Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.29 (1997)
  6. White Noise Perturbation of the Equations of Linear Parabolic Viscoelasticity
 
  • Details
  • Metrics
Options

White Noise Perturbation of the Equations of Linear Parabolic Viscoelasticity

Clément, Ph.
•
Da Prato, G.
•
Prüss, J.
1997
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/4372
  • Article

Abstract
Evolutionary integral equations as appearing in the theory of linear parabolic viscoelasticity are studied in the presence of white noise. It is shown that the stochastic convolution leads to regular solutions, and that under suitable assumptions the samples are Hölder-continuous. These results are put in a wider perspective by consideration of equations with fractional derivatives which are also studied in this paper. This way, known results are recovered and put into broader perspective.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
29 (1997)
Subjects
  • Linear viscoelasticit...

  • parabolicity

  • stochastic convolutio...

  • fractional derivative...

  • Volterra equations

Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source
Ph. Clément, G. Da Prato, J. Prüss, "White Noise Perturbation of the Equations of Linear Parabolic Viscoelasticity", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 29 (1997), pp. 207-219.
Languages
en
File(s)
Loading...
Thumbnail Image
Download
Name

ClementDaPratoPrussRendMat29.pdf

Format

Adobe PDF

Size

225.88 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback