtain a contradiction. (This is easy but tedious. One
uses Lemma 4.1 to show that z(t) has no zeros on (t1, t2) and that one cannot
end up with the correct spacing of the zeros.) We obtain a similar contradiction
if we assume that z′(0) ≤ 0 and hence f 6∈ R(H̄p).

(ii) We choose u so that H̄p(u) ∈ T2. This will give the required result. We
choose u1 to be a smooth function taking both positive and negative values
with support in an interval [a, b] (where b−a is small). By using the argument
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to derive equation (11), we see that

F̄1(θ) =

∫ π

0

f1(t)φ+(t+ φ) dt (15)

= (µ− ν)

[
∫

A(θ)

u1(t)φ+(t+ θ) dt−
∫

B(θ)

u1(t)φ+(t+ θ) dt

]

where A(θ) = {x ∈ [a, b] : u1(t) > 0, φ+(t + θ) < 0}, B(θ) = {x ∈ [a, b] :
u1(t) < 0, φ+(t+ θ) > 0} and f1 = H̄p(u1). It follows easily from this formula
that F̄1(θ) changes sign and that F̄1(θ) can only vanish if φ+(t+ θ) has a zero
t′ in [a, b]. Suppose in addition that we choose u1 so that u1(t) > 0 on (a, ā)
(where ā = a+b

2 ) and u1(t− ā)φ+(t− ā) is odd.

Now by considering the integrals from a to ā and ā to b separately it is
tedious but easy to show that F̄1(θ) can only vanish if φ+(ā+ θ) = 0 and that,
in this case F̄1(θ) is decreasing in θ near such a θ if φ′

+(ā+ θ) < 0 and F̄1(θ) is
increasing in θ near such a θ if φ′

+(ā+θ) > 0. (This is a tedious but elementary
comparison of integrals.) Now we can evaluate F̄ ′

1(θ) by explicit calculation of
the derivative from the definition (using the right hand side of (15))). We find
that F̄ ′

1(θ) = 0 if φ+(ā+ θ) = 0 and φ′
+(ā+ θ) < 0 and

F̄ ′
1(θ) = (µ− ν)

[
∫ ā

a

u1(t)φ
′
+(t+ θ) dt−

∫ b

ā

u1(t)φ
′
+(t+ θ) dt

]

> 0

if φ′
+(ā+ θ) > 0 and φ+(ā+ θ) = 0. Choose u2 to be a non-zero, non-negative

function with support in [c, d] where [c, d] is close to [a, b] and does not intersect
it. (Thus φ′

+(t+ θ) < 0 on [c, d] whenever φ′(ā+ θ) < 0 and φ(ā+ θ) = 0.) By
an argument used to derive equation (9), we see that

F̄2(θ) =

∫ π

0

f2(t)φ+(t+ θ) dt = (µ− ν)

∫

A3(θ)

u2(t)φ(t+ θ) dt ,

where f2 = Hp(u2), A3(θ) = {t ∈ [0, π] : φ+(t+ θ) < 0}. It follows easily that

F̄ ′
2(θ) = (µ− ν)

∫

A3(θ)

u2(t)φ
′(t+ θ) dt .

It follows from the choice of c and d that F̄ ′
2(θ) < 0 if θ is such that φ(ā+θ) = 0

and φ′(ā + θ) < 0. If we finally define u to be u1 + ǫu2 where ǫ is small
and positive and let f3 = H(u1 + ǫu2) = H(u1) + ǫH(u2) (since u1 and u2

have disjoint support), it is easy to check that f3 has the required properties.
(Remember that F̄ (θ1) = F̄1(θ) + ǫF̄2(θ) and that F̄ ′

1(θ) ≤ 0 and F̄ ′
2 < 0 in a

neighborhood of a point θ0 where φ+(ā+ θ0) = 0 and φ′
+(ā+ θ0) < 0.)
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Proof of Theorem 1.3. We only prove (ii). The proof of (i) is similar to the
proof that T ⊆ Rp and is omitted. (The proof that, under the assumptions of
(i), Hp is proper is similar to part of the proof below.) Suppose that f ∈ L1[0, π]
such that F (θ) > 0 for all θ ∈ [0, π]. Thus F (θ) ≥ k > 0 on [0, π]. Consider
the problem

−x′′(t) = gn(x(t))− f(t) (16)

on [0, π], x(0) = x(π), x′(0) = x′(π), where gn(y) = g(y)− 1
ny

+. The results in
Section 6 of [2] imply that if n is large this equation has a solution un. If we
have a bound for ‖un‖∞ we can pass to the limit by standard arguments and
find that f ∈ R(Hp).

Thus it suffices to prove a contradiction if we assume that {‖un‖∞}∞n=1 is not
bounded. We may assume that ‖un‖∞ → ∞ as n → ∞ since we can achieve this
by passing to a subsequence. By Lemma 2.1, En(t) =

1
2 (u

′
n(t))

2+Gn(un(t)) →
∞ as n → ∞ uniformly in t (where Gn(y) = G(y) − 1

2n (y
+)2). Thus un has

only simple zeros. We first show that un must have a zero. If not, un(t) > 0
for all t (or un(t) < 0 for all t).

We obtain a contradiction in the first case. (The other is similar.) If un(t)
achieves its minimum at tn, then Gn(un(tn)) = En(tn) which is large and hence
un(tn) is large. Thus inf{un(t) : t ∈ [0, π]} → ∞ as n → ∞. But by integrating,

∫ π

0

gn(un(t)) dt =

∫ π

0

f(t) dt

which is impossible if un(t) is large positive for all t (since gn(y) ≥
(

1
2µ− 1

n

)

y
for y large). Thus un must have a zero at θn ∈ [0, π]. Since un is periodic, we
can choose θn so u′

n(θn) > 0. Thus vn = un(t+ θn) is a solution of (16) when
f is replaced by f(t + θn) and vn(0) = 0. We can use the results of Section 2
to estimate the 2kth zero of vn (cp the proof of Theorem 1.1). We find that, if
αn = v′n(0), then the 2kth zero of vn (which is the only zero near π) is at tn
where

tn ≥ π + α−1
n

[
∫ π

0

(f(t+θn)φ+(t)+I+(φ+(t))
++I−(φ+(t))

−) dt

]

+o(α−1
n )

= π + α−1
n F (−θn) + o(α−1

n ) .

Since αn → ∞ as n → ∞ and F (−θn) ≥ k > 0, it follows that tn > π and
hence un(π) 6= 0 (since α−1

n vn(t) is near φ+(t)).
Hence un(0) 6= un(π) and so we have a contradiction. Thus f ∈ R(Hp). If

F (θ) < 0 for all θ, we use a similar argument except that we define gn(y) =
g(y) + 1

ny
+.

We now prove that R(Hp)∩ S is closed in S. As before, it suffices to prove
that, if Hp(un) = fn, where fn ∈ S, fn → f in L1[0, π] as n → ∞ (where
f ∈ S), then ‖un‖∞ is bounded. If not, we can argue as in the previous
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paragraph and find solutions vn of Hp(vn) = fn(t + θn) for which vn(0) = 0,
v′n(0) > 0 and ‖vn‖∞ → ∞ as n → ∞. By choosing a subsequence we may
assume that θn → θ0 as n → ∞.

Now, as in the previous paragraph, we find that the 2kth zero of vn
is at tn, where tn = π + α−1

n Fn(−θn) + o(α−1
n ). (Here αn = v′n(0) and

Fn(θ) =
∫ π

0
fn(t)φ+(t + θ) dt.) Since Fn(θ) → F (θ) uniformly in θ, we ob-

tain a contradiction by the same argument as in the previous paragraph un-
less F (−θn) → 0 as n → ∞. Thus F (−θ0) = 0. But, by equation (14),
∫ π

0
fn(t)u

′
n(t) dt = 0, i.e.

∫ π

0
fn(t + θn)v

′
n(t) dt = 0. Since α−1

n v′n(t) → φ′
+(t)

uniformly in t as n → ∞ (cp Lemma 2.2), it follows that, in the limit,

∫ π

0

f(t+ θ0)φ
′
+(t) dt = 0

i.e.

F ′(−θ0) =

∫ π

0

f(t)φ′
+(t− θ0) dt = 0 .

Thus F (−θ0) = F ′(−θ0) = 0, which contradicts our assumption that f ∈ S.
Hence the result follows.

The remainder of the proof is similar to the proof of Theorem 1.1(iii) (using
Lemma 4.3 instead of Lemma 4.2).

Our methods can be used to obtain results for more general periodic
boundary-value problems but it is unclear whether our methods give as strong
results for these more general problems. (Note that equation (14) does not
always hold for more general problems.)

5. Proof of the Last Two Theorems

We now prove the results of Section 2 in [1]. We do not need to introduce any
additional techniques.

Proof of Theorem 1.4. The necessity in Theorem 1.4(i) follows easily if we note
that, if u is a solution of (2), then

0 =

∫ π

0

[−u′′(t)− u(t)] sin t dt =

∫ π

0

[g(u)− u(t)− f(t)] sin t dt .

The sufficiency in Theorem 1.4(i) and Theorem 1.4(iii) now follows by shooting
arguments as in Section 4 (using the estimates of Section 2 for the distance
between successive zeros). We illustrate by considering Theorem 1.4(iii) when
(b) holds and i(i + 1)−1 < P l ≤ Pu < 1. As before, let zα denote a solution
of eq. (2), with zα(0) = 0, z′α(0) = α. If α is large positive, then the first zero
of zα is at (1 + ǫ(α))T (α) where ǫ(α) → 0 as α → ∞ (by Lemma 2.7). By
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Lemma 2.6, the second zero is at (1 + ǫ1(α))T (α) +
π
i − (1 + ǫ2(α))S(α). (S

was defined in the Introduction.) By continuing we find that the (2i−1)th zero
of zα is less than π, the 2ith zero is at π + i(1 + ǫ1(α))T (α)− i(1 + ǫ2(α))S(α)
and the (2i+1)th zero is at π+(i+1)(1+ ǫ1(α))T (α)− i(1+ ǫ2(α))S(α). Since
Pu < 1, it follows that the 2ith zero is less than π and, since P l > i(i + 1)−1,
the (2i + 1)th zero is greater than π (for α large). Moreover, since z′α(0) > 0,
z′α(t) > 0 at the 2ith zero of zα. (Remember that the zeros are simple.) Hence
zα(π) > 0 if α is large. If α is large negative, we see by similar arguments that
the 2ith zero of zα is less than π and the (2i + 1)th zero is greater than π (it
is near i+1

i π) and hence zα(π) > 0 if α is large negative. Hence we obtain the
existence of a solution by a shooting argument. We obtain properness as before
as the above argument shows that zα(π) 6= 0 if |α| ≥ α0 where α0 depends only
on ‖f‖1. The properness (and hence that R(HD) is closed) in part (ii) follows
by the same argument.

It remains to prove that R(HD) 6= L1[0, π] under the assumptions of The-
orem 1.4(ii). That this is true under 4(ii)(b) follows by a similar argument
to that in the proof of necessity in Theorem 1.4(i). The proof in the remain-
ing cases are similar and we illustrate by proving that HD is not onto under
4(iii)(d) when Pu < i(i+1)−1. Set a = π− π

4i . If HD were onto, then by noting
that Cnχ[a,a+ 1

n ] ∈ R(HD) and by using a similar limit argument to that in the

proof of Theorem 1.2(ii), there exists z ∈ C[0, π] such that z is C2 for t 6= a,
z(0) = z(π) = 0, −z′′(t) = g(z(t)) for t 6= a and z′(a+)−z′(a−) = C. As in that
proof, we find that, if C is large positive, then |z′(0)| is large. We prove that, if
β = z′(0) > 0, then z(π) 6= 0 and so we have a contradiction. (We can obtain a
contradiction by a similar argument if β < 0.) Since z′(0) is large positive, we
can use our earlier estimates to find the zeros of z for t < a. We find that the
(2i−1)th zero of z is at t(β) = i−1

i π+i(1+ǫ1(β))T (β)−(i−1)(1+ǫ2(β))S(β) and
that, on [t(β), a], β−1z(t) is near φ−(t−t(β)). Hence z(a) > 0. (Remember that
t(β) is near i−1

i π and a− t(β) is near 3π
4i .) By comparing z with a solution w of

−w′′(t) = g(w(t)) which agrees with z for t < a, we see that z(t) > w(t) as long
as z(t) ≤ 0. (Remember that z′(a+) > w′(a).) Hence the 2ith zero of z is less
than the 2ith zero of w (which is at π+[i(1+ǫ1(β))T (β)− (1+ǫ2(β))S(β)] < π
since Pu < 1). If we prove that the (2i + 1)th zero of z is less than π, then,
since the (2i+ 2)th zero is approximately π

i away, it will follow that z(π) 6= 0.
There are two cases.

1. If C is o(β), then the change of E(t) across t = a is o(β2) and thus
|z′(t2i)− z′(0)| is o(β) (where t2i is the 2ith zero of z). Hence, by Lemma 2.8,
t2i+1 − t2i ≤ (1 + ǫ3(β))(t̄2i+1 − t̄2i) ≤ (1 + ǫ′1(β))T (β) (where tk and t̄k are
the kth zeros of z and w respectively). Since t2i ≤ t̄2i, we see that t2i+1 ≤
π + (i+ 1)(1 + ǫ′1(β))T (β) + i(1 + ǫ2(β))S(β). (Here we have used our earlier
estimate for the 2ith zero of w.) Since Pu < i(i+1)−1, it follows that t2i+1 < π,
as required.
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2. If C ≥ µβ, then on [a, t2i],
1
2z

′(t)2 + Ḡ(z(t)) = 1
2 (β + C)2 and 1

2 (w
′(t))2 +

Ḡ(w(t)) = 1
2β

2. Since z(t) > w(t) and Ḡ(y) ≥ Ḡ(x) −M if y ≤ x < 0 (since

g(u) < 0 if u is large negative), we see that z′(t) − w′(t) ≥ 2βC−M
2β+C . Hence if

β is large and C ≥ µβ then z′(t)−w′(t) ≥ 1
2τβ on [a, t2i] where τ = inf{1, µ}.

Hence, by integrating, w(t2i) ≤ − 1
2τβ(t2i − a). Thus, either t2i ≤ π − π

8i or
w(t2i) ≤ γβ (where γ = π

16iτ). Remember that a = π − π
4i . Since |w′(t)| ≤ β,

if follows that either t2i ≤
(

1− 1
8i

)

π or t̄2i − t2i ≥ γ. Since t̄2i < π, we see that
always t2i ≤ π − γ1, where γ1 = inf{γ, π

8i}. If β is large, t2i+1 − t2i is small
(since T (r) → 0 as r → ∞). Hence, if β is large, t2i+1 < π, as required.

We now consider the periodic boundary-value problem. Note that if a solu-
tion of the periodic boundary-value problem has only simple zeros, then it has
an even number of zeros in (0, π).

Proof of Theorem 1.5. We first prove part (ii). We only consider the case where
I− = −∞ and P l > 1. The other cases are similar. In this case, we note that,
by the results in Section 6 of [2] the equation

−x′′(t) = gn(x(t))− f(t), x(0) = x(π), x′(0) = x′(π)

has a solution un (where gn(y) = g(y) + 1
ny

−). If we establish a bound for
‖un‖∞, we can pass to the limit by a standard argument.

If not, we can argue as in the proof of Theorem 1.3 and find that En(t) is
large for all t in [0, π] and un has a zero θn, with u′

n(θn) → ∞. As there, we
may, by replacing un by un(t + θ) and f by f(t + θn) assume that un(0) = 0
and u′

n(0) → ∞ as n → ∞ (since En(t) → ∞ as n → ∞).
Since P l > 1, a similar argument to that in the proof of Theorem 1.4

shows that the 2ith zero of un is larger than π but near π. (Remember that
{f(t+ θn)} is bounded in L1[0, π].) Since the (2i− 2)th zero is near i−1

i π and

the 2(i+1)th zero is near i+1
i π and since un must have an even number of zeros

in (0, π] if it satisfies the boundary conditions (un has only simple zeros since
En(t) → ∞ as n → ∞), we have a contradiction. Thus ‖un‖∞ is bounded and
hence f ∈ R(Hp). A similar argument establishes properness. (For this, we
replace gn by g.)

The proof of necessity in Theorem 1.5(i) is similar to the proof of necessity
in Theorem 1.4(i). The proof of sufficiency is similar to the proof in the previous
paragraph and we only point out the differences. First, we may, by adding a
constant to g and f , assume that yg(y) ≥ 0 for |y| large (and thus Lemma
2.1 applies). Secondly, we need an analogue of our results of Subsection (ii)
of Section 2 for the distance between zeros when µ = 0. As easy modification
of the proof of Lemma 2.2 shows that α−1z(t) is near t on (0, π] and thus,
if α is large, z(t) has no zeros on [0, π]. This replaces our estimates for the
distance between the zeros in Subsection (ii) of Section 2. Using this estimate,
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the argument proceeds as above. There is one slight difference when I− is
finite. If un(t) < 0 for all t and {‖un‖∞} is not bounded, then as in the proof
of Theorem 1.3, un(t) → −∞ as n → ∞ uniformly in t.

Now
∫ π

0

f(t) dt =

∫ π

0

gn(uu(t)) dt ≤
∫ π

0

g(un(t)) → πI−

as n → ∞. Hence we have a contradiction.

If i = 0 or I− > −∞, we can delete our extra regularity of growth as-
sumption on g for y large positive in the above two theorems. If I− = ∞ in
Theorem 1.5(i), Hp is proper. It seems possible that our methods can be used
for more general equations, though there are difficulties in getting analogues
of the estimates for the distance between zeros in Subsection (iii) of Section
2. It would be of interest to understand the structure of R(HD) under the
assumptions of Theorem 1.4(ii). Finally, the estimates for T (α) mentioned at
the end of the Appendix to Section 2 are of use in verifying the assumptions
of Theorem 1.4 and 1.5.
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