Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.57 (2025)
  6. Quasilinear noncoercive parabolic bilateral variational inequalities in Lp(0, τ ;D1,p(RN))
 
  • Details
  • Metrics
Options

Quasilinear noncoercive parabolic bilateral variational inequalities in Lp(0, τ ;D1,p(RN))

Carl, Siegfried
2025
Loading...
Thumbnail Image
ISSN
0049-4704
https://www.openstarts.units.it/handle/10077/37096
  • Article

e-ISSN
2464-8728
Abstract
In this paper, we prove existence results for quasilinear parabolic bilateral variational inequalities of the form: Find u ∈ K ⊂ X with u(・, 0) = 0 satisfying 0 ∈ ut − Δpu + aF(u) + ∂IK(u) in X∗ in the unbounded cylindrical domain Q = RN × (0, τ ), where Δp is the p-Laplacian acting on X = Lp(0, τ ;D1,p(RN)) with its dual space X∗, and with D1,p(RN) denoting the Beppo-Levi space (or homogeneous Sobolev space). The bilateral constraint is represented by the closed convex set K ⊂ X given by K = {v ∈ X : ϕ(x, t) ≤ v(x, t) ≤ ψ(x, t) for a.a. (x, t) ∈ Q} and IK is the indicator function related to K with ∂IK denoting its subdifferential in the sense of convex analysis. The main goal and the novelty of this paper is to prove existence and directedness results without assuming coercivity conditions on the operator −Δp + aF : X → X∗, and without supposing the existence of sub- and supersolutions. Moreover, additional difficulties we are faced with arise due to the lack of compact embedding of D1,p(RN) into Lebesgue spaces Lσ(RN), and the fact that the domain K of ∂IK has empty interior, which prevents us to use recent results on evolutionary variational inequality. Instead our approach is based on an appropriately designed penalty technique and the use of weighted Lebesgue spaces as well as pseudomontone operator theory.
Journal
Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics 
Subjects
  • Parabolic variational...

  • Bilateral obstacle

  • Beppo-Levi space

  • Penalty approximation...

Source
Siegfried Carl, "Quasilinear noncoercive parabolic bilateral variational inequalities in Lp(0, τ ;D1,p(RN))" in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.57 (2025)", EUT Edizioni Università di Trieste, Trieste, 2025, pp.
Languages
en
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback