Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/10619
Title: | Existence and uniqueness of the gradient flow of the Entropy in the space of probability measures | Authors: | Bianchini, Stefano Dabrowsky, Alexander |
Keywords: | Entropy; gradient flows | Issue Date: | 23-Dec-2014 | Series/Report no.: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics 46 (2014) |
Abstract: | After a brief introduction on gradient flows in metric spaces and on geodesically convex functionals, we give an account of the proof (following the outline of [3,7]) of the existence and uniqueness of the gradient flow of the Entropy in the space of Borel probability measures over a compact geodesic metric space with Ricci curvature bounded from below. |
Description: | Stefano Bianchini and Alexander Dabrowski, "Existence and uniqueness of the gradient flow of the Entropy in the space of probability measures", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 46 (2014), pp.43-70 |
Type: | Article | URI: | http://hdl.handle.net/10077/10619 | ISSN: | 0049-4704 |
Appears in Collections: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.46 (2014) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
RIMUT_46_Bianchini_Dabrowsky.pdf | 376.71 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 50
488
checked on Mar 30, 2023
Download(s) 50
472
checked on Mar 30, 2023
Google ScholarTM
Check
This item is licensed under a Creative Commons License