Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.49 (2017)
  6. Global stability, or instability, of positive equilibria of p-Laplacian boundary value problems with p-convex nonlinearities
 
  • Details
  • Metrics
Options

Global stability, or instability, of positive equilibria of p-Laplacian boundary value problems with p-convex nonlinearities

Rynne, Bryan P.
2017
Loading...
Thumbnail Image
ISSN
0049-4704
DOI
10.13137/2464-8728/16212
http://hdl.handle.net/10077/16212
  • Article

e-ISSN
2464-8728
Abstract
We consider the parabolic, initial value problem vt = Δp(v) + λg(x, v)φp(v), in Ω x (0,∞), v = 0, in ∂Ω x (0,∞), (IVP) v = v0 > 0, in Ω x {0}, where Ω is a bounded domain in RN , for some integer N > 1, with smooth boundary ∂Ω, φp(s) := |s|p−1 sgn s , s ∈ R , and Δp denotes the p -Laplacian, with p > max{2,N} , v0 ∈ C0(Ω) , and λ > 0 . The function g : Ω x [0,∞) → (0,∞) is C0 and, for each x ∈ Ω , the function g(x, ·) : [0,∞) → (0,∞) is Lipschitz continuous and strictly increasing. Clearly, (IVP) has the trivial solution v ≡ 0 , for all λ > 0 . In addition, there exists 0 < λmin(g) < λmax(g) such that: • if λ ∈/ (λmin(g),λmax(g)) then (IVP) has no non-trivial, positive equilibrium; • there exists a closed, connected set of positive equilibria bifurcating from (λmax(g), 0) and ‘meeting infinity’ at λ = λmin(g) . We prove the following results on the positive solutions of (IVP): • if 0 < λ < λmin(g) then the trivial solution is globally asymptotically stable; • if λmin(g) < λ < λmax(g) then the trivial solution is locally asymptotically stable and all non-trivial, positive equilibria are unstable; • if λmax(g) < λ then any non-trivial solution blows up in finite time.
Journal
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics 
Part of
49 (2017)
Subjects
  • Global stability

  • positive equilibria

  • p-Laplacian

Publisher
EUT Edizioni Università di Trieste
Source
Bryan P. Rynne, "Global stability, or instability, of positive equilibria of p-Laplacian boundary value problems with p-convex nonlinearities", in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics", 49 (2017), Trieste, EUT Edizioni Università di Trieste, 2017, pp. 193-206
Languages
en
Rights
Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
File(s)
Loading...
Thumbnail Image
Download
Name

12_RIMUT_Rynne.pdf

Format

Adobe PDF

Size

360.18 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback