Repository logo
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
Repository logo
  • Communities & Collections
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.10 (1978)
  6. A note on a theorem of Khan
 
  • Details
  • Metrics
Options

A note on a theorem of Khan

Fisher, Brian
1978
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/6465
  • Article

Abstract
T è un'applicazione di uno spazio metrico completo (X, d) in sè, tale che \[ \mathit{d}(T_{x}T_{y})\leq K\frac{d(x,Tx)d(x,Ty)+d(y,Ty)d(y,Tx)}{d(x,Ty)+d(y,Tx)} \] $dove$ 0$\leq\mathit{K<\textrm{1}}$, e $\mathit{x,}y$$\epsilon X.\textrm{Noi consideriamo ciò che accade se}$$\mathit{d(x,Ty)+d(y,Tx)}$=0
T is a mapping of the complete metric space (X, d) into itself satisfyng. \[ \mathit{d}(T_{x}T_{y})\leq K\frac{d(x,Tx)d(x,Ty)+d(y,Ty)d(y,Tx)}{d(x,Ty)+d(y,Tx)} \] $\textrm{where}$ 0$\leq\mathit{K<\textrm{1}}$, and $\mathit{x,}y$$\epsilon X.\textrm{We consider what happens if}$$\mathit{d(x,Ty)+d(y,Tx)}$=0
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
10 (1978)
Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source
Brian Fisher, "A note on a theorem of Khan", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 10 (1978), pp. 1-4
Languages
en
File(s)
Loading...
Thumbnail Image
Name

FisherRendMat10.pdf

Format

Adobe PDF

Size

138.1 KB

Download
Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback