Options
A periodic problem for first order differential equations with locally coercive nonlinearities
Sovrano, Elisa
Zanolin, Fabio
2017
Loading...
e-ISSN
2464-8728
Abstract
In this paper we study the periodic boundary value problem associated with a first order ODE of the form x' + g(t, x) = s where s is a real parameter and g is a continuous function, T-periodic in the variable t. We prove an Ambrosetti-Prodi type result in which the classical uniformity condition on g(t, x) at infinity is considerably relaxed. The Carathéodory case is also discussed.
Part of
49 (2017)
Publisher
EUT Edizioni Università di Trieste
Source
Elisa Sovrano, Fabio Zanolin, "A periodic problem for first order differential equations with locally coercive nonlinearities",in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics", 49 (2017), Trieste, EUT Edizioni Università di Trieste, 2017, pp. 335-355
Languages
en
Rights
Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
File(s)