Options
A new animal model in the study of UCB metabolism and neurotoxicity
Bortolussi, Giulia
2009-03-02
Contributor(s)
Muro, Andres Fernando
Abstract
Hyperbilirubinemia is the most common clinical situation during neonatal life and it is observed in 60% of full−term and 80% of pre−term infants. A combination of factors still not well defined such as: prematurity, infections, genetic disorders, brest-feed under-nourishing, may cause hazardous, toxic levels of UnConjugated Bilirubin (UCB) during neonatal period (neonatal jaundice) that pose a direct threat of brain bamage (kernicterus). The deposition of UCB in the Central Nervous System (CNS) causes Bilirubin Encephalopathy (BE) with lifelong motor, auditory and mental impairment. The in vivo knowledge on kernicterus derives almost totally from the investigation on Gunn rat that is a natural model for BE. In this animal model the genetic lesion are closely parallel those present in the Crigler-Najjar syndrome type I and the neuropathological lesions are also similar to those found in humans. The Gunn rat is a mutant strain of Wistar rats that lack the uridin di phospho glucoronosyl transferase (UDPGT) activity toward bilirubin. Although the Gunn rat the classical laboratory model for bilirubin encephalopathy its use for the study of molecular mechanisms involved and the determination of other genes modulating the disease is limited by the existence of different strains and by the impossibility to generate targeted mutations in rats, preventing the in vivo study of the role of other genes in BE (i.e. Mrp1). The aim of my PhD project was to generate a mouse model of hyperbilirubinemia due to a one base deletion in the UGT1a1 gene, identical to the one present in the Gunn rat.
To reach this goal, we took advantage to the “Gene Targeting” technique. This genetic technique uses the homologous recombination to modify an endogenous gene. First we constructed the targeting vector specific for the gene of interest. To target genes in mice, the targeting vector was inserted into mouse embryonic stem cells (ES) in culture. At the same time we set up two screening strategies to verify the presence of the targeted mutation in electroporated ES cells (Southern blot and Multiplex PCR). Two positive clones were identified (A9 and G7). Then the positive ES clones were amplified and injected into the blastocysts. Blastocysts were implanted in to a foster mother to obtain the so-called “chimera.” Chimeric mice have two different populations of genetically distinct type of cells originated from different mouse strains and can be selected by the fur colour. We obtained two chimeras, one deriving from A9 clone and one from G7. These chimeras were mated with wild type mice to check for germ line transmission. If the modified ES cells made up the reproductive organ, the offspring will inherit the mutated allele (heterozygous).
At the present time we are screening the offspring of the chimeras, to check for germ line transmission. Mating the heterozygous mice, the offspring will have the entire body based on the previously mutated embryonic stem cell (homozygous).
Obtaining this new animal model for bilirubin neurotoxicity (Gunn mouse) will be crucial to understand the mechanisms regulating the disease, together with an improvement of the diagnosis, prediction of the prognosis, and development of new therapeutic strategies.
Più del 60% dei neonati a termine e l’80% dei neonati prematuri sviluppa un ittero fisiologico nella prima settimana di vita a causa dell’immaturità dei processi fisiologici correlati al metabolismo della bilirubina durante il periodo neonatale. Tuttavia, una combinazione di fattori non ancora ben definiti quali: prematurità, disidratazione, sepsi, disordini di tipo genetico e/o malnutrimento durante l’allattamento, possono causare livelli di bilirubina non coniugata (UCB) eccezionalmente alti durante il periodo neonatale (iperbilirubinemia neontale). Questa condizione fa si che l’UCB possa attraversare in maniera massiva la barriera ematoncefalica (BBB) e depositarsi in specifiche aree cerebrali, ponendo il neonato a rischio di sviluppare encefalopatia da bilirubina (kernittero). Questa grave patologia (tipica della sindrome di Crigler-Najjar-I) si caratterizza per: sordità e disfunzioni uditive, gravi disordini motori (atetosi, spasticità muscolare e ipotonia), disfunzioni visive e displasia dentale. Il modello animale classico per il kernittero è rappresentato dal ratto Gunn. In questo ceppo di ratti è presente una mutazione nel gene dell’UGT che determina la completa inattività dell’enzima epatico bilirubin-glucuronil transferasi (UGT1A1) responsabile della coniugazione dell’UCB a due acidi glucuronici e la successiva eliminazione della bilirubina coniugata attraverso la bile. Gli effetti fisiologici della mutazione a carico dell’UGT1A1 sono molto simili a quelli riscontrati nei pazienti affetti da sindrome di Crigler-Najjar I. L’esistenza di questo modello animale ha consentito un approccio sperimentale al problema della neurotossicità da bilirubina. Tuttavia il modello del ratto Gunn possiede innumerevoli limitazioni, come: l’esistenza di diversi ceppi e, ancora più importante, l’impossibilità di ottenere ceppi mutanti per altri geni coinvolti nel metabolismo della bilirubina (i.e. Mrp1). Pertanto l’obiettivo del mio progetto di dottorato è stata la generazione di un modello murino di iperbilirubinemia dovuto ad una delezione di una base nel gene UGT1, identica a quella presente nel ratto Gunn.
La tecnica utilizzata per raggiungere tale scopo è denominata “Gene Targeting”; tale tecnica biotecnologica si serve della ricombinazione omologa per modificare uno specifico gene d’interesse. Il primo passo è stata la costruzione di un vettore specifico per il gene di interesse (UGT1a1) contenete la delezione di una base nell’Esone 4. Parallelamente alla costruzione del vettore di targeting abbiamo messo a punto due tecniche che permettano lo screening dei cloni resistenti alla doppia selezione (positiva e negativa): Soutern blot e Multiplex PCR. Il vettore è stato poi inserito all’intero del genoma murino di cellule staminali embrionali (ES). Dopo lo screening dei cloni resistenti abbiamo identificato due cloni positivi, ovvero che hanno subito ricombinazione omologa del vettore di targeting: A9 e G7. Questi cloni sono stati ulteriormente vagliati per escludere la presenza di eventi di ricombinazione non omologa. Successivamente i positivi cloni sono stati amplificati ed iniettati all’interno di blastocisti. Le blastocisti sono state impiantate in una madre adottiva (forster mother), da esse si originano topi chimera. Abbiamo ottenuto due chimere, una dal clone A9 ed una dal clone G7. Queste chimere sono state incrociate a loro volta con topi wilde type per verificare la trasmissione della mutazione per via germinale (in eterozigosi). Al momento stiamo analizzando la progenie delle due chimere ottenute per trovare degli eterozigoti. I topi eterozigoti verranno poi incrociati tra lo per ottenere l’omozigote.
Questo nuovo modello animale permetterà di studiare i meccanismi coinvolti nella neuro-tossicità da bilirubina, analizzando in vivo gli eventi biologici che si sviluppano in caso di mutazione a carico del gene UGT1 ed in futuro potrà anche essere usato per testare nuovi approcci diagnostici e terapeutici per il trattamento di neonati affetti da questa malattia.
Insegnamento
Publisher
Università degli studi di Trieste
Languages
en
File(s)