Repository logo
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
Repository logo
  • Communities & Collections
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.52 (2020), 1st and 2nd Issue
  6. Past and recent contributions to indefinite sublinear elliptic problems
 
  • Details
  • Metrics
Options

Past and recent contributions to indefinite sublinear elliptic problems

Kaufmann, U.
•
Ramos Quoirin, H.
•
Umezu, K.
2020
Loading...
Thumbnail Image
ISSN
0049-4704
DOI
10.13137/2464-8728/30913
http://hdl.handle.net/10077/30913
  • Article

e-ISSN
2464-8728
Abstract
We review the inde nite sublinear elliptic equation Δu =a(x)uq in a smooth bounded domain ΩCRN, with Dirichlet or Neumann homogeneous boundary conditions. Here 0 < q < 1 and a is continuous and changes sign, in which case the strong maximum principle does not apply. As a consequence, the set of nonnegative solutions of these problems has a rich structure, featuring in particular both dead core and/or positive solutions. Overall, we are interested in su_x000E_cient and necessary conditions on a and q for the existence of positive solu-
tions. We describe the main results from the past decades, and combine it with our recent contributions. The proofs are briefly sketched.
Journal
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics 
Subjects
  • elliptic sublinear pr...

  • indefinite

  • strong maximum princi...

Publisher
EUT Edizioni Università di Trieste
Source
U. Kaufmann, H. Ramos Quoirin and K. Umezu, "Past and recent contributions to indefinite sublinear elliptic problems" in: "Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol. 52 (2020)", EUT Edizioni Università di Trieste, Trieste, 2020
Languages
en
Rights
Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
File(s)
Loading...
Thumbnail Image
Name

A5_Kaufman.pdf

Format

Adobe PDF

Size

955.43 KB

Download
Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback