Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.52 (2020), 1st and 2nd Issue
  6. Realizations of certain odd-degree surface branch data
 
  • Details
  • Metrics
Options

Realizations of certain odd-degree surface branch data

Petronio, Carlo
2020
Loading...
Thumbnail Image
ISSN
0049-4704
DOI
10.13137/2464-8728/30767
http://hdl.handle.net/10077/30767
  • Article

e-ISSN
2464-8728
Abstract
We consider surface branch data with base surface the sphere, odd degree d, three branching points, and partitions of d of the form (2, ..., 2, 1) (2,..., 2, 2h + 1) π with π having length ℓ. This datum satisfies the Riemann-Hurwitz necessary condition for realizability if h — ℓ is odd and at least —1. For several small values of h and ℓ (namely, for h + ℓ ≤ 5) we explicitly compute the number v of realizations of the datum up to the equivalence relation given by the action of automorphisms (even unoriented ones) of both the base and the covering surface. The expression of v depends on arithmetic properties of the entries of π. In particular we find that in the only case where v is 0 the entries of π have a common divisor, in agreement with a conjecture of Edmonds-Kulkarny-Stong and a stronger one of Zieve.
Journal
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics 
Subjects
  • Surface branched cove...

  • Hurwitz number

Publisher
EUT Edizioni Università di Trieste
Source
Carlo Petronio, "Realizations of certain odd-degree surface branch data" in: "Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol. 52 (2020)", EUT Edizioni Università di Trieste, Trieste, 2020
Languages
en
Rights
Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
File(s)
Loading...
Thumbnail Image
Download
Name

B1_Petronio.pdf

Format

Adobe PDF

Size

495.69 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback