Publication:
Old and new results on quasi-uniform extension

Loading...
Thumbnail Image
Date
1999
Journal Title
Journal ISSN
Volume Title
Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Research Projects
Organizational Units
Journal Issue
Abstract
According to $\left[17\right]$ or $\left[12\right]$, $\mathcal{U}$ is a quasi-uniformity on a set X if it's a filter on $X\times X$, the diagonal $\Delta=\left\{ \left(x,x\right):x\epsilon X\right\} \subset U$ for U $\epsilon\; U$ (i.e. $\mathcal{U}$ is composed of entourages on X), and, for each U $\epsilon\;\mathcal{U}$, there is U' $\epsilon\;\mathcal{U}$ such that U'$^{2}$=U' o U'=$\left\{ \left(x,z\right):\exists y\;\textrm{with}\;\left(x,y\right),\left(y,z\right)\epsilon U'\right\} \subset U.$ The restriction $\mathcal{U}\mid X_{0}$ to $X_{0}\subset X$ of the quasi-uniformity $\mathcal{U}$ on X is composed of the sets $\mathcal{U}\mid X_{0}=U\cap\left(X_{0}\times X_{0}\right)$ for U $\epsilon\; U$; it is a quasi-uniformity on X$_{0}$. Let Y $\supset$X, $\mathcal{U}$ be a quasi-uniformity on Y; $\mathcal{W}$ is an extension of the quasi-uniformity $\mathcal{U}$ on X if $\mathcal{W}\mid X\mathcal{=U}$. The purpose of the present paper is to give a survey on results, due mainly to Hungarian topologists, concerning extensions of quasi-uniformities.
Description
Keywords
Citation
Á. Császár, "Old and new results on quasi-uniform extension", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 30 (1999) suppl., pp. 75-85.