Options
Index and persistence of stable Cantor sets
Ortega, Rafael
Ruiz-Herrera, Alfonso
2012
Abstract
A theorem by Bell and Meyer says that a stable and transitive Cantor set in the plane can be approximated by periodic points.
We prove that the periodic points can be chosen with index one. As a
consequence these Cantor sets are always persistent invariant sets.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
44 (2012)
Publisher
EUT Edizioni Università di Trieste
Source
Rafael Ortega, Alfonso Ruiz-Herrera, "Index and persistence of stable Cantor sets", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 44 (2012), pp. 33–44.
Languages
en
File(s)