Options
Global bifurcation of double phase problems
Pucci, Patrizia
Wang, Linlin
Zhang, Binlin
2025
Abstract
Via the global bifurcation theorem due to Rabinowitz, the paper shows bifurcation properties of the solutions of the following nonlinear Dirichlet problem, involving a double phase operator, that is ( −Δap u − νΔmu = λa(x)|u|m−2u + f(x, u) in Ω, u = 0 on ∂Ω, where 1 < m < p < N, p/m < 1 + 1/N and λ, ν ∈ R.
Source
Patrizia Pucci, Linlin Wang and Binlin Zhang, "Global bifurcation of double phase problems" in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.57 (2025)", EUT Edizioni Università di Trieste, Trieste, 2025, pp.
Languages
en
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
File(s)