Options
Oscillatory and asymptotic characterization of the solutions of higher order forced differential equations generated by deviating arguments
Chen, Lu San
Yeh, Cheh Chih
1977
Abstract
In questo lavoro si classificano tutte le soluzioni dell'equazione
differenziale non lineare forzata con argomenti devianti:
\[
X^{(n)}(t)+\overset{m}{\underset{i=1}{\sum}f_{i}(t},x[g_{i1}(t)],\ldots,x[g_{ir}(t)])=\Phi(t)
\]
con riguardo al loro comportamento per $t\rightarrow\infty$e al loro
carattere oscillatorio.
In this paper we classify all solutions of the nonlinear forced diffrential
equation with deviating arguments:
\[
X^{(n)}(t)+\overset{m}{\underset{i=1}{\sum}f_{i}(t},x[g_{i1}(t)],\ldots,x[g_{ir}(t)])=\Phi(t)
\]
with respect to their behavior as $t\rightarrow\infty$ and to their
oscillatory character.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
9 (1977)
Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source
Lu San Chen, Cheh Chih Yeh, "Oscillatory and asymptotic characterization of the solutions of higher order forced differential equations generated by deviating arguments", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 9 (1977), pp. 70-82.
Languages
en
File(s)