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Verbal functions of a group

Daniele Toller

Abstract. The aim of this paper is the study of elementary algebraic
subsets of a group G, first defined by Markov in 1944 as the solution-
set of a one-variable equation over G. We introduce the group of words
over G, and the notion of verbal function of G in order to better describe
the family of elementary algebraic subsets. The intersections of finite
unions of elementary algebraic subsets are called algebraic subsets of
G, and form the family of closed sets of the Zariski topology ZG on G.
Considering only some elementary algebraic subsets, one can similarly
introduce easier-to-deal-with topologies T ⊆ ZG, that nicely approximate
ZG and often coincide with it.
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1. Introduction

In 1944, Markov [20] introduced three special families of subsets of a group G,
calling a subset X ⊆ G:

(a) elementary algebraic if there exist an integer n > 0, elements g1, . . . , gn ∈
G and ε1, . . . , εn ∈ {−1, 1}, such that

X = {x ∈ G : g1x
ε1g2x

ε2 · · · gnxεn = eG}; (1)

(b) additively algebraic if X is a finite union of elementary algebraic subsets
of G;

(c) algebraic if X is an intersection of additively algebraic subsets of G.

If G is a group, take x as a symbol for a variable, and denote by G[x] =
G ∗ 〈x〉 the free product of G and the infinite cyclic group 〈x〉 generated by x.
We call G[x] the group of words with coefficients in G, and its elements w are
called words in G. An element w ∈ G[x] has the form

w = g1x
ε1g2x

ε2 · · · gnxεn , (2)
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for an integer n ≥ 0, elements g1, . . . , gn ∈ G and ε1, . . . , εn ∈ {−1, 1}. The
group G[x] is defined also via a universal property in Fact 2.1, and explicitly
described in §2.2. Then an elementary algebraic subset X of G as in (1) will be
denoted by EGw (or simply, Ew), where w ∈ G[x] as in (2) is its defining word
considered as an element of G[x].

In particular, a word w ∈ G[x] determines its associated evaluation function
fw : G→ G, mapping g 7→ w(g), where w(g) ∈ G is obtained replacing x with
g in (2) and taking products in G. We call verbal a function G → G of the
form fw. Let us immediately show that some very natural functions G → G
are verbal.

Example 1.1. 1. If g ∈ G, then one can consider the word w = g ∈ G[x],
so that fw is the constant function g on G.

2. The identity map of G is the function fx : g 7→ g.

3. The inversion function of G is fx−1 : g 7→ g−1.

4. More generally, for every integer n ∈ Z, the word xn ∈ G[x] determines
the verbal function fxn : g 7→ gn.

5. The left translation in G by an element a ∈ G is the function fax : g 7→ ag,
and the right translation is the function fxa : g 7→ ga.

6. For an element a ∈ G, the word w = axa−1 determines the conjugation
by a, as fw : g 7→ aga−1.

In §3.2 we equip the set F (G) of verbal functions of G with the pointwise
product operation, making F (G) a group. The surjection G[x] → F (G),
mapping w 7→ fw, shows that F (G) is isomorphic to a quotient of G[x].

We dedicate §3.3 to monomials, namely words of the form w = gxm ∈ G[x],
for g ∈ G and m ∈ Z. In the final §3.4 we consider abelian groups. We note
that if G is abelian, and f ∈ F (G), then f = fw for a monomial w ∈ G[x].
Then we describe F (G) in Proposition 3.7.

In §4 we study the elementary algebraic subsets, which we redefine using
verbal functions (Definition 4.1) as the subsets of the form

Ew = f−1w ({eG}),

for w ∈ G[x]. In this sense one can consider Ew as the solution-set of the
equation w(x) = eG in G.

Example 1.2. 1. For an element g ∈ G, let w = g−1x ∈ G[x]. Then
fw : G → G is the left translation by g−1 by Example 1.1, item 5, and
Ew = {g}.
This shows that every singleton is an elementary algebraic subset of G.
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2. If g ∈ G, then the centralizer

CG(g) = {h ∈ G | gh = hg}

coincides with Ew, where w = gxg−1x−1 ∈ G[x] (see also Example 3.2).
Hence the centralizer CG(g) is an elementary algebraic subset of G.
Therefore, the centralizer CG(S) =

⋂
g∈S CG(g) of any subset S of G

is an algebraic subset. In particular, the center Z(G) = CG(G) is an
algebraic subset.

3. By Example 1.1, item 4, for every n ∈ N the word xn ∈ G[x] determines
the verbal function fxn : g 7→ gn. Hence, Ew = G[n] by definition, where

G[n] = {g ∈ G | gn = eG}.

If G is abelian, then G[n] is a subgroup of G, called the n-socle of G. In
the abelian case, these subsets (together with their cosets, of course) are
all the non-empty elementary algebraic subsets of G (see (11)).

Then we see that the family of elementary algebraic subsets of G is sta-
ble under taking inverse image under verbal functions (Lemma 4.4). As a
consequence, the translate of an elementary algebraic subset is an elementary
algebraic subset (Example 4.5).

The family of algebraic subsets is stable under taking intersections and
finite unions, and contains every finite subset (by Example 1.2, item 1), so is
the family of closed sets of a T1 topology ZG on G, the Zariski topology of G.
As a matter of fact, Markov did not explicitly introduce such a topology, that
was first explicitly defined by Bryant in [7], as the verbal topology of G. Here
we keep the name Zariski topology, and the notation ZG, for this topology,
already used [3, 11, 12, 13, 15, 16].

In §5.2 and §5.3.1 we briefly also consider two other topologies on G, the
Markov topology MG and the precompact Markov topology PG, introduced
respectively in [12] and [13] as the intersections

MG =
⋂
{τ | τ Hausdorff group topology on G},

PG =
⋂
{τ | τ precompact Hausdorff group topology on G}.

The topology MG was only implicitly introduced by Markov in the same
paper [20], via the notion of unconditionally closed subset of G, namely a subset
of G that is closed with respect to every Hausdorff group topology on G. Of
course, the family of unconditionally closed subsets of G is the family of the
closed sets of MG. It can be directly verified from the definitions that

ZG ⊆MG ⊆ PG. (3)

Now we recall the definition of a quasi-topological group.
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Definition 1.3. Let G be a group, and τ a topology on G. The pair (G, τ) is
called quasi-topological group if for every a, b ∈ G the function (G, τ)→ (G, τ),
mapping x 7→ ax−1b, is continuous.

Obviously, (G, τ) is a quasi-topological group if and only if the inversion
function fx−1 and both the translations fgx and fxg are continuous, for every
g ∈ G.

We dedicate §5 to quasi-topological groups, proving first some general re-
sults in §5.1. Then we use verbal functions in §5.2 to prove (3) and that all the
pairs (G,ZG), (G,MG), (G,PG) are quasi-topological groups (Corollary 5.7).

By Example 1.2, item 2, the center Z(G) of G is ZG-closed. We extend this
result proving that for every positive integer n also the n-th center Zn(G) is
ZG-closed in Corollary 5.10, as a consequence of Theorem 5.9.

In §5.3, inspired by [3, 4, 5], we introduce the notion of a partial Zariski
topology T ⊆ ZG on G, namely a topology having some elementary algebraic
subsets as a subbase for its closed sets. The aim of this definition is to study the
cases when indeed the equality T = ZG holds for some partial Zariski topology
T on G, in order to have easier-to-deal-with subbases of ZG.

For example, we introduce the monomial topology Tmon on a group G in
Definition 5.19, whose closed sets are generated by the subsets Ew, for mono-
mials w ∈ G[x]. We note that Tmon = ZG when G is abelian (Example 5.20),
and we prove that Tmon is the cofinite topology when G is nilpotent, torsion
free (Corollary 5.21).

In §5.3.1 we recall a recent result from [3]. If X is an infinite set, we denote
by S(X) the symmetric group of X, consisting of the permutations of X. If
φ ∈ S(X), its support is the subset supp(φ) = {x ∈ X | φ(x) 6= x} ⊆ X. We
denote by Sω(X) the subgroup of S(X) consisting of the permutations having
finite support. If G is a group with Sω(X) ≤ G ≤ S(X), let τp(G) denote
the point-wise convergence topology of G. The authors of [3] have introduced
a partial Zariski topology Z′G on G and proved that Z′G = ZG = MG = τp(G)
(see Theorem 5.26).

We dedicate §5.4 to two others partial Zariski topologies, the centralizer
topologies CG and C′G, defined as follows. Let C = {gCG(a) | a, g ∈ G}, and
note that its members are elementary algebraic subsets by Example 1.2, item 2,
and Example 4.5. Then CG is the topology having C as a subbase for its closed
sets (Definition 5.15). If C′ = C ∪ {{g} | g ∈ G}, we similarly introduce C′G as
the topology having C′ as a subbase for its closed sets (Definition 5.28). See
Proposition 5.30 for the first few properties of CG and C′G.

Finally, we see in §5.4.1 that every free non-abelian group F satisfies CF =
C′F = ZF . On the other hand, we consider a class of matrix groups H in §5.4.2,
satisfying CH 6= C′H = ZH .

This paper is a part of articles dedicated to the study of the Zariski topology
of a group G, using the group of words G[x] and the group of verbal functions
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F (G) of G as main tools, see [14, 15, 16, 17]. In particular, we develop the
basic theory here.

We denote by Z the group of integers, by N+ the set of positive integers,
and by N the set of naturals. If n ∈ Z, the cyclic subgroup it generates is nZ,
while the quotient group Z/nZ will be denoted by Zn.

If X is a set, and B ⊆ P(X) is a family of subsets of X, we denote by
B∪ ⊆ P(X) the family of finite unions of members of B.

2. The group of words G[x]

2.1. The categorical aspect of G[x]

The group G[x] is determined by the universal property stated below.

Fact 2.1. Let G be a group. Then there exist a unique (up to isomorphism)
group G[x], together with an injective group homomorphism iG : G → G[x],
satisfying the following universal property:
for every group Γ, for every group homomorphism φ : G → Γ, and for every
γ ∈ Γ, there exists a unique group homomorphism φ̃ : G[x] → Γ such that

φ̃ ◦ iG = φ and φ̃(x) = γ.

G[x] 3 x

φ̃

��

_

��
G

φ //
- 

iG
;;wwwwwwwww
Γ 3 γ

From now on, we will identify G with iG(G) ≤ G[x].
In the following example we illustrate a few particular cases when Fact 2.1

can be applied.

Example 2.2. 1. Consider the identity map idG : G→ G. By Fact 2.1, for
every g ∈ G there exists a unique map evg : G[x]→ G, with evg �G= idG
and evg(x) = g, that we call evaluation map. Then we define w(g) =
evg(w) for every w ∈ G[x].

G[x] 3 x

evg

��

_

��
G

iG
;;wwwwwwwww idG // G 3 g

2. A G-endomorphism of G[x] is a group homomorphism φ : G[x] → G[x]
such that φ ◦ iG = iG, i.e. φ �G= idG, so that the following diagram
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commutes:
G[x]

φ

��
G

iG

=={{{{{{{{{ iG // G[x] .

Then φ is uniquely determined by the element w = φ(x) ∈ G[x], and now
we show that every choice of w ∈ G[x] can be made, thus classifying the
G-endomorphisms of G[x]. To this end, consider the map iG : G→ G[x].
By Fact 2.1, for every w ∈ G[x] there exists a unique G-endomorphism
ξw : G[x]→ G[x], with x 7→ w.

G[x] 3 x

ξw
��

_

��
G

iG //

iG

;;wwwwwwwww
G[x] 3 w

Proposition 2.3. Let φ : G1 → G2 be a group homomorphism. Then there
exists a unique group homomorphism F : G1[x] → G2[x] such that F �G1= φ,
F (x) = x. In particular, if φ is surjective (resp., injective), then F is surjective
(resp., injective).

Moreover, the following hold.

1. If H ≤ G is a subgroup of G, then H[x] ≤ G[x].

2. If H � G is a normal subgroup of G, and G = G/H, then G[x] is a
quotient of G[x].

Proof. Composing φ : G1 → G2 and the map iG2 : G2 → G2[x], we obtain
ψ = iG2 ◦ φ : G1 → G2[x]. Then apply Fact 2.1 and use the universal property

of G1[x] to get F = ψ̃ : G1[x]→ G2[x] such that F (x) = x and F ◦iG1
= iG2

◦φ,
i.e. F �G1

= φ.

G1[x] 3 x

ψ̃=F

��

_

��
G1

ψ

88
φ //

iG1
22

G2

iG2 // G2[x] 3 x

If φ is surjective, then F is surjective too, as F (G1[x]) contains both x and
φ(G1) = G2, which generate G2[x].

In Remark 3.3, item 1, we will explicitly describe the map F , so that by (5)
it will immediately follow that F is injective when φ is injective.
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1. In this case, the injection φ : H ↪→ G gives the injection F : H[x] ↪→ G[x].

2. The canonical projection φ : G→ G gives the surjection F : G[x]→ G[x].

The following corollary immediately follows from Proposition 2.3.

Corollary 2.4. The assignment G 7→ G[x], and the canonical embedding

G
iG−→ G[x], define a pointed endofunctor $ : Gr → Gr in the category of

groups and group homomorphism. In other words, for every group homomor-
phism φ : G1 → G2, the following diagram commutes

G1

φ

��

iG1 // G1[x]

$(φ)

��
G2

iG2 // G2[x] ,

where $(φ) = F is the map given by Proposition 2.3.

2.2. The concrete form of G[x]

Here we recall the concrete definition ofG[x] in terms of products of the form (4)
below that will be called words. In particular, if g ∈ G, then w = g ∈ G[x] will
be called constant word, and we define its lenght to be l(w) = 0 ∈ N. In the
general case, for w ∈ G[x] there exist n ∈ N, elements g1, . . . , gn, g0 ∈ G and
ε1, . . . , εn ∈ {−1, 1}, such that

w = g1x
ε1g2x

ε2 · · · gnxεng0. (4)

Notice that in Markov’s definition (1) of elementary algebraic subset of G,
he was assuming the defining word w not to be constant (see Remark 4.2 for
more details).

If gi 6= eG whenever εi−1 = −εi for i = 2, . . . , n, we say that w is a reduced
word in the free product G[x] = G ∗ 〈x〉 and we define the lenght of w by
l(w) = n, where n ∈ N is the least natural such that w is as in (4).

Definition 2.5. If w ∈ G[x] is as in (4), we define the following notions.

• The constant term of w is ct(w) = w(eG) = g1g2 · · · gng0 ∈ G;

• The content of w is ε(w) =
∑n
i=1 εi ∈ Z, which will also be denoted

simply by ε when no confusion is possible.

If w = g, then we define ε(w) = 0 and ct(w) = w(eG) = g. We call singular
a word w such that ε(w) = 0. All constant words are singular by definition.
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Given two elements g, h of a group G, recall that their commutator element
is [g, h] = ghg−1h−1 ∈ G. Note that [g, h] = eG if and only if gh = hg, i.e. g
and h commute. Then the commutator subgroup G′ of G is the subgroup

G′ = 〈[g, h] | g, h ∈ G〉

generated by all elements of G of the form [g, h]. It can easily verified that if
H � G is a normal subgroup of G, then the quotient group G/H is abelian if
and only if G′ ≤ H.

Both the functions ct : G[x] → G, mapping w 7→ ct(w), and ε : G[x] →
Z, mapping w 7→ ε(w), are surjective group homomorphisms. In particular,
ct(G[x]′) ≤ G′ and ε(G[x]′) ≤ Z′ = {0}, so that G[x]′ ≤ ct−1(G′) ∩ ker(ε). In
the following theorem, we prove the reverse inclusion.

Theorem 2.6. For every group G, G[x]′ = ct−1(G′) ∩ ker(ε).

Proof. Let U = ct−1(G′) ∩ ker(ε) = {w ∈ G[x] | ct(w) ∈ G′, ε(w) = 0}.
Then G[x]′ ⊆ U as we have noted above, and we prove the other inclusion by
induction on l(w) for a word w ∈ U .

Let w ∈ G[x] and assume w ∈ U . We first consider the case when l(w) = 0,
i.e. w = ct(w) ∈ G is a constant word, so that w ∈ G′ ≤ G[x]′ and there is
nothing to prove. So now let w ∈ U be as in (4), and note that ε(w) = 0 implies
that n = l(w) > 0 is even, so that for the base case we have to consider n = 2.
Then w has the form w = g1x

εg2x
−ε(g1g2)−1c, with c = ct(w) ∈ G′. Let g =

g1g2, and w0 = [g−12 , xε] ∈ G[x]′, so that w = gw0g
−1c = [g, w0]w0c ∈ G[x]′.

Now assume n > 2. As ε(w) = 0, we have εi+1 = −εi for some 1 ≤ i ≤ n−1.
Then w = w1w2w3 for the words

w1 = g1x
ε1g2x

ε2 · · · gi−1xεi−1 ,

w2 = gix
εigi+1x

εi+1(gigi+1)−1,

w3 = (gigi+1)gi+2x
εi+2 · · · gnxεng0.

As w2 ∈ G[x]′ by the base case, and w = [w1, w2]w2w1w3, we only have to
show that w1w3 ∈ G[x]′. As

ct(w) = ct(w1) ct(w2) ct(w3) = ct(w1)eG ct(w3) = ct(w1w3),

we have ct(w1w3) ∈ G′, and similarly ε(w1w3) = 0. Then w1w3 ∈ G[x]′ by the
inductive hypothesis.

3. Verbal functions

3.1. Definition and examples

Definition 3.1. A word w ∈ G[x] determines the associated evaluation func-
tion fGw : G→ G. We will often write fw for fGw . We call verbal function of G
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a function G → G of the form fw, and we denote by F (G) the set of verbal
functions on G.

If w ∈ G[x] and g ∈ G, sometimes we also write w(g) for the element
fw(g) ∈ G. So a priori, if f is a verbal function, then f = fw for a word
w ∈ G[x] as in (4).

Besides the basic examples already given in Example 1.1, we will also con-
sider verbal functions of the following form.

Example 3.2. If ε ∈ {±1}, and a ∈ G, the word w = [a, xε] = axεa−1x−ε ∈
G[x] determines the verbal function fw : g 7→ [a, gε]. We will call commutator
verbal function a function of this form.

Note that fw : G → G is the only map such that fw ◦ evg = evg ◦ ξw for
every g ∈ G, i.e. making the following diagram commute:

G[x]
ξw //

evg

��

G[x]

evg

��
G

fw // G.

Remark 3.3. 1. Let φ : G1 → G2 be a group homomorphism, and

F = $(φ) : G1[x]→ G2[x]

be as in Proposition 2.3. If w ∈ G[x] is as in (4), then

F : w 7→ F (w) = φ(g1)xε1φ(g2)xε2 · · ·φ(gn)xεnφ(g0). (5)

By (5), it immediately follows that F is injective when φ is injective.

Moreover, one can easily see that φ ◦ fw = fF (w) ◦ φ, i.e. the following
diagram commutes:

G1
fw //

φ

��

G1

φ

��
G2

fF (w) // G2 .

(6)

2. In particular, we will often consider the case when φ is the canonical
projection π : G → G/N , if N is a normal subgroup of G. In this case,
let G = G/N be the quotient group, and for an element g ∈ G, let
g = π(g) ∈ G. If w = g1x

ε1g2x
ε2 · · · gnxεng0 ∈ G[x], let also w =

F (w) = g1x
ε1g2x

ε2 · · · gnxεng0 ∈ G[x]. Then (6) (with φ = π) gives
π ◦ fw = fw ◦ π.
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3.2. Universal words

The group operation on G[x] induces a group operation on F (G) as follows. If
w1, w2 ∈ G[x], let w = w1w2 ∈ G[x] be their product, and consider the verbal
functions fw1

, fw2
, fw ∈ F (G). Obviously, fw is the pointwise product fw1

·fw2

of fw1
and fw2

, namely the map fw : g 7→ fw1
(g)fw2

(g) = fw(g). With this
operation, (F (G), ·) is a group, with identity element the constant function
eF(G) : g 7→ eG for every g ∈ G. If w−1 is the inverse of w ∈ G[x], then the
inverse of fw ∈ F (G) is fw−1 , and will be denoted by (fw)−1.

For S ⊆ G, we denote by

(fw)−1(S) = {(fw)−1(s) | s ∈ S} = {fw−1(s) | s ∈ S} ⊆ G

the image of S under (fw)−1 = fw−1 , while f−1w (S) = {g ∈ G | fw(g) ∈ S} will
denote the preimage of S under fw.

Consider the surjective group homomorphism ΦG : G[x]→ F (G), w 7→ fw.
Then F (G) ∼= G[x]/UG, where UG is the kernel

UG = ker(ΦG) = {w ∈ G[x] | ∀g ∈ G fw(g) = eG} ≤ G[x]. (7)

Definition 3.4. If G is a group, and w ∈ G[x], we say that w is a universal
word for G if w ∈ UG.

Note that a word w ∈ G[x] is universal exactly when Ew = G.
Recall that the exponent exp(G) of a group G is the least common multiple,

if it exists, of the orders of the elements of G. In this case, exp(G) > 0.
Otherwise, we conventionally define exp(G) = 0. For example, every finite
group G has positive exponent, and exp(G) divides |G|.

Example 3.5. 1. If w ∈ UG, then obviously ct(w) = fw(eG) = eG.

2. If G has k = exp(G) > 0, then w = xk ∈ G[x] is a non-singular universal
word for G, i.e. fw ≡ eG is the constant function.

The singular universal words will play a prominent role, so we set

UsingG = {w ∈ UG : ε(w) = 0} = UG ∩ ker ε ≤ G[x].

In particular, also UsingG is a normal subgroup of G[x].

Remark 3.6. Let [G, 〈x〉] = 〈[g, xi] | g ∈ G, i ∈ Z〉 ≤ G[x] be the subgroup
of G[x] generated by all commutators [g, xi] ∈ G[x], for g ∈ G and i ∈ Z. It
can be easily verified that [G, 〈x〉] ⊆ ker(ct) ∩ ker(ε). The other inclusion can
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be proved by induction on l(w) of the words w ∈ ker(ct) ∩ ker(ε), similarly to
what we did in the proof of Theorem 2.6. Then

[G, 〈x〉] = ker(ct) ∩ ker(ε).

In particular, [G, 〈x〉] is a normal subgroup of G[x], being the kernel of the
natural surjective homomorphism G[x]→ G×〈x〉 mapping w 7→ (ct(w), xε(w)).

Then, we have the following map of relevant subgroups of G[x] considered
so far.

G[x]

jjjj
jjjj

jjjj
jjjj

jjj

G[x]/ ker(ε)∼=Z
TTTT

TTTT

TTTT
TTT

ct−1(G′)

TTTT
TTTT

TTTT
TTTT

ker(ε)

jjjj
jjjj

jjjj
jjjj

ker(ct)

TTTT
TTTT

TTTT
TTTT

T ct−1(G′) ∩ ker(ε) = G[x]′

UG

TTTT
TTTT

TTTT
TTTT

TT ker(ct) ∩ ker(ε) = [G, 〈x〉]

UsingG = UG ∩ ker(ε) = UG ∩G[x]′

Using the normal subgroup UG of G[x], we can define a congruence relation
≈ on G[x] as follows: for a pair of words w1, w2 ∈ G[x], we define w1 ≈ w2 if
w1UG = w2UG. Then

w1 ≈ w2 if and only if ΦG(w1) = ΦG(w2), i.e., fw1
= fw2

.

In particular, a word w is universal when w ≈ eG[x], i.e. fw is the constant
function eG on G. Note that the quotient group is G[x]/≈ = G[x]/UG ∼= F (G).

A second monoid operation in F (G) can be introduced as follows. If w is
as in (4), and w1 ∈ G[x], one can consider the word

ξw1
(w) = g1w

ε1
1 g2w

ε2
1 · · · gnw

εn
1 g0

obtained substituting w1 to x in w and taking products in G[x]. We shall also
denote by w ◦ w1 the word ξw1

(w). On the other hand, one can consider the
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usual composition of the associated verbal functions fw, fw1
∈ F (G). Then

this composition of words is compatible with the composition of functions, in
the sense that

fw ◦ fw1
= fw◦w1

∈ F (G).

With this operation, (F (G), ◦) is a monoid, with identity element the identity
function idG = fx of G, mapping idG : g 7→ g for every g ∈ G. Obviously,
(F (G), ◦) is a submonoid of the monoid (GG, ◦) of all self-maps G→ G.

3.3. Monomials

Even if a group G has a quite simple structure (for example, is abelian), the
group of words G[x] may be more difficult to study (for example, G[x] is never
abelian, unless G is trivial). As we are more interested in its quotient group of
verbal function F (G), it will be useful to consider some subset W ⊆ G[x] such
that G[x] = W · UG, i.e. ΦG(W ) = {fw | w ∈W} = F (G), i.e. F (G) = W/≈.
In the following §3.4 we will present such an appropriate subset W ⊆ G[x] in
the case when G is abelian.

A word of the form w = gxm, for g∈G and m∈Z, is called a monomial. One
can associate a monomial to an arbitrary word w = g1x

ε1g2x
ε2 · · · gnxεng0 ∈

G[x] as follows, letting

wab = ct(w)xε(w) = g1g2 · · · gng0xε1+ε2+···+εn ∈ G[x]. (8)

The monomials in G[x] do not form a subgroup unless G is trivial. Nev-
ertheless, one can “force” them to form a group, by taking an appropriate
quotient of G[x]. Indeed, recall the surjective homomorphism G[x] → G× 〈x〉
mapping w 7→ (ct(w), xε(w)) considered in Remark 3.6. Then the group G×〈x〉
“parametrizes” in the obvious way all monomials of G[x] (although the group
operation is not the one from G[x]).

3.4. A leading example: the abelian case

A case when F (G) has a very transparent description is that of abelian groups.
Let (G,+, 0G) be an abelian group. While G[x] is not abelian in any case,
its quotient F (G) becomes indeed abelian, and so we keep additive notation
also to denote words w ∈ G[x]. Remind that we really are interested only
in the evaluation function fw ∈ F (G) associated to w, and to its preimage
EGw = f−1w ({0G}) = {g ∈ G | fw(g) = 0G} (see Definition 4.1).

Then, w ≈ wab = ct(w) + ε(w)x for every word w ∈ G[x], and in particular,
letting

W = {wab | w ∈ G[x]} = {g + nx | g ∈ G,n ∈ Z} ⊆ G[x],
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we have W/≈ = G[x]/≈, so that

F (G) = {fg+nx | g ∈ G,n ∈ Z}.

For these reasons, when G is abelian, we will only consider the monomials
w ∈W . These observations are heavily used in computing F (G) for an abelian
group G (hence also EG, see Example 4.3).

Note that the surjective homomorphism ΨG : G[x]→ G×Z, mapping w 7→
(ct(w), ε(w)), has kernel ker(ΨG) = ker(ct) ∩ ker(ε) = G[x]′ by Theorem 2.6,
so that G[x]/G[x]′ ∼= G × Z. So, if one considers the quotient G[x]/G[x]′,
the canonical projection G[x] → G[x]/G[x]′ is exactly w 7→ wab = ct(w) +
ε(w)x. Moreover, being F (G) ∼= G[x]/UG abelian, we have that UG ≥ G[x]′,

so F (G) ∼= G[x]/G[x]′

G[x]′/UG is a quotient of G× Z.

Here we give an explicit description of the group F (G).

Proposition 3.7. If G is an abelian group, then:

F (G) ∼=

{
G× Z if exp(G) = 0,

G× Zn if exp(G) = n > 0.

Proof. Let n = exp(G) ∈ N. Note that Ψ′G : G×Z→ F (G), mapping (g, k)→
fg+kx, is a surjective group homomorphism, and that (g, k) ∈ ker(Ψ′G) if and
only if w = g + kx ∈ UG.

In this case, g = ct(w) = 0G by Example 3.5, item 1, so that w = kx. If
n = 0, then k = 0. If n > 0, then either k = 0, or k 6= 0 and n | k. In any case,
k ∈ nZ.

This proves ker(Ψ′G) = {0G} × nZ.

4. Elementary algebraic subsets

This section is focused on the family EG ⊆ P(G), consisting of preimages
f−1w ({eG}), rather than on the group G[x], consisting of words w, or its quotient
F (G), consisting of verbal functions fw. We begin recalling Markov’s definition
of elementary algebraic subset of a group, using the terminology of verbal
functions.

Definition 4.1. If w ∈ G[x], we let

EGw = f−1w ({eG}) = {g ∈ G | fw(g) = eG} ⊆ G,

we call EGw elementary algebraic subset of G, and we denote it simply by Ew
when no confusion is possible. We denote by EG = {Ew | w ∈ G[x]} ⊆ P(G)
the family of elementary algebraic subsets of G.

According to Markov’s definition on page 71, if X ⊆ G, we call it:
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• additively algebraic if X is a finite union of elementary algebraic subsets
of G, i.e. if X ∈ E∪G;

• algebraic if X is an intersection of additively algebraic subsets of G.

Then the algebraic subsets form the family of ZG-closed sets, and EG is
a subbase for the ZG-closed sets; while the additively algebraic subsets are
exactly the members of E∪G, and are a base for the ZG-closed sets.

Remark 4.2. If w = g ∈ G is a constant word, then either Ew = G or Ew = ∅
(depending on whether g = eG or g 6= eG). For this reason, in studying the
family EG and the topology ZG, there is no harm in assuming w not to be
constant, i.e. to be as in Markov’s definition (1) of elementary algebraic subset
(see also §4.1).

Let us fix a group G. We will now consider the iterated images of G under
$n, for n ∈ N+, and to this end we need to introduce a countable set of
variables {xn | n ∈ N+}. Then applying $ we obtain the following diagram:

G
$−→ G[x1]

$−→ (G[x1])[x2]
$−→
(
(G[x1])[x2]

)
[x3]

$−→ . . . (9)

If n ∈ N+, we let Gn = G[x1, . . . , xn] = $n(G), and it can be proved that
if σ ∈ Sn, then

Gn ∼= G[xσ(1), . . . , xσ(n)] .

Every w = w(x1, . . . , xn) ∈ Gn determines the associated evaluation func-
tion of n variables over G, that we denote by fw : Gn → G, in analogy with
Definition 3.1.

Finally, one can define Ew ⊆ Gn as the preimage Ew = f−1w ({eG}), and
consider the family {Ew | w ∈ Gn} as a subbase for the closed sets of a topology
on Gn.

These observations are the basis of a theory of algebraic geometry over
groups, recently started with [6] and developed in a series of subsequent papers.
In this work, we focus on the case when n = 1, considering only verbal functions
fw : G→ G of one variable, and elementary algebraic subsets Ew ⊆ G.

Example 4.3 (A leading example: the abelian case II). Let G be an
abelian group (see §3.4). Then the elementary algebraic subset of G determined
by fg+nx is

Eg+nx =

{
∅ if g + nx = 0G has no solution in G,

G[n] + x0 if x0 is a solution of g + nx = 0G.
(10)

On the other hand, if n ∈ Z, and g ∈ G, then G[n] + g = Enx−ng. So
the non-empty elementary algebraic subsets of G are exactly the cosets of the
n-socles of G:

EG \ {∅} = {G[n] + g | n ∈ N, g ∈ G}. (11)
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Then E∪G is the family of all the ZG-closed subsets of an abelian group G. In
other words, every algebraic subset of G is additively algebraic.

It follows from Remark 4.2 and (10) that if G is abelian, and w ∈ G[x] is
singular, then either Ew = G or Ew = ∅.

There are easy examples showing that in general none of the elementary
algebraic subsets EGxn = G[n] need to be a coset of a subgroup. See for exam-
ple [17], where we show a class of groups G such that the subgroup generated
by G[n] is the whole group G, for every n ∈ N+.

Now we prove that the inverse image of an elementary algebraic subset
under a verbal function is still an elementary algebraic subset.

Lemma 4.4. For every group G, the family EG is stable under taking inverse
image under verbal functions.

Proof. For every pair w,w′ ∈ G[x], consider the verbal function fw and the
elementary algebraic subset Ew′ . Then

f−1w Ew′ = f−1w f−1w′ ({eG}) = (fw′ ◦ fw)−1({eG}) = f−1w′◦w({eG}) = Ew′◦w, (12)

so that f−1w Ew′ ∈ EG.

As a first application of Lemma 4.4, we see that the translate of an elemen-
tary algebraic subset is still an elementary algebraic subset.

Example 4.5. 1. By Example 1.1, item 5, the left translation in G by an
element g ∈ G is the verbal function fgx, and so gS = f−1g−1x(S) for every

subset S ⊆ G. In particular, by (12) we have

gEw = f−1g−1x(Ew) = Ew◦g−1x. (13)

Similarly, Ewg = Ew◦xg−1 . Note that ε(w ◦ g−1x) = ε(w) = ε(w ◦ xg−1).

2. If a ∈ G, then CG(a) = Ew, for the word w = axa−1x−1 ∈ G[x] by
Example 1.2, item 2. By (13), its left coset determined by an element
g ∈ G is gCG(a) = Ew1 for

w1 = w ◦ (g−1x) = a(g−1x)a−1(g−1x)−1 = ag−1xa−1x−1g.

Note also that, for w2 = gw1g
−1 = (gag−1)xa−1x−1, we have Ew2

=
Ew1 = gCG(a).

On the other hand, CG(a)g = gg−1CG(a)g = gCG(g−1ag), so that

C = {gCG(a) | a, g ∈ G}

is the family of all cosets of one-element centralizers in G. By the above
observations,

C = {Ew | ∃a, g ∈ G w = (gag−1)xa−1x−1} ⊆ EG.
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4.1. Further reductions

As already noted above, to study F (G) it is sufficient to consider a subset
W ⊆ G[x] such that F (G) = ΦG(W ) = W/≈. Since our effort is really
devoted to the study of the Zariski topology ZG on a group G, hence to the
family EG, a further reduction is also possible as follows.

As an example to introduce this reduction, consider the abelian group
G = Z × Z2, and the verbal functions fw, fw′ ∈ F (G), associated to w =
2x,w′ = 4x ∈ G[x]. Then fw 6= fw′ , and yet Ew = f−1w ({0G}) = {0Z} × Z2 =
f−1w′ ({0G}) = Ew′ .

Another example of a more general property could be the following: consider
a word w ∈ G[x], and its inverse w−1 ∈ G[x]. Obviously fw−1 = (fw)−1 6= fw
in general, but for an element g ∈ G we have fw−1(g) = eG if and only if
fw(g) = eG. In particular,

Ew−1 = f −1
w−1 ({eG}) = f−1w ({eG}) = Ew.

So Ew = Ew−1 in every group G, and in Remark 4.6 below we slightly generalize
this result.

So we introduce another equivalence relation ∼ on G[x] defined as follows:
for a pair of words w1, w2 ∈ G[x], we define w1 ∼ w2 if Ew1

= Ew2
. Obviously,

w ≈ w′ implies w ∼ w′.
For example, as noted above w ∼ w−1 for every w ∈ G[x].

Remark 4.6. Let w ∈ G[x], and s ∈ Z. Consider the element ws ∈ G[x],
and note that ε(ws) = sε(w) and ws(g) = (w(g))s for every g ∈ G. Hence,
Ews = {g ∈ G | (w(g))s = eG} = f−1w (G[s]) is the preimage of G[s] under fw.

In particular, if G[s] = {eG}, then Ews = Ew, i.e. w ∼ ws.

Then, in describing EG, we can restrict ourselves to a subset W ⊆ G[x] of
representants with respect to the equivalence ∼, that is such that the quotient
set W/∼ = G[x]/∼. For example, if W ⊆ G[x] satisfies F (G) = {fw | w ∈W},
that is G[x]/≈ = W/≈, then G[x]/∼ = W/∼. As we have seen in §3.4, in the
abelian case the set W = {gxn ∈ G[x] | n ∈ N, g ∈ G} satisfies G[x]/≈ = W/≈,
so that this W will do.

Finally, note that fw(g) = eG if and only if fawa−1(g) = eG holds for every
a ∈ G, so that w ∼ awa−1, and ε(awa−1) = ε(w). Then, in describing EG,
there is no harm in assuming that a word w = g1x

ε1g2x
ε2 · · · gnxεng0 ∈ G[x] has

g0 = eG (or g1 = eG); indeed, from now on, we will often consider exclusively
words w of the form

w = g1x
ε1g2x

ε2 · · · gnxεn ∈ G[x]. (14)

Lemma 4.7. Let v ∈ G[x]. Then v ∼ w for a word w ∈ G[x] as in (14), with
ε(w) = |ε(v)| ≥ 0.
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Proof. By Remark 4.6, we have that v ∼ v−1, and ε(v−1) = −ε(v), so that we
can assume ε(v) ≥ 0.

Then, by the above discussion, v ∼ w for a word w as in (14), and with
ε(w) = ε(v).

5. Quasi-topological group topologies

Let X be a set, and λ be an infinite cardinal number. We denote by [X]<λ the
family of subsets of X having size strictly smaller than λ.

As the family B = [X]<λ ∪ {X} is stable under taking finite unions and
arbitrary intersections, it is the family of closed sets of a topology onX, denoted
by co-λX . For example, taking λ = ω, one obtains the cofinite topology

cofX = co-ωX .

For example, for every infinite cardinal number λ, the space (G, co-λG) is
a T1 quasi-topological group. In particular, if G is infinite, (G, cofG) is a T1,
non-Hausdorff (being Noetherian) quasi-topological group. So if G is infinite,
then (G, cofG) is not a topological group. We will use the topologies co-λG on
G as a source of counter-examples in Example 5.5.

5.1. General results

In what follows we give some general results for quasi-topological groups. For
a reference on this topic, see for example [2].

Theorem 5.1. Let (G, τ) be a quasi-topological group.
(a) If S ⊆ G, then the τ -closure of S is

S =
⋂

U∈Vτ (eG)

U · S =
⋂

V ∈Vτ (eG)

S · V.

(b) If H is a subgroup with non-empty interior, then H is open.
(c) A finite-index closed subgroup of G is open.
(d) The closure of a (normal) subgroup is a (normal) subgroup.

Proof. To prove (a), (b) and (c) one only needs the inversion and shifts to be
continuous, so proceed as in the case of topological groups.

(d) Let H be a subgroup of G, and H be its τ -closure. We have to show
that H is a subgroup, that is: H −1 ⊆ H and H ·H ⊆ H.

The hypothesis that the inversion function is τ -continuous guarantees that
H −1 ⊆ H−1 = H.

In the same way, for every h ∈ H, the left traslation by h in G is τ -
continuous, so h · H ⊆ h ·H = H; as this holds for every h ∈ H, we get
H ·H ⊆ H.
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Now consider the right traslation in G by an element c ∈ H. It is τ -
continuous, so

H · c ⊆ H · c ⊆ H ·H ⊆ H = H.

From the above inclusion, we finally deduce H ·H ⊆ H.
Composing translations we obtain that also conjugations are τ -continuous;

so if H is a normal subgroup and g ∈ G, then

g ·H · g−1 ⊆ g ·H · g−1 = H.

Let (G, τ) be a quasi-topological group, and N be a normal subgroup of G.
Consider the quotient group G = G/N and the canonical map π : (G, τ)→ G.
The quotient topology τ of τ on G is the final topology of π, namely τ = {A ⊆
G | π−1(A) ∈ τ}. Then, the following results hold.

Proposition 5.2. If (G, τ) is a quasi-topological group, then (G, τ) is a quasi-
topological group, and the map π : (G, τ) → (G, τ) is continuous and open. In
particular, τ = {π(X) ⊆ G | X ∈ τ}.

Proof. Proceed as in the case of topological groups to verify that (G, τ) is a
quasi-topological group.

We prove that π is open. Let A ∈ τ , and note that π(A) ∈ τ if and only if
π−1π(A) ∈ τ . As

π−1π(A) = A ·N =
⋃
n∈N

A · n,

and (G, τ) is a quasi-topological group, we are done.

Proposition 5.3. If (G, τ) is a quasi-topological group, then the following are
equivalent.

(1) N is τ -closed;

(2) {eG} is τ -closed;

(3) τ is a T1 topology.

Proof. (1)⇒ (2). Let N be τ -closed. We are going to prove that A = G\{eG}
is τ -open, and note that this holds if and only if π−1(A) is τ -open. As π−1(A) =
G \N is τ -open by assumption, we are done.

(2)⇒ (3) holds as (G, τ) is a quasi-topological group by Proposition 5.2.
(3) ⇒ (1). If τ is a T1 topology, in particular {eG} is τ -closed, so that

N = π−1({eG}) is τ -closed, being π continuous.
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5.2. Verbal functions

We will now characterize which topologies on a group make it a quasi-topological
group, in term of continuity of an appropriate family of verbal functions.

Lemma 5.4. Let G be a group, and τ a topology on G. Then (G, τ) is a quasi-
topological group if and only if fw : (G, τ)→ (G, τ) is continuous for every word
of the form w = gxε ∈ G[x], with g ∈ G and ε = ±1.

In particular, if a topology σ on a group G makes continuous every verbal
function, then (G, σ) is a quasi-topological group. If σ is also T1, then ZG ⊆ σ.

Proof. Let ι denote the inversion function of G. If (G, τ) is a quasi-topological
group, then every verbal function of the form fgx, being a left translation, is
τ -continuous. Then also every fgx−1 = fgx ◦ ι is τ -continuous.

For the converse, let τ be a topology on G such that fw : (G, τ) → (G, τ)
is continuous for every word w = gxε, with g ∈ G and ε = ±1. Then items 3
and 5 in Example 1.1 show that the inversion and the left translations are verbal
functions of this form, hence are τ -continuous. Finally, the right translation by
an element g is fxg = fx−1 ◦ fg−1x−1 .

For the last part, note that if σ is T1, then {eG} is σ-closed. If moreover
every fw is σ-continuous, then also every Ew = f−1w ({eG}) is σ-closed. As EG
is a subbase for the ZG-closed sets, we conclude ZG ⊆ σ.

Example 5.5. Let (G, τ) be a T1 quasi-topological group. By Lemma 5.4,
every verbal function in {fgxε | g ∈ G, ε = ±1} is τ -continuous. We shall see
that not every verbal function need to be τ -continuous.

To this end, recall that the space (G, co-λG) is a T1 quasi-topological group
for every infinite cardinal number λ.

So let ω ≤ λ < κ = |G|, note that co-λG is not the discrete topology on G,
and consider τ = co-λG.

1. Let G be a group having a non-central element a such that |CG(a)| ≥ λ
(for example, the group G = ⊕κS3 will do). Then let w = [a, x] ∈
G[x], and consider the commutator verbal function fw ∈ F (G). As
f−1w ({eG}) = CG(a) 6= G, we have that fw is not τ -continuous.

2. Let G be a non-abelian group such that |G[2]| ≥ λ (also in this case the
group G = ⊕κS3 considered above will do). Then let w = x2 ∈ G[x], and
consider the verbal function fw ∈ F (G). As f−1w ({eG}) = G[2] 6= G, we
have that fw is not τ -continuous.

In the following results we prove that (G,ZG), (G,MG) and (G,PG) are
quasi-topological groups.

Proposition 5.6. For every group G, the following hold.
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1. Every verbal function is ZG-continuous.

2. The pair (G,ZG) is a quasi-topological group.

3. ZG is the initial topology of the family of all verbal functions {f : G →
(G,ZG) | f ∈ F (G)}.

Proof. 1. Follows from the fact that EG is a subbase for the ZG-closed sub-
sets of G, and from Lemma 4.4.

2. Immediately follows by Lemma 5.4 and item 1.

3. Also follows by item 1.

Corollary 5.7. Every group topology on a group G makes continuous every
verbal function of G. In particular MG and PG make continuous every verbal
function of G, so ZG ⊆MG ⊆ PG, and all the three are quasi-topological group
topologies.

Proof. As a verbal function is a composition of products and inversions, it is
continuous with respect to every group topology. The same is true for MG and
PG, which are intersections of group topologies, then Lemma 5.4 applies.

If N is a normal subgroup of a group G, and G = G/N is the quotient
group, consider the quotient topology ZG on G. In the following proposition
we prove that every verbal function (G,ZG)→ (G,ZG) of G is continuous.

Proposition 5.8. Let N be a normal subgroup of a group G, and let G = G/N .
Then the quotient topology ZG makes continuous every verbal function of G.

Proof. Let v = g1x
ε1g2x

ε2 · · · gnxεn ∈ G[x], and we have to prove that

fv : (G,ZG)→ (G,ZG)

is continuous. If w = g1x
ε1g2x

ε2 · · · gnxεn ∈ G[x], then v = w, and in the
notation of Remark 3.3, item 2, the following diagram commutes.

(G,ZG)
fw //

π

��

(G,ZG)

π

��
(G,ZG)

fw // (G,ZG).

(15)

As fw is continuous and ZG is the final topology of the canonical projection
π : (G,ZG)→ G, also fw is continuous.
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The main result of this subsection is the following theorem characterizing
the normal subgroups N of G such that the canonical projection π : (G,ZG)→
(G,ZG) is continuous, where G = G/N .

Theorem 5.9. Let N be a normal subgroup of a group G, and let G = G/N .
Then the following conditions are equivalent:

(1) N is ZG-closed;

(2) ZG is a T1 topology;

(3) ZG ⊆ ZG;

(4) the canonical map π : (G,ZG)→ (G,ZG) is continuous.

Proof. (1)⇔ (2) follows by Proposition 5.3 and Proposition 5.6, item 2.
(2)⇒ (3) follows by Proposition 5.8 and Lemma 5.4.
(3) ⇒ (4). In this case, the map id: (G,ZG) → (G,ZG) is continuous, and

so also the composition

(G,ZG)
π−→ (G,ZG)

id−→ (G,ZG).

(4)⇒ (1) holds as {eG} is ZG-closed and N = π−1({eG}).

As an application of Theorem 5.9, we prove in the following corollary that
every n-th center Zn(G) of G is ZG-closed, where Zn(G) ≤ G is defined induc-
tively as follows, for n ∈ N+. Let Z1(G) = Z(G). Consider the quotient group
G/Z(G), its center Z

(
G/Z(G)

)
, and its preimage Z2(G) ≤ G under the canon-

ical projection π : G → G/Z(G). Proceed by induction to define an ascending
chain of characteristic subgroups Zn(G).

Corollary 5.10. For every group G, and every positive integer n, the subgroup
Zn(G) is ZG-closed.

Proof. The center Z(G) = Z1(G) is ZG-closed by Example 1.2, item 2. If
G = G/Z(G), then the projection π : (G,ZG) → (G,ZG) is continuous by
Theorem 5.9. As Z(G) is ZG-closed, we have that Z2(G) = π−1(Z(G)) is
ZG-closed.

Proceed by induction to get the thesis.

Remark 5.11. Corollary 5.10 can also be proved observing that it is possible
to define by induction Z1(G) = Z(G) and, for an integer i ≥ 1, and x ∈ G, note
that x ∈ Zi+1(G) if and only if [g, x] = gxg−1x−1 ∈ Zi(G) for every g ∈ G.
Equivalently, if wg = [g, x] ∈ G[x], then

Zi+1(G) =
⋂
g∈G
{x ∈ G | [g, x] ∈ Zi(G)} =

⋂
g∈G

f−1wg (Zi(G)).

As fwg is ZG-continuous by Proposition 5.6, item 1, for every g ∈ G, and Zi(G)
is ZG-closed by inductive hypothesis, we deduce that Zi+1(G) is ZG-closed.
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5.3. Partial Zariski topologies

Given a subset W ⊆ G[x], we consider the family E(W ) = {EGw | w ∈W} ⊆ EG
of elementary algebraic subsets of G determined by the words w ∈ W . Then,
following [4] and [5], we consider the topology TW having E(W ) as a subbase
for its closed sets.

Example 5.12. 1. Note that E(G[x]) = EG, so TG[x] = ZG.

2. Taking W = {gx | g ∈ G}, one obtains that E(W ) = {{g} | g ∈ G}, so
that TW = cofG.

Lemma 5.13. Let W ⊆ G[x], and assume that gw ∈ W , for every w ∈ W and
every g ∈ G. Then TW is the initial topology of the family of verbal functions
{fw : G→ (G, cofG) | w ∈W}.

Proof. If τ is such initial topology, then F =
{
f−1w ({g}) = f −1

g−1w ({eG}) | w ∈
W, g ∈ G

}
is a subbase for the τ -closed sets.

By assumption, F coincides with E(W ) =
{
Ew = f−1w ({eG}) | w ∈ W

}
, so

that τ = TW .

In particular, ZG can be equivalently defined as the initial topology of the
family of all verbal functions {f : G→ (G, cofG) | f ∈ F (G)}.

Example 5.14. Let a, b ∈ G, and w = bxax−1 = ba[a−1, x] ∈ G[x]. Note that
Ew 6= ∅ if and only if there exists an element g ∈ G such that b = ga−1g−1, i.e.
b and a−1 are conjugated elements in G. In this case, w = (ga−1g−1)xax−1.

In particular, letting V = {bxax−1 | a, b ∈ G} ⊆ G[x] and

WC = {[g, a][a, x] = (gag−1)xa−1x−1 | a, g ∈ G} ⊆ V, (16)

we obtain that E(V ) \ ∅ = E(WC) ⊆ E(V ), so that TV = TWC
. Moreover, by

Example 4.5, item 2, we have

E(WC) = {gCG(a) | a, g ∈ G}. (17)

Definition 5.15. Given a group G, we denote by CG the topology TWC
, for

WC ⊆ G[x] as in (16). We call CG the centralizer topology of G.

We will study CG in more details in §5.4.
By definition, the family C = {gCG(a) | a, g ∈ G} is a subbase for the

CG-closed subsets of G. On the other hand, one can consider the topology C
generates taking its members as open sets, i.e. the coarsest topology TG on G
such that gCG(a) is TG-open, for every a, g ∈ G. The topology TG has been
introduced by Tăımanov in [22] and is now called the Tăımanov topology of G.
See for example [10] for a recent work on this topic.
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Definition 5.16. The Tăımanov topology TG on a group G is the topology
having the family of the centralizers of the elements of G as a subbase of the
filter of the neighborhoods of eG.

It is easy to check that TG is a group topology, and for every element g ∈ G
the subgroup CG(g) is a TG-open (hence, closed) subset of G. So note that
CG ⊆ TG in general (see Lemma 5.33 for a sufficient condition on G to have
CG = TG).

Note that {eG}
TG

= Z(G), so TG need not be Hausdorff.

Lemma 5.17 ([10, Lemma 4.1]). If G is a group, then the following hold for
TG.

1. TG is Hausdorff if and only if G is center-free.

2. TG is indiscrete if and only if G is abelian.

Remark 5.18. If S ⊆ G, let

C(S) = {[g, a][a, x] = (gag−1)xa−1x−1 | g ∈ G, a ∈ S} ⊆ G[x],

D(S) = {[xcx−1, b] | b, c ∈ S} ⊆ G[x].

For example, C(G) = WC as in (16), so that TC(G) = CG.
In [3], the authors introduced two restricted Zariski topologies Z′G, Z′′G on

a group G, that in our notation are respectively Z′G = TC(G[2])∪D(G[2]), and
Z′′G = TC(G[2]). Obviously, Z′′G ⊆ Z′G ⊆ ZG and Z′′G ⊆ CG hold for every group
G. See also Theorem 5.26.

In the following definition we introduce the partial Zariski topology Tmon
determined by the monomials. Note that by Lemma 4.7 there is no harm
in considering only the monomials with non-negative content. Moreover, by
Remark 4.2 we can indeed consider only positive-content monomials.

Definition 5.19. If M = {gxn | g ∈ G, n ∈ N+} ⊆ G[x] is the family of the
monomials with positive content, then we denote by Tmon the topology having
E(M) as a subbase for its closed sets, and we call it the monomial topology of
G.

Note that gx ∈M for every g ∈ G, so that Tmon is T1 topology.

Example 5.20. Let G be abelian. We have seen in §3.4 that w ≈ wab for every
w ∈ G[x]. As in studying Ew we can assume ε(w) ≥ 0 by Lemma 4.7, this
shows that Tmon = ZG.
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In [21], Ol’shanskij built the first example of a countable group G with
ZG = δG, so that ZG = MG = δG. A closer look at his proof reveals that really
also Tmon = δG for such a group G.

Recall that a group G is said to satisfy the cancellation law if xn = yn

implies x = y, for every n ∈ N+ and x, y ∈ G. Here we recall also that a group
G is called:

• nilpotent if Zn(G) = G for some n ∈ N+,

• torsion-free if every element has infinite order.

It is a classical result due to Chernikov, that if G is a nilpotent, torsion-free
group, then G satisfies the cancellation law.

Corollary 5.21. If G satisfies the cancellation law, then Tmon = cofG. In
particular, Tmon = cofG for every nilpotent, torsion-free group G.

Proof. It suffices to prove that Ew has at most one element, for every monomial
w = gxm ∈ G[x] with m > 0. So let w = gxm, and assume a ∈ Ew, so that
am = g−1. Then Ew = {p ∈ G | pm = am}, so that Ew = {a}.

If G is a nilpotent, torsion-free group, then Chernikov’s result applies.

5.3.1. Permutation groups

In what follows, X is an infinite set. For a subgroup G ≤ S(X) of the permu-
tation group of X, recall that τp(G) denote the point-wise convergence topology
of G. Then τp(G) is a Hausdorff group topology, so that ZG ⊆MG ⊆ τp(G) for
every group G ≤ S(X). The following classic result was proved by Gaughan
in 1967.

Theorem 5.22 ([18]). Let G = S(X). Then τp(G) is contained in every Haus-
dorff group topology on G.

In particular, it follows from Theorem 5.22 that MS(X) = τp(S(X)) is itself
a Hausdorff group topology.

Ten years after Gaughan’s Theorem 5.22, Dierolf and Schwanengel (unaware
of his result) proved the following:

Theorem 5.23 ([9]). Let Sω(X) ≤ G ≤ S(X). Then τp(G) is a minimal
Hausdorff group topology.

Although Theorem 5.23 provides new results for groups Sω(X) ≤ G �
S(X), Theorem 5.22 gives a much stronger result for the whole group S(X).
That is why Dikranjan conjectured the following.

Conjecture 5.24 ([19]). Let Sω(X) ≤ G ≤ S(X). Then MG = τp(G).
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The following question was raised by Dikranjan and Shakhmatov (see The-
orem 5.22).

Question 5.25 ([11]). Does MS(X) coincide with ZS(X)?

It has recently turned out that Dikranjan’s conjecture is true, and Dikranjan-
Shakhmatov’s question has a positive answer. It has been proved in [3] that
ZG = MG is the pointwise convergence topology for all subgroups G of infinite
permutation groups S(X), that contain the subgroup Sω(X) of all permuta-
tions of finite support.

Theorem 5.26 ([3]). If Sω(X) ≤ G ≤ S(X), then Z′′G ( Z′G = ZG = MG =
τp(G).

As a corollary of Theorem 5.26, the same authors have obtained the follow-
ing answer to another question posed by Dikranjan and Shakhmatov.

Corollary 5.27 ([3]). The class of groups G satisfying ZG = MG is not closed
under taking subgroups.

Proof. Let H be a group such that ZH 6= MH , embed it in G = S(H), and
apply Theorem 5.26 to conclude that ZG = MG.

5.4. Centralizer topologies

In this subsection, we study two partial Zariski topologies. The first one is the
topology CG introduced in Definition 5.15. As we shall see in Proposition 5.30,
item 3, the topology CG is not T1 in general, so CG 6= ZG in general. As
CG ⊆ ZG, we can still consider the coarsest T1 topology C′G on G such that

CG ⊆ C′G ⊆ ZG.

The cofinite topology cofG being the coarsest T1 topology on G, in the following
definition we introduce the T1-refinement topology C′G of CG.

Definition 5.28. The T1 centralizer topology C′G on a group G is the supre-
mum (in the lattice of all topologies on G)

C′G = CG ∨ cofG.

Remark 5.29. Then C′G is T1, and CG ⊆ C′G ⊆ ZG, so that CG = C′G if and
only if CG is T1.

Let W = WC ∪ {gx | g ∈ G}. Then C′G = TW , as

E(W ) = E(WC) ∪ {{g} | g ∈ G} = {gCG(a) | a, g ∈ G} ∪ {{g} | g ∈ G} ,

where the second equality follows from (17). Obviously, C′G = TW ′ also for
W ′ = {axbx−1 | a, b ∈ G} ∪ {xg | g ∈ G}.
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In what follows, we denote by ιG the indiscrete topology on G, namely

ιG = {∅, G} ⊆ P(G).

Here follows some easy-to-establish properties of the centralizer topologies
CG and C′G.

Proposition 5.30. Let G be a group. Then the following hold.

1. Both the pair (G,CG) and (G,C′G) are quasi-topological groups.

2. {eG}
CG

= Z(G).

3. CG is T1 (so CG = C′G) if and only if Z(G) = {eG}, while CG = ιG if and
only if G = Z(G) is abelian.

4. If H ≤ G, then CH ⊆ CG �H and C′H ⊆ C′G �H .

Proof. (1) is straightforward.
(2). As Z(G) =

⋂
g∈G CG(g) is CG-closed, one only has to verify that every

CG-closed subset containing eG must also contain Z(G).
(3). Immediately follows from items (1) and (2).
(4). To prove that CH ⊆ CG �H , it suffices to note that for every element

h ∈ H we have that CH(h) = CG(h) ∩H is a CG �H -closed subset of H.
To prove the inclusion C′H ⊆ C′G �H , note that cofH = cofG �H , so that

C′H = CH ∨ cofH ⊆ CG �H ∨ cofG �H⊆ (CG ∨ cofG) �H= C′G �H .

We shall see in §5.4.1 that every free non-abelian group F satisfies CF =
C′F = ZF . On the other hand, we consider a class of matrix groups H in §5.4.2,
satisfying CH 6= C′H = ZH .

Example 5.31. Let us show that the inclusion CH ⊆ CG �H in Proposition 5.30,
item 4, may be proper. To this end, it will suffice to consider a group G having
an abelian, non-central subgroup H, so that

ιH = CH ( CG �H .

Indeed, ιH = CH holds by Proposition 5.30, item 3, as H is abelian, while
∅ 6= Z(G) ∩H ( H is a CG �H -closed subset of H.

Proposition 5.32. Let G be a group, G = G/Z(G), and τ be the initial topol-
ogy on G of the canonical projection map

π : G→ (G, cofG). (18)

Then τ ⊆ CG.
Moreover, CG = τ if and only if for every g ∈ G \ Z(G) the index [CG(g) :

Z(G)] is finite.
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Proof. As the family of singletons of G is a subbase for the cofG-closed sets,
and π−1({gZ(G)}) = gZ(G) is CG-closed for every g ∈ G by Proposition 5.30,
items 1 and 2, we immediately obtain τ ⊆ CG.

For the reverse inclusion, we have that CG ⊆ τ if and only if CG(g) is τ -
closed for every g ∈ G by Proposition 5.30, item 1. As CG(g) = G is certanly
τ -closed for an element g ∈ Z(G), it is sufficient to consider the case when
CG(g) is τ -closed for every g ∈ G \ Z(G).

Finally note that, if g ∈ G \ Z(G), then G  CG(g) ≥ Z(G). So CG(g) =
π−1

(
π(CG(g))

)
is τ -closed exactly when π(CG(g)) = CG(g)/Z(G) is finite.

Recall that a group G is called an FC-group if the index [G : CG(F )] is finite
for every F ∈ [G]<ω, or equivalently if [G : CG(g)] is finite for every g ∈ G.

Now we prove that the centralizer topology CG and the Tăımanov topology
TG coincide on an FC-group G.

Lemma 5.33. If G is an FC-group, then CG = TG.

Proof. The inclusion CG ⊆ TG holds for every group, so we prove the reverse
one. To this end, it suffices to prove that CG(F ) is a CG-neighborhood of eG,
for every F ∈ [G]<ω. So let F ∈ [G]<ω, and note that CG(F ) is a finite-
index subgroup as G is an FC-group. As (G,CG) is a quasi-topological group
by Proposition 5.30, item 1, we can apply Theorem 5.1 (c) to conclude that
CG(F ) is CG-open.

5.4.1. The Zariski topology of free non-abelian groups

Let F be a free non-abelian group, and let

B = {{f}, fCF (g) | f, g ∈ F} ⊆ EF .

By Remark 5.29, the family B is a subbase for the C′F -closed subsets.

Proposition 5.34 ([8, Theorem 5.3]). Arbitrary intersections of proper ele-
mentary algebraic subsets of F are elements of B∪.

In the original statement of Proposition 5.34, the authors used the family

{{f}, fCF (g)h | f, g, h ∈ F}

instead of B. Recall that fCF (g)h = fhCF (h−1gh), so that really the two
families coincide.

Theorem 5.35. If F is a free non-abelian group, then CF = C′F = ZF .

Proof. It trivially follows from Proposition 5.34 that EF ⊆ B∪, so that B ⊆ EG
yields E∪F = B∪. Then ZF = C′F , while CF = C′F holds by Proposition 5.30,
item 3.
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5.4.2. The Zariski topology of Heisenberg groups

If n is a positive integer, and K is an infinite field, the n-th Heisenberg group
with coefficients in K is the matrix group

H = H(n,K) =

=




1 x1 · · · xn y

1 0 z1

0
. . .

...
0 1 zn

0 0 1

 ∈ GLn+2(K) | x1, . . . , xn, z1, . . . , zn, y ∈ K


.

As Z(H) ∼= K is not trivial, Proposition 5.30, item 3, implies CH 6= C′H .
In [16], we have computed the Zariski topology of H(1,K). It follows from

[16, Remark 6.9] that ZH(1,K) = C′H(1,K) when charK 6= 2.
If charK 6= 2, then it can also be proved using the same techniques that

C′H = ZH , so that

CH 6= C′H = ZH

for every n ∈ N+.
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