Options
On Hyperbolic $\pi-Orbifolds$ with Arbitrary many Singular Components
Vesnin, Andrei
2007
Abstract
We construct a family of (n + 1)-component links $\mathcal{L}_n$
which are closures of rational 3-string braids
$(\sigma_1^{-1/2}\sigma_2^2)^n$
and show that for n \geq 3 they arise as singular sets of hyperbolic
$\pi-orbifolds$. Moreover, their 2-fold branched coverings are described
by Dehn surgeries.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
39 (2007)
Publisher
EUT Edizioni Università di Trieste
Source
Andrei Vesnin, "On Hyperbolic $\pi-Orbifolds$ with Arbitrary many Singular Components”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 39 (2007), pp. 375–386.
Languages
en
File(s)