Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.18 (1986)
  6. Solution of a BVP constrained in an infinitely deep potential well
 
  • Details
  • Metrics
Options

Solution of a BVP constrained in an infinitely deep potential well

Coti Zelati, Vittorio
1986
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/4985
  • Article

Abstract
Si dimostra l'esistenza di una soluzione per il problema al contorno \[ -\ddot{x}=\nabla U(x),x(0)=x(a)=0 \] dove x:$\left[0,a\right]\mathbf{R^{\textrm{n}},}U:\Omega\subset\mathbf{R^{\textrm{n}}\rightarrow\mathbf{R}}$, U convessa e U(x)$\rightarrow+\infty$quando x$\rightarrow\text{\ensuremath{\partial}}\Omega$. Il metodo usato sì basa sul Principio di Azione Duale di Clarke e Ekeland.
We prove existence of a solution for the boundary value problem \[ -\ddot{x}=\nabla U(x),x(0)=x(a)=0 \] where x:$\left[0,a\right]\mathbf{R^{\textrm{n}},}U:\Omega\subset\mathbf{R^{\textrm{n}}\rightarrow\mathbf{R}}$, U convex and U(x)$\rightarrow+\infty$ as x$\rightarrow\text{\ensuremath{\partial}}\Omega$. The method employed is based on the use ot the Dual Action Principle of Clarke and Ekeland.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
18 (1986)
Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source
Vittorio Coti Zelati, “Solution of a BVP constrained in an infinitely deep potential well”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 18 (1986), pp. 100-104.
Languages
en
File(s)
Loading...
Thumbnail Image
Download
Name

CotiZelatiRendMat18.pdf

Format

Adobe PDF

Size

276.84 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback