Repository logo
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
Repository logo
  • Communities & Collections
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.40 (2008)
  6. Local Overdetermined Linear Elliptic Problems in Lipschitz Domains with Solutions Changing Sign
 
  • Details
  • Metrics
Options

Local Overdetermined Linear Elliptic Problems in Lipschitz Domains with Solutions Changing Sign

Canuto, Bruno
•
Rial, Diego
2009
Loading...
Thumbnail Image
ISSN
00494704
http://hdl.handle.net/10077/3341
  • Article

Abstract
We prove that the only domain $\Omega$ such that there exists a solution to the following overdetermined problem $\Deltau+\omega2u=−1$ in in $\Omega$, u = 0 on $\partial\Omega$, and $\partialnu = c$ on $\partial\Omega$, is the ball B1, independently on the sign of u, if we assume that the boundary $\partial\Omega$ is a perturbation (no necessarily regular) of the unit sphere $\partialB1$ of Rn. Here $\omega2 \neq (\lambdan)n\geq1$ (the eigenvalues of $−\Delta$ in B1 with Dirichlet boundary conditions), and $\omega \Lambda$, where $\Lambda$ is a enumerable set of R+, whose limit points are the values $\lambda1m$, for some integer $m\geq1$, $\lambda1m$ being the mth-zero of the first-order Bessel function I1.
Series
Rendiconti dell'Istituto di Matematica dell'Università di Trieste. An International Journal of Mathematics
40 (2008)
Subjects
  • Overdetermined Bounda...

  • Elliptic Equation

  • Radial Symmetry

Publisher
EUT - Edizioni Università di Trieste
Source
Bruno Canuto, Diego Rial, "Local Overdetermined Linear Elliptic Problems in Lipschitz Domains with Solutions Changing Sign", in Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 40 (2008), pp. 1-27.
Languages
en
File(s)
Loading...
Thumbnail Image
Name

01Canuto_Rial.pdf

Format

Adobe PDF

Size

200.22 KB

Download
Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback