Repository logo
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
Repository logo
  • Communities & Collections
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Ricerca
  3. Tesi di dottorato
  4. Scienze economiche e statistiche
  5. PREFERENCE BASED APPROACH TO RISK SHARING
 
  • Details
  • Metrics
Options

PREFERENCE BASED APPROACH TO RISK SHARING

Dall'aglio, Giovanni
2015-04-21
Loading...
Thumbnail Image
http://hdl.handle.net/10077/11011
  • Doctoral Thesis

Abstract
It is well known that optimal risk sharing is an argument that deserves both theoretical and practical interest. It originally appears in the context of reinsurance problems, but now is widely used in a variety of financial and economical applications. The problem concerning the existence of individually rational Pareto optimal allocations, namely optimal solutions, is generally treated in the literature by considering the usual requirement of completeness over decision makers’ preferences. In this thesis we present several conditions for the existence of optimal solutions in a modern preference-based approach provided that agents’ preferences are expressed by not necessarily total preorders and by considering a topological context. We prove the equivalence between optimality and maximality with respect to a coalition preorder traducing the problem of finding optimal solutions to that of guaranteeing the existence of maximal elements for a not necessarily total preorder. In this framework a "folk theorem" is of help since it guarantees the existence of a maximal element for an upper semicontinuous preorder on a compact topological space. We study the functional approaches representing optimal risk sharing identified with the so called multi-objective maximization problem and the supconvolution problem, with the aim of incorporating functional representations of not necessarily total preorders, essentially expressed by order preserving functions and multi-utility representations. We use these two notions in order to guarantee the existence of optimal solutions, and to this aim we appropriately refer to well known results in mathematical utility theory (for example, Rader’s theorem). The case of individual preferences expressed by translation invariant total preorders is also considered, completing fundamental results from the literature also extended to the case of comonotone super-additive and positively homogeneous utility functions. When comonotone allocations are considered, we limit the research of maximal elements with respect to the coalition preorder to the set of comonotone allocations, provided that monotonicity conditions with respect to second order stochastic dominance are imposed to the individual preorders. In all our framework, we deal with risks belonging to some space of nonnegative random variables on a common probability space and, as a natural application of all our considerations, we consider the Choquet Integral when the topology L∞ is considered. Come noto, il problema di risk sharing è un argomento che interessa sia aspetti teorici che applicativi. Originariamente introdotto in contesti di riassicurazione, attualmente è ampiamente utilizzato in una varietà di applicazioni finanziarie ed economiche. Il problema legato all’esistenza di allocazioni Pareto ottimali ed individualmente razionali, definite soluzioni ottime, è generalmente trattato in letteratura considerando l’usuale assioma di completezza sulle preferenze degli agenti. In questa tesi presentiamo diverse condizioni per l'esistenza di soluzioni ottime in un moderno approccio di preferenza caratterizzato dall'espressione delle preferenze individuali per mezzo di preordini non necessariamente totali e considerando un contesto topologico. Viene dimostrata l’equivalenza tra ottimalità e massimalità rispetto ad un preordine di coalizione, traducendo così il problema di trovare soluzioni ottime nel garantire l’esistenza di elementi massimali per un preordine non necessariamente totale. In questo quadro di riferimento, un "folk theorem" è di aiuto in quanto garantisce l’esistenza di un elemento massimale per un preordine superiormente semicontinuo definito su uno spazio topologico compatto. Vengono studiati approcci funzionali legati al problema di risk sharing, identificati con il problema di massimizzazione multi-obiettivo ed il problema di sup-convoluzione, con l’obiettivo di incorporare rappresentazioni funzionali di preordini non necessariamente totali, essenzialmente definite da funzioni order preserving e rappresentazioni di multi-utilità. Queste due notazioni vengono utilizzate in modo da garantire l’esistenza di soluzioni ottime, e a questo scopo ci riferiamo in modo appropriato a ben noti risultati in teoria dell’utilità (ad esempio, il teorema di Rader). Il caso di preferenze individuali espresse da preordini totali invarianti per traslazioni è anche considerato, a completamento di fondamentali risultati presenti in letteratura ed estesi anche al caso di funzioni di utilità che soddisfino alle proprietà di comonotona super-additività e positiva omogeneità. Quando si considerano allocazioni comonotone, ci limitiamo alla ricerca di elementi massimali rispetto al preordine di coalizione nell’insieme delle allocazioni comonotone, purchè vengano imposte condizioni di monotonia sui preordini individuali rispetto alla dominanza stocastica di secondo ordine. In tutto il nostro contesto di riferimento affrontiamo il caso di rischi appartenenti a spazi di variabili aleatorie non-negative definite su un comune spazio di probabilità e come naturale applicazione consideriamo l’integrale di Choquet nel caso venga considerata la topologia L∞.
Subjects
  • risk sharing

  • multi-objective maxim...

  • non-total preorders

  • topology

  • Choquet Integral

  • massimizzazione multi...

  • preordini non-totali

  • topologia

  • integrale di choquet

  • risk sharing

  • sup-convolution probl...

  • sup-convoluzione

Publisher
Università degli studi di Trieste
Languages
en
Licence
http://www.openstarts.units.it/dspace/default-license.jsp
File(s)
Loading...
Thumbnail Image
Name

Dall'Aglio_phd.pdf

Format

Adobe PDF

Size

885.41 KB

Download
Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback