Ingegneria civile e architettura
Permanent URI
Settori scientifico disciplinari compresi nell'area 8:
|
|
Browse
Browsing Ingegneria civile e architettura by Author "Agrusta, Andrea Antonio"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- PublicationOPTIMISATION'S TECHNIQUES OF HULL SHAPES USING CFD RANSE SIMULATIONS WITH LOW NUMBER OF CELLS(Università degli studi di Trieste, 2015-04-28)
;Agrusta, Andrea AntonioZotti, IgorNegli ultimi anni le tecniche di idrodinamica numerica CFD hanno permesso di effettuare simulazioni al computer riguardanti l’ interazione tra solidi e fluidi. L’utilizzo dei software CFD permette una simulazione assolutamente realistica dei fenomeni idrodinamici, permettendo al progettista/programmatore di analizzare in tempi relativamente brevi molteplici soluzioni, onde sceglierne la migliore e di conseguenza molteplici macro o micro modifiche sulla carena prescelta, per valutarne l’impatto in termini di resistenza al moto, assetto, tenuta al mare, comfort. Negli ultimi anni si è visto un crescente utilizzo di algoritmi matematici di ottimizzazione multiobiettivo associati a modellatori 3d parametrici e successivamente a solutori CFD BEM a potenziale. Tali applicazioni tipicamente consentono di trovare le forme ottimali che, nel rispetto dei vincoli imposti, generino la minima resistenza d’onda ad una o più determinate velocità. Associare un processo di ottimizzazione ad un solutore viscoso RANS consente invece, conoscendo una moltitudine di parametri fisici in più, di ottimizzare seguendo più obiettivi ed in particolar modo la capacità di poter valutare l’effetto dell’attrito consente di poter ottimizzare le forme al fine di ridurre la resistenza totale all’avanzamento. Fino a ieri però un processo di ottimizzazione associato a simulazioni CFD RANS, se pur teoricamente possibile, era di fatto raramente utilizzato in quanto sconveniente a causa dell’enorme mole di calcoli da eseguire per valutare la bontà di centinaia di soluzioni diverse, rendendo troppo lungo ed oneroso il processo. Minimizzando il numero di celle computazionali riducendo così i tempi ei costi di simulazioni in ogni caso risultati adeguati, si dimostra come il modo simulazioni RANS viscosi saranno molto più utili rispetto a potenziali metodi BEM . Scopo infatti di questo lavoro è stato quello di associare un processo di ottimizzazione di carena basato sulla riduzione della RESISTENZA TOTALE ALL’AVANZAMENTO valutata attraverso l’utilizzo di simulazioni CFD RANSE eseguite con un dominio di calcolo a basso numero di celle. Tale dominio di calcolo deriva dall’accurato sviluppo di una procedura standardizzata che permette di eseguire simulazioni RANSE con una griglia standard che garantisce la bontà del risultato anche se “COARSE”. La presente trattazione oltre a fornire una panoramica sullo stato dell’arte in letteratura, presenta lo sviluppo di una metodologia atta ad eseguire simulazioni a basso numero di celle in maniera standardizzata, sviluppando tre tipi di meshatura standard, suddividendo le carene da studiare in tre differenti famiglie raggruppate per similitudine di geometrie e velocità di funzionamento e pertanto accomunate da una similare formazione ondosa : Round Bilge Displacement Hull, Round Bilge and Hard Chine Semiplaning Hull (Single and Multi-Hull), Hard Chine Planing Hull. Si è successivamente passati alla determinazione dei metodi di ottimizzazione investigando le potenzialità ed i limiti dei diversi metodi noti per eseguire ottimizzazioni multi-obiettivo, compreso il metodo „Sherpa“ basato su un robusto algoritmo combinato e progressivo finalizzato al raggiungimento della soluzione ottima riducendo automaticamente il numero di casi da simulare. Il processo di ottimizzazione in oggetto è stato applicato ad una innovativa carena semi-planante a spigolo dotata di bulbo prodiero a lama: si è partiti da una carena di base che soddisfaceva tutti i requisiti di progetto e, nel rispetto dei vincoli imposti, parametrizzata la carena ed impostati i set-up di calcolo, al termine dell’ottimizzazione si è ottenuta la geometria ottimale della stessa al fine della riduzione della resistenza totale a due differenti velocità (crociera e massima). Al termine delle attività si è proceduto con l’esecuzione di test in vasca navale su modello in scala per validare i risultati ottenuti per via numerica. La possibilità di ottenere simulazioni viscose con domini “standardizzati” a basso numero di celle permette l’analisi comparativa di molteplici soluzioni progettuali contenendo tempi e costi e con la certezza che i risultati siano realistici ed affidabili. L’innovativa standardizzazione studiata permette inoltre una riduzione del tempo di preparazione del set-up permettendo all’operatore di lanciare una simulazione su una nuova carena in pochi minuti, senza dover effettuare laboriose meshature ad-hoc e controlli di grid-independence dei risultati. L’utilizzo di queste griglie standard permette inoltre, come spiegato, di utilizzare le simulazioni CFD RANSE anche per eseguire ottimizzazioni multi-obiettivo riguardanti, per esempio, la riduzione della resistenza totale all’avanzamento. Senza griglie di questo tipo, raffinate ottimizzazioni basate su solutori viscosi sarebbero spesso antieconomiche. Difatti i risultati cui il presente lavoro è pervenuto riguardano un sensibile abbattimento dei tempi di calcolo necessari all’esecuzione di un’ottimizzazione morfologica di carena basata sulla minimizzazione della resistenza a due differenti velocità: in meno di 700 ore di calcolo con un tradizionale server a 12 core, ovvero in circa 80 ore utilizzando un centro di calcolo a 100 core, si riescono ad ottenere risultati importanti validi per fare delle valutazioni in senso assoluto sulla potenza necessaria all’imbarcazione per raggiungere le velocità prestabilite. Una procedura di questo tipo permette da una parte la possibilità di lavorare sulla resistenza totale o su altre quantità fisiche espresse dal solutore RANSE, dall’altra per la sua velocità e la sua semplicità d’utilizzo, consente l’avvicinamento alla CFD anche a progettisti di piccole imbarcazioni che fino ad oggi per problematiche di tempo e di budget non potevano approcciare ad una tecnologia così raffinata per progettare le loro carene. Difatti in un prossimo futuro l’utilizzo diffuso di tecniche di ottimizzazione o anche semplicemente di comparazione ed analisi di carene destinate ad imbarcazioni grandi e piccole, potrà contribuire in maniera significativa al risparmio di Potenza motrice installata a bordo (es. Grazie alla riduzione della resistenza totale), consentendo da una parte risparmi economici di carburante e dall’altra, soprattutto, una riduzione delle emissioni nocive in atmosfera.937 2013