Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.32 (2001) s1
  6. Surgery description of orientation-preserving periodic maps on compact orientable 3-manifolds
 
  • Details
  • Metrics
Options

Surgery description of orientation-preserving periodic maps on compact orientable 3-manifolds

Sakuma, Makoto
2001
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/4249
  • Article

Abstract
We show that every orientation-preserving periodic diffeomorphism f on a closed orientable 3-manifold M has a \textquotedblleft{}surgery description\textquotedblright{}, that is, there is a framed link $\mathcal{L}\;\textrm{in}\; S^{3}$ which is invariant by a standard rotation $\varphi$ around a trivial knot, such that M is obtained by surgery on $\varphi$ and that f is conjugate to the periodic diff{}eomorphism induced by $\varphi$. We will illustrate this result, by visualizing isometries of the complements of 2-component hyperbolic links with $\leq$ 9 crossings which do not extend to periodic maps of $S^{3}$.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
32 suppl. 1 (2001)
Subjects
  • periodic map

  • surgery description

  • framed link

  • periodic link

  • symmetry group

  • isometry group

Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source
Makoto Sakuma, "Surgery description of orientation-preserving periodic maps on compact orientable 3-manifolds", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 32 (2001) suppl.1, pp. 375–396.
Languages
en
File(s)
Loading...
Thumbnail Image
Download
Name

SakumaRendMat32s.pdf

Format

Adobe PDF

Size

210.12 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback