Publication: A vanishing theorem for the ideal sheaf of codimension two subvarieties of \bf P^n
dc.contributor.author | Alzati, Alberto | |
dc.contributor.author | Ottaviani, Giorgio | |
dc.date.accessioned | 2011-06-27T08:42:25Z | |
dc.date.available | 2011-06-27T08:42:25Z | |
dc.date.issued | 1990 | |
dc.description.abstract | Sia X $\subset\mathbf{P^{\textrm{n}}}$ una varietà di codimensione 2. Proviamo che H$^{q}$($\mathcal{I}_{x}(t))$=0 per n$\geq$q +4t+3, e 1$\leq q\leq n-2$ | |
dc.description.abstract | Let X $\subset\mathbf{P^{\textrm{n}}}$ be a 2-codimensional variety. We prove that H$^{q}$($\mathcal{I}_{x}(t))$=0 for n$\geq$q +4t+3, and 1$\leq q\leq n-2$ | |
dc.identifier.citation | Alberto Alzati, Giorgio Ottaviani, “A vanishing theorem for the ideal sheaf of codimension two subvarieties of \bf P^n”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 22 (1990), pp. 136-139. | it_IT |
dc.identifier.issn | 0049-4704 | |
dc.identifier.uri | http://hdl.handle.net/10077/4829 | |
dc.language.iso | en | it_IT |
dc.publisher | Università degli Studi di Trieste. Dipartimento di Scienze Matematiche | it_IT |
dc.relation.ispartofseries | Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics | it_IT |
dc.relation.ispartofseries | 22 (1990) | it_IT |
dc.title | A vanishing theorem for the ideal sheaf of codimension two subvarieties of \bf P^n | it_IT |
dc.type | Article | |
dspace.entity.type | Publication |