Repository logo
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
Repository logo
  • Communities & Collections
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.28 (1996) s.
  6. Extremal products in Bombieri's norm
 
  • Details
  • Metrics
Options

Extremal products in Bombieri's norm

Beauzamy, Bernard
1996
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/4412
  • Article

Abstract
Let P be a homogeneous polynomial in any number of variables, of any degree, with complex coefficients. We give a complete description of the Q's, of all degrees, such that [Q] = 1 and [PQ] is either maaimal or minimal, where $[\cdot]$ is Bombieri's norm. Far this, we introduce a matrix, built with partial derivatives of P; the quantity [PQ] appears as the l2 norm of the product of this matrix by a vector column associated with Q: thus products of polynomials are replaced by the product of a matrix by a vector, a mach simpler feature. The extreme values of [PQ] are eigenvalues of this matrix. As an application, we give an exact estimate of the norm of the differential operator P(D).
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
28 (1996) s.
Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source
Bernard Beauzamy, "Extremal products in Bombieri's norm", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 28 (1996) suppl., pp. 73-89.
Languages
en
File(s)
Loading...
Thumbnail Image
Name

BeauzamyRendMat28s.pdf

Format

Adobe PDF

Size

249.3 KB

Download
Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback