Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.31 (1999)
  6. Willmore canal surfaces in Euclidean space
 
  • Details
  • Metrics
Options

Willmore canal surfaces in Euclidean space

Musso, Emilio
•
Nicolodi, Lorenzo
1999
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/4327
  • Article

Abstract
We study envelopes of 1-parameter families of spheres (including planes) in Euclidean space which are critical points of the Willmore functional (Willmore canal surfaces). We prove that Willmore canal surfaces are isothermic surfaces and hence conformally equivalent to surfaces of revolution, cones or cylinders. We provide explicit formulae for all solution surfaces. In the generic case the formulae involve Weierstrass's elliptic functions. There are two exceptional cases which can be integrated by using elementary functions only, namely the catenoid and the stereographic projection of the minimal Clifford torus in S3. To obtain the solution surfaces we explicitly integrate the linear differential system defining the Willmore canal surfaces.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
31 (1999)
Subjects
  • Willmore surfaces

  • Willmore canal surfac...

  • Isothermic sur faces...

  • Conformai geometry

Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source
Emilio Musso and Lorenzo Nicolodi, "Willmore canal surfaces in Euclidean space", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 31 (1999), pp. 177-202.
Languages
en
File(s)
Loading...
Thumbnail Image
Download
Name

MussoNicolodiRendMat31.pdf

Format

Adobe PDF

Size

321.42 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback