Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.27 (1995)
  6. On Discrete Inequalities Involving Arithmetic, Geometric, and Harmonic Means
 
  • Details
  • Metrics
Options

On Discrete Inequalities Involving Arithmetic, Geometric, and Harmonic Means

Alzer, Horst
1995
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/4606
  • Article

Abstract
Si dimostra: se A(n), G(n), e H(n) denotano la media aritmetica, geometrica ed armonica dei primi n interi positivi , allora si ha che per n $\geq$ 2: \[ \begin{array}{cc} \frac{H(n)}{H(n-1)}-\frac{H(n+1)}{H(n)}< & \frac{G(n)}{G(n-1)}-\frac{G(n+1)}{G(n)}\\ \qquad\qquad\qquad\qquad< & \frac{A(n)}{A(n-1)}-\frac{A(n+1)}{A(n)} \end{array} \]
We prove: if A(n), G(n), and H(n) denote the arithmetic, geometric, and harmonic means of the first n positive integers, then we have for n $\geq$ 2: \[ \begin{array}{cc} \frac{H(n)}{H(n-1)}-\frac{H(n+1)}{H(n)}< & \frac{G(n)}{G(n-1)}-\frac{G(n+1)}{G(n)}\\ \qquad\qquad\qquad\qquad< & \frac{A(n)}{A(n-1)}-\frac{A(n+1)}{A(n)} \end{array} \]
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
27 (1995)
Publisher
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche
Source
Horst Alzer, "On Discrete Inequalities Involving Arithmetic, Geometric, and Harmonic Means”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 27 (1995), pp. 1-9.
Languages
en
File(s)
Loading...
Thumbnail Image
Download
Name

AlzerRendMat27.pdf

Format

Adobe PDF

Size

153.13 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback