Options
Cellular automata inspired learning with Recurrent Neural Networks for Sea Surface Temperature
Benjelloun, Kenza
2025
Loading...
e-ISBN
978-88-5511-663-3
Abstract
In questo articolo, viene valutata la performance predittiva di una rete neurale ricorrente (RNN) standard applicata ai dati di temperatura superficiale del mare. La novità di questo lavoro è uno schema basato sui quartieri per l'inserimento di informazioni spaziotemporali nel modello RNN. Il nostro approccio viene confrontato con un'altra RNN addestrata su sequenze puramente temporali e su una baseline media. I risultati dimostrano che l'incorporazione dei quartieri spaziali migliora la performance predittiva, evidenziando la rilevanza di questa strategia per la previsione di variabili oceanografiche da set di dati di rianalisi.
In this paper, the predictive performance of a standard Recurrent Neural Network (RNN) applied to sea surface temperature data is evaluated. The novelty of this work is a neighborhood-based scheme for feeding spatiotemporal information into the RNN model. Our approach is compared against another RNN trained on purely temporal sequences and on an average baseline. Results demonstrate that incorporating spatial neighborhoods improves predictive performance, highlighting the relevance of this strategy for forecasting oceanographic variables from reanalysis datasets
In questo articolo, viene valutata la performance predittiva di una rete neurale ricorrente (RNN) standard applicata ai dati di temperatura superficiale del mare. La novità di questo lavoro è uno schema basato sui quartieri per l'inserimento di informazioni spaziotemporali nel modello RNN. Il nostro approccio viene confrontato con un'altra RNN addestrata su sequenze puramente temporali e su una baseline media. I risultati dimostrano che l'incorporazione dei quartieri spaziali migliora la performance predittiva, evidenziando la rilevanza di questa strategia per la previsione di variabili oceanografiche da set di dati di rianalisi.
Publisher
EUT Edizioni Università di Trieste
Source
Kenza Benjelloun, "Cellular automata inspired learning with Recurrent Neural Networks for Sea Surface Temperature" in: "Pierluigi Barbieri, "iNEST – Interconnected Nord-Est Innovation Ecosystem: General frame of the project and Activities of Young Researcher at the University of Trieste", Trieste, EUT Edizioni Università di Trieste, 2025, pp.
Languages
en
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
