Options
Katětov order, Fubini property and Hausdorff ultrafilters
Hrušák, Michael
Meza-Alcántara, David
2012
Abstract
We study the Fubini property of ideals on omega and prove that
the Solecki’s ideal S is critical for this property in the Katětov order.
We show that a well-known F_sigma-ideal is critical for Hausdorff ultrafilters
in the Katětov order and, by investigating the position of this ideal in
the Katětov order, we show some of the known properties of this class
of ultrafilters, including the Fubini property.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
44 (2012)
Publisher
EUT Edizioni Università di Trieste
Source
Michael Hrušák, David Meza-Alcántara, "Katětov order, Fubini property and Hausdorff ultrafilters", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 44 (2012), pp. 503–511.
Languages
en
File(s)