Questa tesi ha lo scopo di formalizzare un nuovo filone teorico, che deriva dall’algebra degli operatori lineari integrali di Fredholm-Volterra agenti su spazi di Hilbert, per la sintesi di stimatori dello stato e parametrici per sistemi dinamici a tempo continuo sfruttando le misure ingressi/uscite, soggetti a perturbazione tempo-varianti.
In maniera da ottenere stime non-asintotiche di sistemi dinamici a tempo continuo, i metodi classici tipicamente aumentano la dimensione del vettore delle variabili di decisione con le condizioni iniziali incognite di stati non misurati. Tuttavia, questo porta ad un accrescimento della complessitá dell’algoritmo. Recentemente, diversi metodi di stima algebrici sono stati sviluppati, sfruttando un approccio algebrico piuttosto che da una prospettiva statistica o teorica. Mentre le forti fondamenta teoriche e le proprietá di convergenza non asintotiche rappresentano caratteristiche notevoli per questi metodi, il principale inconveniente é che l’implementazione pratica produce una dinamica internamente instabile. Quindi, la progettazione di metodi di stima per questi tipi di sistemi é un argomento importante ed emergente.
L’obiettivo di questo lavoro é quello di presentare alcuni risultati recenti, considerando diversi aspetti e affrontando alcuni dei problemi che emergono quando si progettano algoritmi di identificazione. Lo scopo é sviluppare un’architettura di stima con proprietá di convergenza molto veloci e internamente stabile.
Seguendo un ordine logico, prima di tutto verrá progettato l’algoritmo di identificazione proponendo una nuova architettura basata sui kernel, utilizzando l’algebra degli operatori lineari integrali di Fredholm-Volterra. Inoltre, la metodologia proposta sará affrontata in maniera da progettare stimatori per sistemi dinamici a tempo continuo con proprietá di convergenza molto veloci, caratterizzati da gradi relativi limitati e possibilmente affetti da perturbazioni strutturate. Piú nello specifico, il progetto di adeguati kernel di operatori lineari integrali non-anticipativi dará origine a stimatori caratterizzati da proprietá di convergenza idealmente "non- asintotiche".Le analisi delle proprietá dei kernel verrá affrontata e due classi di funzioni kernel ammissibili saranno introdotte: una per il problema di stima parametrica e uno per il problema di stima dello stato. Gli operatori che verranno indotti da tali funzioni kernel proposte, ammettono realizzazione spazio-stato implementabile (cioé a dimensione finita e internamente stabile).
Allo scopo di dare maggior completezza, l’analisi del bias dello stimatore proposto verrá esaminata, derivando le proprietá asintotiche dell’algoritmo di identificazione e dimostrando che le funzioni kernel possono essere pro- gettate tenendo in debito conto i risultati ottenuti in questa analisi.