Repository logo
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
Repository logo
  • Communities & Collections
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.32 (2001) s1
  6. A Code for m-Bipartite Edge-Coloured Graphs
 
  • Details
  • Metrics
Options

A Code for m-Bipartite Edge-Coloured Graphs

Casali, Maria Rita
•
Gagliardi, Carlo
2001
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/4235
  • Article

Abstract
An (n + 1)-coloured graph $\left(\Gamma,\gamma\right)$ is said to be $m-bipartite$ if m is the maximum integer so that every m-residue of $\left(\Gamma,\gamma\right)$ (i.e. every connected subgraph whose edges are coloured by only m colours) is bipartite; obviously, every (n + 1)-coloured graph, with n $\geq$ 2, results to be m-bipartite for some m, with 2 $\leq$ m $\leq$ n + 1. In this paper, a numerical $code$ of length (2n \textminus{} m + 1) $\times$ q is assigned to each m-bipartite (n + 1)-coloured graph of order 2q. Then, it is proved that$any\; two\; such\; graphs\; have\; the\; same\; code\; if\; and\; only\; if\; they\; are\; colour-isomorphic$, i.e. if a graph isomorphism exists, which transforms the graphs one into the other, up to permutation of the edge-colouring. More precisely, if H is a given group of permutations on the colour set, we face the problem of algorithmically recognizing H-isomorphic coloured graphs by means of a suitable defi{}nition of H-code.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
32 suppl. 1 (2001)
Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source
Maria Rita Casali and Carlo Gagliardi, "A Code for m-Bipartite Edge-Coloured Graphs", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 32 (2001) suppl.1, pp. 55–76.
Languages
en
File(s)
Loading...
Thumbnail Image
Name

CasaliGagliardiRendMat32s.pdf

Format

Adobe PDF

Size

218.95 KB

Download
Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback