Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/10619
DC FieldValueLanguage
dc.contributor.authorBianchini, Stefano-
dc.contributor.authorDabrowsky, Alexander-
dc.date.accessioned2014-12-23T08:43:41Z-
dc.date.available2014-12-23T08:43:41Z-
dc.date.issued2014-12-23-
dc.identifier.issn0049-4704-
dc.identifier.urihttp://hdl.handle.net/10077/10619-
dc.descriptionStefano Bianchini and Alexander Dabrowski, "Existence and uniqueness of the gradient flow of the Entropy in the space of probability measures", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 46 (2014), pp.43-70it_IT
dc.description.abstractAfter a brief introduction on gradient flows in metric spaces and on geodesically convex functionals, we give an account of the proof (following the outline of [3,7]) of the existence and uniqueness of the gradient flow of the Entropy in the space of Borel probability measures over a compact geodesic metric space with Ricci curvature bounded from below.it_IT
dc.language.isoenit_IT
dc.relation.ispartofseriesRendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematicsit_IT
dc.relation.ispartofseries46 (2014)it_IT
dc.subjectEntropyit_IT
dc.subjectgradient flowsit_IT
dc.titleExistence and uniqueness of the gradient flow of the Entropy in the space of probability measuresit_IT
dc.typeArticle-
dc.subject.msc201035K90it_IT
dc.subject.msc201060B05it_IT
dc.subject.msc201028A33it_IT
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairetypearticle-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.46 (2014)
Files in This Item:
File Description SizeFormat
RIMUT_46_Bianchini_Dabrowsky.pdf376.71 kBAdobe PDFThumbnail
View/Open
Show simple item record


CORE Recommender

Page view(s) 50

483
checked on Feb 2, 2023

Download(s) 50

468
checked on Feb 2, 2023

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons