Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.35 (2003)
  6. From Hermite to Humbert polynomials
 
  • Details
  • Metrics
Options

From Hermite to Humbert polynomials

Dattoli, G.
•
Lorenzutta, S.
•
Cesarano, C.
2003
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/4173
  • Article

Abstract
We use the multivariable Hermite polynomials to derive integral representations of Chebyshev and Gegenbauer polynomials. It is shown that most of the properties of these classes of polynomials can be deduced in a fairly straightforward way from this representation, which proves a unifying framework for a large body of polynomial families, including forms of the Humbert and Bessel type, which are a natural consequence of the point of view developed in this paper.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
35 (2003)
Subjects
  • Gegenbauer polynomial...

  • Hermite polynomials

  • Humbert polynomials

Publisher
Università degli Studi di Trieste. Dipartimento di Matematica e Informatica
Source
G. Dattoli, S. Lorenzutta, C. Cesarano, "From Hermite to Humbert polynomials", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 35 (2003), pp. 37-48.
Languages
en
File(s)
Loading...
Thumbnail Image
Download
Name

DattoliLorenzuttaCesaranoRendMat35.pdf

Format

Adobe PDF

Size

108.38 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback