Options
Zur Darstellung von Lösungen einer Klasse linearer partieller Differentialgleichungen
Püngel, Jürgen
1982
Abstract
Questa nota riguarda la costruzione di operatori differenziali lineari
\[
T=\overset{n}{\underset{i=0}{\sum}}\overset{m}{\underset{k=0}{\sum}}a_{ik}(z,\zeta)\frac{\partial^{i+k}}{\partial z^{i}\partial\zeta^{k}},
\]
$(z,\zeta)\epsilon\mathbf{D\subset C^{\textrm{2}}}$che trasformano
tutte le soluzioni u (z, $\zeta$) di equazioni u$_{z\zeta}$+ a($z,\zeta$)u$\zeta$+
b$(z,\zeta)$u$_{z}$= 0 in soluzioni $\tilde{u}$=Tu di equazioni
$\tilde{u}_{z\zeta}$+$\tilde{a}$$(z,\zeta)$$\tilde{u_{\zeta}}$+$\tilde{b}$$(z,\zeta)\tilde{u_{\zeta}}$=0
\[
T=\overset{n}{\underset{i=0}{\sum}}\overset{m}{\underset{k=0}{\sum}}a_{ik}(z,\zeta)\frac{\partial^{i+k}}{\partial z^{i}\partial\zeta^{k}},
\]
$(z,\zeta)\epsilon\mathbf{D\subset C^{\textrm{2}}}$which map all
solutions u (z, $\zeta$) of equations u$_{z\zeta}$+ a($z,\zeta$)u$\zeta$+
b$(z,\zeta)$u$_{z}$= 0 into solutions $\tilde{u}$=Tu of equations
$\tilde{u}_{z\zeta}$+$\tilde{a}$$(z,\zeta)$$\tilde{u_{\zeta}}$+$\tilde{b}$$(z,\zeta)\tilde{u_{\zeta}}$=0
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
14 (1982)
Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source
Jürgen Püngel, "Zur Darstellung von Lösungen einer Klasse linearer partieller Differentialgleichungen", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 14 (1982), pp. 71-84.
Languages
de
File(s)