Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.56 (2024)
  6. The fundamental group of SO(n) via quotients of braid groups
 
  • Details
  • Metrics
Options
The fundamental group of SO(n) via quotients of braid groups
Hajdini, Ina
•
Stoytchev, Orlin
2024
Loading...
Thumbnail Image
ISSN
0049-4704
DOI
10.13137/2464-8728/36846
https://www.openstarts.units.it/handle/10077/36846
  • Article

e-ISSN
2464-8728
Abstract
Some topological properties of a Lie group can be deduced by studying a discrete group of homotopy classes of paths from the identity to elements of a finite subgroup of the given Lie group. In this way a "skeleton" of the universal cover is constructed in terms of generators and relations. We use this approach to describe an algebraic derivation of the well-known fact that the fundamental group of SO(n) is isomorphic to Z/2Z when n ≥ 3. The fundamental group of SO(n) appears in our treatment as a subgroup of the center of a finite factor of the braid group Bn, obtained by imposing one additional relation and turns out to be a nontrivial central extension by Z/2Z of the corresponding group of rotational symmetries of the hyperoctahedron in dimension n.
Journal
Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics 
Subjects
  • braid groups

  • finite rotation group...

Source
Ina Hajdini and Orlin Stoytchev, "The fundamental group of SO(n) via quotients of braid groups" in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.56 (2024)", EUT Edizioni Università di Trieste, Trieste, 2024, pp. 41-61
Languages
en
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
File(s)
Loading...
Thumbnail Image
Download
Name

RIMUT-56-2024_Hajdini_Et-al.pdf

Format

Adobe PDF

Size

536.55 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback