Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.53 (2021)
  6. Some inequalities for the Riemann zeta function
 
  • Details
  • Metrics
Options

Some inequalities for the Riemann zeta function

Alzer, Horst
•
Kwong, Man Kam
2021
Loading...
Thumbnail Image
ISSN
0049-4704
DOI
10.13137/2464-8728/31872
http://hdl.handle.net/10077/31872
  • Article

e-ISSN
2464-8728
Abstract
Our main result states that for all real numbers s>1 we have \gamma < s (\frac{\zeta'(s)}{\zeta(s)}+\frac{1}{s-1}). \eqno (\ast) The constant lower bound \gamma is sharp. This refines an inequality published by Delange in 1987. Applications of (\ast) lead to a monotonicity theorem, namely, that \frac{(s-1)\zeta(s)}{s^{\alpha}} is strictly increasing on (1,\infty) if and only if \alpha \leq \gamma, and to additional inequalities for the zeta function.
Journal
Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics 
Subjects
  • Riemann zeta function...

  • Euler's constant

  • von Mangoldt function...

  • inequalities

Publisher
EUT Edizioni Università di Trieste
Source
Horst Alzer, Man Kam Wong, "Some inequalities for the Riemann zeta function" in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.53 (2021)", EUT Edizioni Università di Trieste, Trieste, 2021. pp. 11
Languages
en
Rights
Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
File(s)
Loading...
Thumbnail Image
Download
Name

art 5 Alzer DOI.pdf

Format

Adobe PDF

Size

261.57 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback