Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.52 (2020), 1st and 2nd Issue
  6. Existence of attractors when diffusion and reaction have polynomial growth
 
  • Details
  • Metrics
Options
Existence of attractors when diffusion and reaction have polynomial growth
Ahmad, Shair
•
Le, Dung
2020
Loading...
Thumbnail Image
ISSN
0049-4704
DOI
10.13137/2464-8728/30915
http://hdl.handle.net/10077/30915
  • Article

e-ISSN
2464-8728
Abstract
We study an interesting model, with reaction terms of Lotka-Volterra type, where diffusion and reaction have polynomial growth of any order. We establish existence of global attractors as well as exponential attractors. In the sequel we study the long time dynamics of an appropriate semigroup and show that it possesses a global attractor (and exponential attractors) in a certain Banach space.
Journal
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics 
Subjects
  • Cross diffusion syste...

  • H ölder regulari...

  • global existence

Publisher
EUT Edizioni Università di Trieste
Source
Shair Ahmad and Dung Le, "Existence of attractors when diffusion and reaction have polynomial growth" in: "Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol. 52 (2020)", EUT Edizioni Università di Trieste, Trieste, 2020
Languages
en
Rights
Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback