Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.55 (2023)
  6. A natural basis for intersection numbers
 
  • Details
  • Metrics
Options

A natural basis for intersection numbers

Eynard, Bertrand
•
Lewański, Danilo
2023
Loading...
Thumbnail Image
ISSN
0049-4704
DOI
10.13137/2464-8728/35487
https://www.openstarts.units.it/handle/10077/35487
  • Article

e-ISSN
2464-8728
Abstract
We advertise elementary symmetric polynomials ei as the natural basis for generating series Ag,n of intersection numbers of ψ-classes on the moduli space of stable curves of genus g with n marked points. Closed formulae for Ag,n are known for genera 0 and 1 — this approach provides formulae for g = 2, 3, 4, together with an algorithm to compute the formula for any g. The claimed naturality of the ei basis relies in the unexpected vanishing of some coefficients with a clear pattern. As an application of the conjecture, we find new integral representations of Ag,n, which recover expressions for the Weil-Petersson volumes in terms of Bessel functions.
Journal
Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics 
Subjects
  • Moduli spaces of curv...

  • Cohomological field t...

  • Intersection theory

Source
Bertrand Eynard, Danili Lewański, "A natural basis for intersection numbers" in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.55 (2023)", EUT Edizioni Università di Trieste, Trieste, 2023, pp. 117-163
Languages
en
File(s)
Loading...
Thumbnail Image
Download
Name

RIMUT_55-2023_Eynard_Et_al.pdf

Format

Adobe PDF

Size

795.56 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback