Scienze matematiche e informatiche
Permanent URI
Settori scientifico disciplinari compresi nell'area 1:
|
|
|
Browse
Browsing Scienze matematiche e informatiche by Author "Corsato, Chiara"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- PublicationMathematical analysis of some differential models involving the Euclidean or the Minkowski mean curvature operator(Università degli studi di Trieste, 2015-04-28)
;Corsato, ChiaraOmari, PierpaoloQuesta tesi è dedicata allo studio di alcuni modelli differenziali che nascono nell'ambito della fluidodinamica o della relatività generale e che coinvolgono gli operatori di curvatura media nello spazio $N$-dimensionale euclideo o di Minkowski. Entrambi sono operatori ellittici quasi-lineari che non soddisfano la proprietà di uniforme ellitticità, essendo l'operatore di curvatura media euclidea degenere, mentre quello di curvatura media nello spazio di Minkowski singolare. Il lavoro è suddiviso in tre parti. La prima riguarda lo studio delle soluzioni periodiche dell'equazione di curvatura prescritta unidimensionale nello spazio euclideo, equazione che modellizza fenomeni di tipo capillarità. In accordo con la struttura dell'operatore di curvatura e imponendo un opportuno comportamento in 0, o all'infinito, della curvatura prescritta, si dimostra l'esistenza di infinite soluzioni subarmoniche classiche arbitrariamente piccole aventi opportune proprietà nodali, oppure di infinite soluzioni subarmoniche a variazione limitata con oscillazioni arbitrariamente grandi. La tecnica per la ricerca delle soluzioni classiche è topologica e si basa sull'uso del numero di rotazione e su una generalizzazione del teorema di Poincaré-Birkhoff; d'altro lato l'approccio per lo studio delle soluzioni non classiche poggia sulla teoria dei punti critici per funzionali non lisci, in particolare su un lemma di passo di montagna nello spazio delle funzioni a variazione limitata. La seconda parte della tesi è dedicata allo studio del problema di Dirichlet omogeneo associato a un'equazione della curvatura media prescritta anisotropa nello spazio euclideo, il quale fornisce un modello di descrizione della geometria della cornea umana. Il problema è ambientato in un dominio regolare in $\mathbb{R}^N$ con frontiera lipschitziana. Il capitolo è suddiviso a sua volta in tre sezioni, che sono rispettivamente focalizzate sui casi unidimensionale, radiale e $N$-dimensionale. Nel caso unidimensionale e nel caso radiale in una palla, si dimostrano l'esistenza e l'unicità di una soluzione classica, che presenta alcune proprietà qualitative aggiuntive. Le tecniche usate in questo contesto sono di natura topologica. Infine, nel caso $N$-dimensionale in un dominio generale, si provano l'esistenza, l'unicità e la regolarità di una soluzione di tipo forte del problema. In relazione ai possibili fenomeni di scoppio del gradiente, l'approccio è variazionale nello spazio delle funzioni a variazione limitata. Si enunciano e si dimostrano prima di tutto alcuni risultati preliminari riguardo al comportamento del funzionale associato al problema; tra questi, si sottolinea l'importanza di una proprietà di approssimazione. Successivamente si provano l'esistenza e l'unicità del minimizzante globale del funzionale, che è regolare all'interno ma non necessariamente sulla frontiera, e soddisfa il problema secondo un'opportuna definizione. Infine si mostra l'unicità della soluzione del problema. Sotto alcune ipotesi rafforzate sulla geometria del dominio, la soluzione ottenuta è classica. La terza parte della tesi riguarda il problema di Dirichlet associato a un'equazione della curvatura media prescritta nello spazio di Minkowski, che è di interesse in relatività generale. Il problema è ambientato in un dominio limitato regolare in $\mathbb{R}^N$ e un modello di curvatura media prescritta è dato da una funzione $f(x,s)$ che può avere comportamento sublineare, lineare, superlineare o sub-superlineare in $s=0$. L'attenzione è rivolta all'esistenza e alla molteplicità di soluzioni positive del problema. Come il precedente, anche questo capitolo è suddiviso in tre sezioni, che trattano rispettivamente i casi unidimensionale, radiale e $N$-dimensionale in un dominio generale. Nel caso unidimensionale, viene impiegato un approccio di tipo mappa-tempo per studiare una semplice situazione autonoma. Nel caso radiale in una palla, la tecnica è variazionale e lo studio del funzionale associato al problema evidenzia l'esistenza di un punto critico (casi sublineare o lineare), o di due (caso superlineare), o di tre punti critici (caso sub-superlineare): ciascuno di questi è una soluzione positiva del problema. Infine, nel caso generale in dimensione $N$, si adotta un approccio topologico che permette di studiare il problema non variazionale, in cui la funzione $f$ può dipendere dal gradiente della soluzione. Più nel dettaglio, con un metodo di sotto- e sopra-soluzioni specificamente sviluppato per questo problema, proviamo vari risultati di esistenza, molteplicità e localizzazione, in relazione alla presenza di una singola sotto-soluzione, o di una singola sopra-soluzione, o di una coppia di sotto- e sopra-soluzione ordinate o non ordinate. L'Appendice chiude la tesi: qui sono raccolti vari strumenti matematici utilizzati nel corso del lavoro.958 1323
