Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/10619
Title: Existence and uniqueness of the gradient flow of the Entropy in the space of probability measures
Authors: Bianchini, Stefano
Dabrowsky, Alexander
Keywords: Entropygradient flows
Issue Date: 23-Dec-2014
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
46 (2014)
Abstract: After a brief introduction on gradient flows in metric spaces and on geodesically convex functionals, we give an account of the proof (following the outline of [3,7]) of the existence and uniqueness of the gradient flow of the Entropy in the space of Borel probability measures over a compact geodesic metric space with Ricci curvature bounded from below.
Description: Stefano Bianchini and Alexander Dabrowski, "Existence and uniqueness of the gradient flow of the Entropy in the space of probability measures", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 46 (2014), pp.43-70
URI: http://hdl.handle.net/10077/10619
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.46 (2014)

Files in This Item:
File Description SizeFormat 
RIMUT_46_Bianchini_Dabrowsky.pdf376.71 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

283
checked on Oct 20, 2018

Download(s)

276
checked on Oct 20, 2018

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons