Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. Ricerca
  3. Tesi di dottorato
  4. Ingegneria industriale e dell'informazione
  5. Titration of High Frequency Percussive Ventilation by means of real-time monitoring of the viscoelastic respiratory system properties and endotracheal tubes pressure drop.
 
  • Details
  • Metrics
Options

Titration of High Frequency Percussive Ventilation by means of real-time monitoring of the viscoelastic respiratory system properties and endotracheal tubes pressure drop.

Lucangelo, Umberto
2014-04-01
Loading...
Thumbnail Image
http://hdl.handle.net/10077/9992
  • Doctoral Thesis

Abstract
The use of High Frequency Percussive Ventilation (HFPV) is still debated although this type of non-conventional ventilation has proven effective and safe in patients with acute respiratory failure. In the clinical practice, HFPV is not an intuitive ventilatory modality and the absence of real-time delivered volume monitoring produces disaffection among the physicians. Avoiding the "volutrauma" is the cornerstone of the "protective ventilation strategy", which assumes a constant monitoring of inspiratory volume delivered to the patient. Currently the system capable of delivering HFPV is the VDR-4® (Volumetric Diffusive Respirator), which provides only analog airway pressure waveform and digital output of peak and the mean airway pressure. The latter is involved in the determination of oxygenation and hemodynamics, irrespective of the mode of ventilation. At the present time, the mean airway pressure, together with gas exchange analysis, are the only parameters that indirectly guide the physician in assessing the clinical effectiveness of HFPV. Till now, flow, volume and pressure curves generated by HFPV have never been studied in relation to the specific patients respiratory mechanics. The real-time examination of these parameters could allow the physicians to analyze and understand elements of respiratory system mechanics as compliance (Crs), resistance (Rrs), inertance (Irs) and of patient-ventilator interaction. The mechanical effects are complex and result from interactions between ventilator settings and patient’s respiratory system impedance. The aim of this doctoral thesis was to acquire and study volume and respiratory parameters during HFPV in order to explain this complex patients-machine interaction and transfer the results in clinical practice.
Subjects
  • High Frequency Percus...

  • Bimedical Signal Proc...

  • Viscoelastic respirat...

Insegnamento
  • INGEGNERIA DELL'INFOR...

Publisher
Università degli studi di Trieste
Languages
en
Licence
http://www.openstarts.units.it/dspace/default-license.jsp
File(s)
Loading...
Thumbnail Image
Download
Name

Lucangelo_phd.pdf

Format

Adobe PDF

Size

3.79 MB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback