Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.27 (1995)
  6. On Bounded Positive Solutions of Semilinear Schrödinger Equations
 
  • Details
  • Metrics
Options

On Bounded Positive Solutions of Semilinear Schrödinger Equations

Constantin, Adrian
1995
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/4610
  • Article

Abstract
L'equazione semilineare di Schr$\ddot{\textrm{o}}$dinger $\Delta u+f\left(x,u\right)=0$ viene considerata in un dominio esterno di $R^{n},n\geq3$. Vengono date condizioni su n sufficienti affinchè l'equazioni abbia soluzioni positive u(x) con $u\left(x\right)\rightarrow0$ quando $\mid x\mid\longrightarrow\infty$.
The semilinear Schr$\ddot{\textrm{o}}$dinger equation $\Delta u+f\left(x,u\right)=0$ is considered in an exterior domain of $R^{n},n\geq3$. Conditions on f are given which are sufficient for the equation to have positive solutions u(x) with $u\left(x\right)\rightarrow0$ as $\mid x\mid\longrightarrow\infty$.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
27 (1995)
Subjects
  • Schrödinger Equation

Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source
Adrian Constantin, "On Bounded Positive Solutions of Semilinear Schrödinger Equations”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 27 (1995), pp. 79-83.
Languages
en
File(s)
Loading...
Thumbnail Image
Download
Name

ConstantinRendMat27.pdf

Format

Adobe PDF

Size

144.26 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback