Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.39 (2007)
  6. Some Remarks on Homogeneous Minimal Reductions
 
  • Details
  • Metrics
Options

Some Remarks on Homogeneous Minimal Reductions

Spangher, Walter
2007
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/4188
  • Article

Abstract
Let I be a homogeneous ideal of a graded affine k–algebra R such that there exists some homogeneous minimal reduction. We prove that the degrees (of a basis) of every homogeneous minimal reduction J of I are uniquely determined by I; moreover if the fiber cone F(I) is reduced, then the last degree of J is equal to the last degree of I. Moreover, if R is Cohen– Macaulay and I is of analytic deviation one, with 0 < ht(I) := g, it is shown that the first g degrees of J are equals to the first g degrees of I. These results are applied to the ideals I of $k[x_0, . . . , x_{d−1}]$, which have scheme–th. generations of length \leq ht(I) + 2. Some examples are given.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
39 (2007)
Subjects
  • Homogeneous Minimal R...

  • Quasi Complete Inters...

  • Scheme- Theoretic Gen...

  • Monomial Varieties

Publisher
EUT Edizioni Università di Trieste
Source
Walter Spangher, "Some Remarks on Homogeneous Minimal Reductions”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 39 (2007), pp. 311–323.
Languages
en
File(s)
Loading...
Thumbnail Image
Download
Name

SpangherRendMat39.pdf

Format

Adobe PDF

Size

136.85 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback