Options
Regularity properties of solutions to a sixth order Kirchhoff-Love’s type model for nanoplates
Alessandrini, Giovanni
Morassi, Antonino
Rosset, Edi
Sincich, Eva
Vessella, Sergio
2025
Abstract
We prove advanced regularity results for solutions to a sixth order equation arising in the mechanical Kirchhoff-Love’s type model of the static equilibrium of a nanoplate in bending. Such regularity properties play a crucial role in the treatment, among others, of the inverse problem consisting in the determination of the Winkler coefficient of a nanoplate.
Source
Giovanni Alessandrini, Antonino Morassi, Edi Rosset, Eva Sincich, and Sergio Vessella, "Regularity properties of solutions to a sixth order Kirchhoff-Love’s type model for nanoplates" in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.57 (2025)", EUT Edizioni Università di Trieste, Trieste, 2025, pp.
Languages
en
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
File(s)